1
|
Martinez S, Bernard DN, Groleau MC, Trottier MC, Déziel E. Implementation of an adaptive laboratory evolution strategy for improved production of valuable microbial secondary metabolites. BIORESOURCE TECHNOLOGY 2025; 425:132255. [PMID: 40020879 DOI: 10.1016/j.biortech.2025.132255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/06/2025] [Accepted: 02/16/2025] [Indexed: 03/03/2025]
Abstract
Microbial surface-active agents, such as rhamnolipids, represent an attractive substitute for synthetic surfactants. However, current production bioprocesses are generally inefficient. Adaptive laboratory evolution strategies could offer a promising avenue to improve secondary metabolites production. In the bacterium Burkholderia thailandensis, the social behaviour called swarming motility relies on biosynthesis of rhamnolipids. Since experimental swarming requires lower agar concentrations, we hypothesized that augmenting the agar concentration would constrain the cells to produce more rhamnolipids. Consecutive rounds of B. thailandensis cultivation on swarming media performed with increasing agar concentrations enhanced rhamnolipid production by the evolved populations, with a correlation between rhamnolipid production and agar concentrations. Whole-genome sequencing of superior producing evoluants revealed inactivating mutations in qsmR, which codes for a transcriptional regulator not known to influence rhamnolipid production. Results indicate that QsmR represses rhamnolipid biosynthetic genes transcription. The developed directed evolution strategy could be used to improve biosurfactant yields with other producing bacteria.
Collapse
Affiliation(s)
- Sarah Martinez
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la recherche Scientifique (INRS), Laval, Québec, Canada
| | - David N Bernard
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la recherche Scientifique (INRS), Laval, Québec, Canada
| | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la recherche Scientifique (INRS), Laval, Québec, Canada
| | - Mylène C Trottier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la recherche Scientifique (INRS), Laval, Québec, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la recherche Scientifique (INRS), Laval, Québec, Canada.
| |
Collapse
|
2
|
de Siqueira EC, de Andrade Alves A, de Barros MPS, da Silva Vale R, da Costa E Silva PE, Contiero J, Dutra ED, Houllou LM. Integrated production of polyhydroxyalkanoates and rhamnolipids: Insights in cultivation conditions and metabolic engineering. J Biotechnol 2025; 405:17-25. [PMID: 40339653 DOI: 10.1016/j.jbiotec.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/02/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Polyhydroxyalkanoates and biosurfactants have the potential to play a significant role in emerging bioeconomic chains. With growing environmental worries about the excessive consumption of fossil fuel derivatives, significant focus has been paid to a renewable-based economy known as the circular bioeconomy. Polyhydroxyalkanoates (PHAs) are a type of biodegradable, hydrophobic, non-toxic, thermoplastic polymer created by microbial processes that have good physicochemical properties. Rhamnolipids (RhL) are amphipathic, biodegradable, and biocompatible compounds with outstanding emulsification capabilities. Unfortunately, commercial manufacturing of PHA and RhL remains limited due to their high production costs as compared to standard polymers and surfactants. The combined manufacture of PHA and RhL can lower production costs and is an ideal option for creating two widely applicable commodities on the market. This work provides a general overview of PHA and RhL co-production, focusing on the use of renewable materials and important aspects that are directly related to cultivation conditions, as well as genetic and metabolic engineering strategies to optimize PHA and RhL production.
Collapse
Affiliation(s)
- Edmilson Clarindo de Siqueira
- Center for Strategic Technologies in the Northeast (CETENE), Av. Prof. Luiz Freire, 01 Cidade Universitária, Recife, PE 50740545, Brazil
| | - Aline de Andrade Alves
- Center for Strategic Technologies in the Northeast (CETENE), Av. Prof. Luiz Freire, 01 Cidade Universitária, Recife, PE 50740545, Brazil.
| | - Maria Paloma Silva de Barros
- Center for Strategic Technologies in the Northeast (CETENE), Av. Prof. Luiz Freire, 01 Cidade Universitária, Recife, PE 50740545, Brazil
| | - Rayane da Silva Vale
- São Paulo State University, Av. 24 A, 1515-Bela Vista, Rio Claro, SP 13506-900, Brazil
| | - Páblo Eugênio da Costa E Silva
- Federal Rural University of Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, S/N, Dois Irmãos, Recife, PE 52171900, Brazil
| | - Jonas Contiero
- São Paulo State University, Av. 24 A, 1515-Bela Vista, Rio Claro, SP 13506-900, Brazil
| | - Emmanuel Damilano Dutra
- Federal Rural University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, CidadeUniversitária, Recife, PE 50670901, Brazil
| | - Laureen Michelle Houllou
- Center for Strategic Technologies in the Northeast (CETENE), Av. Prof. Luiz Freire, 01 Cidade Universitária, Recife, PE 50740545, Brazil
| |
Collapse
|
3
|
Naik TJ, Salgaonkar BB. Unlocking the potential of microbes: Concomitant production of polyhydroxyalkanoates and carotenoids. Int J Biol Macromol 2025; 303:140654. [PMID: 39909243 DOI: 10.1016/j.ijbiomac.2025.140654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
The escalating environmental concerns and depletion of crude oil resources have catalyzed interest in biologically derived polymers, particularly biodegradable ones such as polyhydroxyalkanoates. However, the high production costs associated with polyhydroxyalkanoates, driven by raw material expenses, stringent production conditions and low yields, hinder their widespread adoption. A potential strategy to mitigate these costs involves the production of PHAs and other high-value bioproducts, such as carotenoids simultaneously in microbial systems, utilizing shared metabolic pathways. Carotenoids, known for their antioxidant properties and applications in the food, cosmetics and pharmaceutical industries, offer substantial market potential. This review presents a comprehensive overview of the current progress in polyhydroxyalkanoate and carotenoid co-production, explores the co-synthesis pathways, addresses the challenges involved and explores the future prospects of this integrated bioprocess. By diversifying the product portfolio and optimizing microbial production systems, the co-production strategy could pave the way for more sustainable and economically viable bioplastics.
Collapse
Affiliation(s)
- Tejas Jagannath Naik
- Microbiology Programme, School of Biological Sciences and Biotechnology (SBSB), Goa University, Taleigao Plateau, Goa 403 206, India.
| | - Bhakti Balkrishna Salgaonkar
- Microbiology Programme, School of Biological Sciences and Biotechnology (SBSB), Goa University, Taleigao Plateau, Goa 403 206, India.
| |
Collapse
|
4
|
Caporusso A, Radice M, Biundo A, Gorgoglione R, Agrimi G, Pisano I. Waste cooking oils as a sustainable feedstock for bio-based application: A systematic review. J Biotechnol 2025; 400:48-65. [PMID: 39952410 DOI: 10.1016/j.jbiotec.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Waste cooking oils (WCOs) are common wastes and promising green, eco-friendly and sustainable feedstocks for bio-based applications. While the primary valorisation strategy revolves around the concept of waste-to energy, new research trends have emerged in the last decade. This systematic review provides a comprehensive analysis of the current state of the art in the conversion of WCOs into bio-based molecules. Based on the PRISMA methodology, 64 papers were selected using different databases and sources, such as: PubMed, ScienceDirect, Scopus and MDPI. The data extraction process focused on studies reporting the biological and chemical conversion of WCOs into value-added bioproducts. Many of the selected publications deal with the development of bioactive molecules, including biosurfactants, with application in pharmaceuticals, food, cosmetics, and bioremediation. Bioconversion processes mainly featured engineered Yarrowia lipolytica and Escherichia coli strains, even if additional microorganisms were also employed. In the same way, different chemical processes have been thoroughly studied. A smaller segment of research is directed to the production of feed supplements and soaps. Regulatory constraints limit further development in feed supplements due to potential contaminants, while soap production needs further stability studies. The present systematic review shows promising outcomes in the valorisation of WCOs through the development of value-added molecules and products. Despite the wide range of applications, these findings identify that the scalability and economic sustainability of the selected processes require further investigation. This study seeks to summarize the current state of the art and identify potential gaps to advance the industrialization of WCOs valorisation.
Collapse
Affiliation(s)
- Antonio Caporusso
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona, 4, Bari 70125, Italy
| | - Matteo Radice
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona, 4, Bari 70125, Italy.
| | - Antonino Biundo
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona, 4, Bari 70125, Italy; REWOW srl, Via G. Matarrese 10, Bari 70124, Italy
| | - Ruggiero Gorgoglione
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona, 4, Bari 70125, Italy
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona, 4, Bari 70125, Italy; CIRCC, Interuniversity Consortium Chemical Reactivity and Catalysis, Via C. Ulpiani, 27, Bari 70126, Italy
| | - Isabella Pisano
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona, 4, Bari 70125, Italy; CIRCC, Interuniversity Consortium Chemical Reactivity and Catalysis, Via C. Ulpiani, 27, Bari 70126, Italy.
| |
Collapse
|
5
|
Kalia VC, Patel SKS, Krishnamurthi P, Singh RV, Lee JK. Exploiting latent microbial potentials for producing polyhydroxyalkanoates: A holistic approach. ENVIRONMENTAL RESEARCH 2025; 269:120895. [PMID: 39832546 DOI: 10.1016/j.envres.2025.120895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Plastics are versatile, however, nonbiodegradable polymers that are primarily derived from fossil fuels and pose notable environmental challenges. However, biopolymers, such as polyhydroxyalkanoates (PHAs), poly(lactic acid), starch, and cellulose have emerged as sustainable alternatives to conventional plastics. Among these, PHAs stand out as strong contenders as they are completely bio-based and biodegradable and are synthesized by microbes as an energy reserve under stress conditions. Despite their limitations, including low mechanical strength, susceptibility to degradation, a restricted scope of application, and high production costs, biopolymers have promising potential. This review explores strategies for enhancing PHA production to address these challenges, emphasizing the need for sustainable PHA production. These strategies include selecting robust microbial strains and feedstock combinations, optimizing cell biomass and biopolymer yields, genetically engineering biosynthetic pathways, and improving downstream processing techniques. Additives such as plasticizers, thermal stabilizers, and antioxidants are crucial for modifying PHA characteristics, and its processing for achieving the desired balance between processability and end-use performance. By overcoming these complications, biopolymers have become more viable, versatile, and eco-friendly alternatives to conventional plastics, offering hope for a more sustainable future.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, 246174, Uttarakhand, India
| | | | - Rahul Vikram Singh
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
6
|
Xu S, Han R, Tao L, Zhang Z, Gao J, Wang X, Zhao W, Zhang X, Huang Z. Newly isolated halotolerant Gordonia terrae S-LD serves as a microbial cell factory for the bioconversion of used soybean oil into polyhydroxybutyrate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:15. [PMID: 39920822 PMCID: PMC11806602 DOI: 10.1186/s13068-025-02613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
Polyhydroxybutyrate (PHB) is a class of biodegradable polymers generally used by prokaryotes as carbon sources and for energy storage. This study explored the feasibility of repurposing used soybean oil (USO) as a cost-effective carbon substrate for the production of PHB by the strain Gordonia terrae S-LD, marking the first report on PHB biosynthesis by this rare actinomycete species. This strain can grow under a broad range of temperatures (25-40 ℃), initial pH values (4-10), and salt concentrations (0-7%). The findings indicate that this strain can synthesize PHB at a level of 2.63 ± 0.6 g/L in a waste-containing medium containing 3% NaCl within a 3 L triangular flask, accounting for 66.97% of the cell dry weight. Furthermore, 1H NMR, 13C NMR, and GC-MS results confirmed that the polymer was PHB. The thermal properties of PHB, including its melting (Tm) and crystallization (Tc) temperatures of 176.34 °C and 56.12 °C respectively, were determined via differential scanning calorimetry analysis. The produced PHB was characterized by a weight-average molecular weight (Mw) of 5.43 × 105 g/mol, a number-average molecular weight (Mn) of 4.00 × 105 g/mol, and a polydispersity index (PDI) of 1.36. In addition, the whole genome was sequenced, and the PHB biosynthetic pathway and quantitative expression of key genes were delineated in the novel isolated strain. In conclusion, this research introduces the first instance of polyhydroxyalkanoate (PHA) production by Gordonia terrae using used soybean oil as the exclusive carbon source, which will enrich strain resources for future PHB biosynthesis.
Collapse
Affiliation(s)
- Song Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Ruiqin Han
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- School of Biological Engineering, Tianjin University of Science and Technology, Tianjin, 300000, China
| | - Lidan Tao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Zhipeng Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- School of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Junfei Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Xinyuan Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Wei Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Xiaoxia Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Zhiyong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
7
|
Dey P, Haldar D, Sharma C, Chopra J, Chakrabortty S, Dilip KJ. Innovations in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and nanocomposites for sustainable food packaging via biochemical biorefinery platforms: A comprehensive review. Int J Biol Macromol 2024; 283:137574. [PMID: 39542313 DOI: 10.1016/j.ijbiomac.2024.137574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The substantial build-up of non-biodegradable plastic waste from packaging sector not only poses severe environmental threats but also hastens the depletion of natural petroleum-based resources. Presently, poly (3-hydroxybutyrate-co-3-hydroxy valerate) (PHBV), received enormous attention as ideal alternatives for such traditional petroleum-derived plastics based on their biocompatibility and superior mechanical properties. However, high cost of such copolymer, due to expensive nature of feedstock, inefficient microbial processes and unfavorable downstream processing strategies restricts its large-scale commercial feasibility in the packaging sector. This review explores merits and challenges associated with using potent agricultural and industrial waste biomasses as sustainable feedstocks alongside improved fermentation and downstream processing strategies for the biopolymer in terms of biorefinery concept. Despite PHBV's attractive properties, its inherent shortcomings like weak thermal stability, poor mechanical properties, processability difficulty, substantial hydrophobicity and comparatively higher water vapor permeability (WVP) demand the development of its composites based on the application. Based on this fact, the review assessed properties and potential applications of PHBV-based composite materials having natural raw materials, nanomaterials and synthetic biodegradable polymers. Besides, the review also enlightens sustainability, future prospects, and challenges associated with PHBV-based composites in the field of food packaging while considering insights about economic evaluation and life cycle assessment.
Collapse
Affiliation(s)
- Pinaki Dey
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India
| | - Chhavi Sharma
- Department of Biotechnology, University Centre for Research and Development (UCRD), Chandigarh University, Mohali 140413, India
| | - Jayita Chopra
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani K.K. Birla Goa Campus, 403726, India
| | - Sankha Chakrabortty
- School of Chemical Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India
| | | |
Collapse
|
8
|
Qazi MA, Phulpoto IA, Wang Q, Dai Z. Advances in high-throughput screening approaches for biosurfactants: current trends, bottlenecks and perspectives. Crit Rev Biotechnol 2024; 44:1403-1421. [PMID: 38232958 DOI: 10.1080/07388551.2023.2290981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/23/2023] [Accepted: 07/27/2023] [Indexed: 01/19/2024]
Abstract
The market size of biosurfactants (BSs) has been expanding at an extremely fast pace due to their broad application scope. Therefore, the re-construction of cell factories with modified genomic and metabolic profiles for desired industrial performance has been an intriguing aspect. Typical mutagenesis approaches generate huge mutant libraries, whereas a battery of specific, robust, and cost-effective high-throughput screening (HTS) methods is requisite to screen target strains for desired phenotypes. So far, only a few specialized HTS assays have been developed for BSs that were successfully applied to obtain anticipated mutants. The most important milestones to reach, however, continue to be: specificity, sensitivity, throughput, and the potential for automation. Here, we discuss important colorimetric and fluorometric HTS approaches for possible intervention on automated HTS platforms. Moreover, we explain current bottlenecks in developing specialized HTS platforms for screening high-yielding producers and discuss possible perspectives for addressing such challenges.
Collapse
Affiliation(s)
- Muneer Ahmed Qazi
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Chinese Academy of Sciences, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur, Pakistan
| | - Irfan Ali Phulpoto
- Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur, Pakistan
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Chinese Academy of Sciences, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zongjie Dai
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Chinese Academy of Sciences, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| |
Collapse
|
9
|
Wang Y, Yu Z, Cao Q, Liu C, Qin Y, Wang T, Wang C. A new approach to biotransformation and value of kitchen waste oil driven by gut microorganisms in Hermetia illucens. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123046. [PMID: 39447358 DOI: 10.1016/j.jenvman.2024.123046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/27/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Hermetia illucens larvae are known for their ability to recycle organic waste, but their capacity to recover waste oils and the role of gut microorganisms in this process are not fully understood. To gain further insights, the biological recovery of waste frying oil into valuable lipids and the influence of gut bacteria on this biotransformation were investigated. The larvae efficiently digested and absorbed waste frying oil, demonstrating their potential for converting various oils into insect fat. The presence of different fatty acids in their diet significantly altered gut bacterial communities, enriching certain genera such as Actinomyces, Enterococcus, and Providencia. Redundancy analysis revealed that the composition and structure of these bacterial communities were predictive of their function in the biotransformation of fatty acids and the lipid biosynthesis in the larvae. Specific bacteria, including Corynebacterium_1, Providencia, Actinomyces, Escherichia-Shigella, and others, were identified to play specialized roles in the digestion and absorption of fatty acids, contributing to lipid synthesis and storage. These findings highlight the potential of Hermetia illucens in the biological recovery of waste frying oil and underscore the crucial role of gut microbiota in this process, offering a sustainable approach to waste management and bioenergy production.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Zuojian Yu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Qingcheng Cao
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Cuncheng Liu
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Yuanhang Qin
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Tielin Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Cunwen Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
10
|
Jaiboon K, Chouwatat P, Napathorn SC. Valorization of biodiesel-derived crude glycerol for simultaneous biosynthesis of biodegradable polyhydroxybutyrate and exopolysaccharide by the newly isolated Burkholderia sp. SCN-KJ. Int J Biol Macromol 2024; 281:136556. [PMID: 39406327 DOI: 10.1016/j.ijbiomac.2024.136556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 10/20/2024]
Abstract
This study demonstrated that Burkholderia sp. SCN-KJ is a promising novel species for the biovalorization of crude glycerol to polyhydroxybutyrate (PHB) and galactose-rich heteroexopolysaccharide (EPS). Whole-genome and genetic evolution analyses revealed separation of the different clades according to the ANIb and dDDH analyses, which confirmed that Burkholderia sp. SCN-KJ is a novel species. The highest PHB production from crude glycerol was 12.9 ± 0.4 g/L (72.9 ± 2.1 % w/w), with a productivity of 0.46 g/L/h and YP/S of 0.3 g/g at 28 h in a 10 L fermenter. The galactose-rich hetero-EPS began to be produced after nitrogen depletion, resulting in a concentration of 22.4 ± 0.2 g/L at 38 h. Examination of the carbon-to‑nitrogen ratio (C/N) showed that nitrogen-rich condition (C/N 20) was optimal for PHB production, whereas nitrogen-depleted condition promoted EPS production, showing two different extrema. The findings showed that Burkholderia sp. SCN-KJ has the potential to transform the landscape of biovalorization for sustainable production.
Collapse
Affiliation(s)
- Kanokjun Jaiboon
- Biotechnology Program, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| | - Patcharida Chouwatat
- Bangchak Corporation Public Company Limited, M Tower Building, 8(th) Floor, Sukhumvit Rd, Phra Khanong, Bangkok 10260, Thailand.
| | - Suchada Chanprateep Napathorn
- Biotechnology Program, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Department of Microbiology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
11
|
Bhatia SK, Patel AK, Yang YH. The green revolution of food waste upcycling to produce polyhydroxyalkanoates. Trends Biotechnol 2024; 42:1273-1287. [PMID: 38582658 DOI: 10.1016/j.tibtech.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 04/08/2024]
Abstract
This review emphasizes the urgent need for food waste upcycling as a response to the mounting global food waste crisis. Focusing on polyhydroxyalkanoates (PHAs) as an alternative to traditional plastics, it examines the potential of various food wastes as feedstock for microbial fermentation and PHA production. The upcycling of food waste including cheese whey, waste cooking oil, coffee waste, and animal fat is an innovative practice for food waste management. This approach not only mitigates environmental impacts but also contributes to sustainable development and economic growth. Downstream processing techniques for PHAs are discussed, highlighting their role in obtaining high-quality materials. The study also addresses sustainability considerations, emphasizing biodegradability and recycling, while acknowledging the challenges associated with this path.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea.
| |
Collapse
|
12
|
Hammami K, Souissi Y, Souii A, Gorrab A, Hassen W, Chouchane H, Masmoudi AS, Cherif A, Neifar M. Pseudomonas rhizophila S211 as a microbial cell factory for direct bioconversion of waste cooking oil into medium-chain-length polyhydroxyalkanoates. 3 Biotech 2024; 14:207. [PMID: 39184912 PMCID: PMC11341804 DOI: 10.1007/s13205-024-04048-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
The present study examines the use of waste cooking oil (WCO) as a substrate for medium-chain-length polyhydroxyalkanoates (mcl-PHA) production by Pseudomonas rhizophila S211. The genome analysis revealed that the S211 strain has a mcl-PHA cluster (phaC1ZC2DFI) encoding two class II PHA synthases (PhaC1 and PhaC2) separated by a PHA depolymerase (PhaZ), a transcriptional activator (PhaD) and two phasin-like proteins (PhaFI). Genomic annotation also identified a gene encoding family I.3 lipase that was able to hydrolyze plant oils and generate fatty acids as favorable carbon sources for cell growth and PHA synthesis via β-oxidation pathway. Using a three-variable Doehlert experimental design, the optimum conditions for mcl-PHA accumulation were achieved in 10% of WCO-based medium with an inoculum size of 10% and an incubation period of 48 h at 30 °C. The experimental yield of PHA from WCO was 1.8 g/L close to the predicted yield of 1.68 ± 0.14 g/L. Moreover, 1H nuclear magnetic resonance spectroscopy analysis confirmed the extracted mcl-PHA. Overall, this study describes P. rhizophila as a cell factory for biosynthesis of biodegradable plastics and proposes green and efficient approach to cooking oil waste management by decreasing the cost of mcl-PHA production, which can help reduce the dependence on petroleum-based plastics.
Collapse
Affiliation(s)
- Khouloud Hammami
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Yasmine Souissi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
- Department of Engineering, German University of Technology in Oman, Muscat, Oman
| | - Amal Souii
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Afwa Gorrab
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Wafa Hassen
- Research Unit of Analysis and Process Applied on the Environmental-APAE UR17ES32, Higher Institute of Applied Sciences and Technology Mahdia “ISSAT”, University of Monastir, 5100 Mahdia, Tunisia
| | - Habib Chouchane
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ahmed Slaheddine Masmoudi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ameur Cherif
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Mohamed Neifar
- APVA-LR16ES20, National School of Engineers of Sfax (ENIS), University of Sfax, Sfax, Tunisia
- Common Services Unit “Bioreactor Coupled With an Ultrafilter”, ENIS, University of Sfax, 3030 Sfax, Tunisia
| |
Collapse
|
13
|
Corti Monzón G, Bertola G, Herrera Seitz MK, Murialdo SE. Exploring polyhydroxyalkanoates biosynthesis using hydrocarbons as carbon source: a comprehensive review. Biodegradation 2024; 35:519-538. [PMID: 38310580 DOI: 10.1007/s10532-023-10068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024]
Abstract
Environmental pollution caused by petrochemical hydrocarbons (HC) and plastic waste is a pressing global challenge. However, there is a promising solution in the form of bacteria that possess the ability to degrade HC, making them valuable tools for remediating contaminated environments and effluents. Moreover, some of these bacteria offer far-reaching potential beyond bioremediation, as they can also be utilized to produce polyhydroxyalkanoates (PHAs), a common type of bioplastics. The accumulation of PHAs in bacterial cells is facilitated in environments with high C/N or C/P ratio, which are often found in HC-contaminated environments and effluents. Consequently, some HC-degrading bacteria can be employed to simultaneously produce PHAs and conduct biodegradation processes. Although bacterial bioplastic production has been thoroughly studied, production costs are still too high compared to petroleum-derived plastics. This article aims to provide a comprehensive review of recent scientific advancements concerning the capacity of HC-degrading bacteria to produce PHAs. It will delve into the microbial strains involved and the types of bioplastics generated, as well as the primary pathways for HC biodegradation and PHAs production. In essence, we propose the potential utilization of HC-degrading bacteria as a versatile tool to tackle two major environmental challenges: HC pollution and the accumulation of plastic waste. Through a comprehensive analysis of strengths and weaknesses in this aspect, this review aims to pave the way for future research in this area, with the goal of facilitating and promoting investigation in a field where obtaining PHAs from HC remains a costly and challenging process.
Collapse
Affiliation(s)
- G Corti Monzón
- Instituto de Ciencia y Tecnología de Alimentos y Ambiente, INCITAA, CONICET, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina.
| | - G Bertola
- Instituto de Ciencia y Tecnología de Alimentos y Ambiente, INCITAA, CONICET, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| | - M K Herrera Seitz
- Instituto de Investigaciones Biológicas, IIB, CONICET, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| | - S E Murialdo
- Instituto de Ciencia y Tecnología de Alimentos y Ambiente, INCITAA, CIC, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
14
|
Hari A, Doddapaneni TRKC, Kikas T. Common operational issues and possible solutions for sustainable biosurfactant production from lignocellulosic feedstock. ENVIRONMENTAL RESEARCH 2024; 251:118665. [PMID: 38493851 DOI: 10.1016/j.envres.2024.118665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/06/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Surfactants are compounds with high surface activity and emulsifying property. These compounds find application in food, medical, pharmaceutical, and petroleum industries, as well as in agriculture, bioremediation, cleaning, cosmetics, and personal care product formulations. Due to their widespread use and environmental persistence, ensuring biodegradability and sustainability is necessary so as not to harm the environment. Biosurfactants, i.e., surfactants of plant or microbial origin produced from lignocellulosic feedstock, perform better than their petrochemically derived counterparts on the scale of net-carbon-negativity. Although many biosurfactants are commercially available, their high cost of production justifies their application only in expensive pharmaceuticals and cosmetics. Besides, the annual number of new biosurfactant compounds reported is less, compared to that of chemical surfactants. Multiple operational issues persist in the biosurfactant value chain. In this review, we have categorized some of these issues based on their relative position in the value chain - hurdles occurring during planning, upstream processes, production stage, and downstream processes - alongside plausible solutions. Moreover, we have presented the available paths forward for this industry in terms of process development and integrated pretreatment, combining conventional tried-and-tested strategies, such as reactor designing and statistical optimization with cutting-edge technologies including metabolic modeling and artificial intelligence. The development of techno-economically feasible biosurfactant production processes would be instrumental in the complete substitution of petrochemical surfactants, rather than mere supplementation.
Collapse
Affiliation(s)
- Anjana Hari
- Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, Tartu, 51014, Estonia.
| | - Tharaka Rama Krishna C Doddapaneni
- Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, Tartu, 51014, Estonia
| | - Timo Kikas
- Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, Tartu, 51014, Estonia
| |
Collapse
|
15
|
Bertran-Llorens S, Zhou W, Palazzolo MA, Colpa DL, Euverink GJW, Krooneman J, Deuss PJ. ALACEN: A Holistic Herbaceous Biomass Fractionation Process Attaining a Xylose-Rich Stream for Direct Microbial Conversion to Bioplastics. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:7724-7738. [PMID: 38783842 PMCID: PMC11110678 DOI: 10.1021/acssuschemeng.3c08414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Lignocellulose biorefining is a promising technology for the sustainable production of chemicals and biopolymers. Usually, when one component is focused on, the chemical nature and yield of the others are compromised. Thus, one of the bottlenecks in biomass biorefining is harnessing the maximum value from all of the lignocellulosic components. Here, we describe a mild stepwise process in a flow-through setup leading to separate flow-out streams containing cinnamic acid derivatives, glucose, xylose, and lignin as the main components from different herbaceous sources. The proposed process shows that minimal degradation of the individual components and conservation of their natural structure are possible. Under optimized conditions, the following fractions are produced from wheat straw based on their respective contents in the feed by the ALkaline ACid ENzyme process: (i) 78% ferulic acid from a mild ALkali step, (ii) 51% monomeric xylose free of fermentation inhibitors by mild ACidic treatment, (iii) 82% glucose from ENzymatic degradation of cellulose, and (iv) 55% native-like lignin. The benefits of using the flow-through setup are demonstrated. The retention of the lignin aryl ether structure was confirmed by HSQC NMR, and this allowed monomers to form from hydrogenolysis. More importantly, the crude xylose-rich fraction was shown to be suitable for producing polyhydroxybutyrate bioplastics. The direct use of the xylose-rich fraction by means of the thermophilic bacteria Schlegelella thermodepolymerans matched 91% of the PHA produced with commercial pure xylose, achieving 138.6 mgPHA/gxylose. Overall, the ALACEN fractionation method allows for a holistic valorization of the principal components of herbaceous biomasses.
Collapse
Affiliation(s)
- Salvador Bertran-Llorens
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen (ENTEG), University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Wen Zhou
- Products
and Processes for Biotechnology, Engineering and Technology Institute
Groningen (ENTEG), Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Martín A. Palazzolo
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen (ENTEG), University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
- Instituto
Interdisciplinario de Ciencias Básicas (ICB, UNCuyo-CONICET), Padre Jorge Contreras 1300, Mendoza 5500, Argentina
- Instituto
de Investigaciones en Tecnología Química (INTEQUI),
FQByF, Universidad Nacional de San Luis,
CONICET, Almirante Brown
1455, San Luis 5700, Argentina
| | - Dana l. Colpa
- Products
and Processes for Biotechnology, Engineering and Technology Institute
Groningen (ENTEG), Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Gert-Jan W. Euverink
- Products
and Processes for Biotechnology, Engineering and Technology Institute
Groningen (ENTEG), Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Janneke Krooneman
- Products
and Processes for Biotechnology, Engineering and Technology Institute
Groningen (ENTEG), Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
- Bioconversion
and Fermentation Technology, Research Centre Biobased Economy, Hanze University of Applied Sciences, Zernikeplein 11, Groningen 9747 AS, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen (ENTEG), University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| |
Collapse
|
16
|
Azizi N, Eslami R, Goudarzi S, Younesi H, Zarrin H. A Review of Current Achievements and Recent Challenges in Bacterial Medium-Chain-Length Polyhydroxyalkanoates: Production and Potential Applications. Biomacromolecules 2024; 25:2679-2700. [PMID: 38656151 DOI: 10.1021/acs.biomac.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Using petroleum-derived plastics has contributed significantly to environmental issues, such as greenhouse gas emissions and the accumulation of plastic waste in ecosystems. Researchers have focused on developing ecofriendly polymers as alternatives to traditional plastics to address these concerns. This review provides a comprehensive overview of medium-chain-length polyhydroxyalkanoates (mcl-PHAs), biodegradable biopolymers produced by microorganisms that show promise in replacing conventional plastics. The review discusses the classification, properties, and potential substrates of less studied mcl-PHAs, highlighting their greater ductility and flexibility compared to poly(3-hydroxybutyrate), a well-known but brittle PHA. The authors summarize existing research to emphasize the potential applications of mcl-PHAs in biomedicine, packaging, biocomposites, water treatment, and energy. Future research should focus on improving production techniques, ensuring economic viability, and addressing challenges associated with industrial implementation. Investigating the biodegradability, stability, mechanical properties, durability, and cost-effectiveness of mcl-PHA-based products compared to petroleum-based counterparts is crucial. The future of mcl-PHAs looks promising, with continued research expected to optimize production techniques, enhance material properties, and expand applications. Interdisciplinary collaborations among microbiologists, engineers, chemists, and materials scientists will drive progress in this field. In conclusion, this review serves as a valuable resource to understand mcl-PHAs as sustainable alternatives to conventional plastics. However, further research is needed to optimize production methods, evaluate long-term ecological impacts, and assess the feasibility and viability in various industries.
Collapse
Affiliation(s)
- Nahid Azizi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Research and Innovation Department, Sensofine Inc., Innovation Boost Zone (IBZ), Toronto Metropolitan University, Toronto, Ontario M5G 2C2, Canada
| | - Reza Eslami
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Research and Innovation Department, Sensofine Inc., Innovation Boost Zone (IBZ), Toronto Metropolitan University, Toronto, Ontario M5G 2C2, Canada
| | - Shaghayegh Goudarzi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Habibollah Younesi
- Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University (TMU), Nour 64414-356, Iran
| | - Hadis Zarrin
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Research and Innovation Department, Sensofine Inc., Innovation Boost Zone (IBZ), Toronto Metropolitan University, Toronto, Ontario M5G 2C2, Canada
| |
Collapse
|
17
|
Kłosowska-Chomiczewska IE, Macierzanka A, Parchem K, Miłosz P, Bladowska S, Płaczkowska I, Hewelt-Belka W, Jungnickel C. Microbe cultivation guidelines to optimize rhamnolipid applications. Sci Rep 2024; 14:8362. [PMID: 38600115 PMCID: PMC11006924 DOI: 10.1038/s41598-024-59021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
In the growing landscape of interest in natural surfactants, selecting the appropriate one for specific applications remains challenging. The extensive, yet often unsystematized, knowledge of microbial surfactants, predominantly represented by rhamnolipids (RLs), typically does not translate beyond the conditions presented in scientific publications. This limitation stems from the numerous variables and their interdependencies that characterize microbial surfactant production. We hypothesized that a computational recipe for biosynthesizing RLs with targeted applicational properties could be developed from existing literature and experimental data. We amassed literature data on RL biosynthesis and micellar solubilization and augmented it with our experimental results on the solubilization of triglycerides (TGs), a topic underrepresented in current literature. Utilizing this data, we constructed mathematical models that can predict RL characteristics and solubilization efficiency, represented as logPRL = f(carbon and nitrogen source, parameters of biosynthesis) and logMSR = f(solubilizate, rhamnolipid (e.g. logPRL), parameters of solubilization), respectively. The models, characterized by robust R2 values of respectively 0.581-0.997 and 0.804, enabled the ranking of descriptors based on their significance and impact-positive or negative-on the predicted values. These models have been translated into ready-to-use calculators, tools designed to streamline the selection process for identifying a biosurfactant optimally suited for intended applications.
Collapse
Affiliation(s)
- Ilona E Kłosowska-Chomiczewska
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233, Gdańsk, Poland.
| | - Adam Macierzanka
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233, Gdańsk, Poland
| | - Karol Parchem
- Department of Chemistry, Technology and Biotechnology of Food, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233, Gdańsk, Poland
| | - Pamela Miłosz
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233, Gdańsk, Poland
| | - Sonia Bladowska
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233, Gdańsk, Poland
| | - Iga Płaczkowska
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233, Gdańsk, Poland
| | - Weronika Hewelt-Belka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233, Gdańsk, Poland
| | - Christian Jungnickel
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233, Gdańsk, Poland
| |
Collapse
|
18
|
Santos BLP, Vieira IMM, Ruzene DS, Silva DP. Unlocking the potential of biosurfactants: Production, applications, market challenges, and opportunities for agro-industrial waste valorization. ENVIRONMENTAL RESEARCH 2024; 244:117879. [PMID: 38086503 DOI: 10.1016/j.envres.2023.117879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Biosurfactants are eco-friendly compounds with unique properties and promising potential as sustainable alternatives to chemical surfactants. The current review explores the multifaceted nature of biosurfactant production and applications, highlighting key fermentative parameters and microorganisms able to convert carbon-containing sources into biosurfactants. A spotlight is given on biosurfactants' obstacles in the global market, focusing on production costs and the challenges of large-scale synthesis. Innovative approaches to valorizing agro-industrial waste were discussed, documenting the utilization of lignocellulosic waste, food waste, oily waste, and agro-industrial wastewater in the segment. This strategy strongly contributes to large-scale, cost-effective, and environmentally friendly biosurfactant production, while the recent advances in waste valorization pave the way for a sustainable society.
Collapse
Affiliation(s)
| | | | - Denise Santos Ruzene
- Northeastern Biotechnology Network, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Biotechnology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Daniel Pereira Silva
- Northeastern Biotechnology Network, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Biotechnology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Intellectual Property Science, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil.
| |
Collapse
|
19
|
Chacón M, Wongsirichot P, Winterburn J, Dixon N. Genetic and process engineering for polyhydroxyalkanoate production from pre- and post-consumer food waste. Curr Opin Biotechnol 2024; 85:103024. [PMID: 38056203 DOI: 10.1016/j.copbio.2023.103024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Biopolymers produced as microbial carbon storage systems, such as polyhydroxyalkanoates (PHAs), offer potential to be used in place of petrochemically derived plastics. Low-value organic feedstocks, such as food waste, have been explored as a potential substrate for the microbial production of PHAs. In this review, we discuss the biosynthesis, composition and producers of PHAs, with a particular focus on the genetic and process engineering efforts to utilise non-native substrates, derived from food waste from across the entire supply chain, for microbial growth and PHA production. We highlight a series of studies that have achieved impressive advances and discuss the challenges of producing PHAs with consistent composition and properties from mixed and variable food waste and by-products.
Collapse
Affiliation(s)
- Micaela Chacón
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester M1 7DN, UK
| | - Phavit Wongsirichot
- Department of Chemical Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - James Winterburn
- Department of Chemical Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
20
|
Datta D, Ghosh S, Kumar S, Gangola S, Majumdar B, Saha R, Mazumdar SP, Singh SV, Kar G. Microbial biosurfactants: Multifarious applications in sustainable agriculture. Microbiol Res 2024; 279:127551. [PMID: 38016380 DOI: 10.1016/j.micres.2023.127551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Agriculture in the 21st century faces grave challenges to meet the unprecedented food demand of the burgeoning population as well as reduce the ecological footprint for achieving sustainable development goals. The extensive use of harsh synthetic surfactants in pesticides and the agrochemical industry has substantial adverse impacts on the soil and environment due to their toxic and non-biodegradable nature. Biosurfactants derived from plant, animal, and microbial sources can be an eco-friendly alternative to chemical surfactants. Microbes producing biosurfactants play a noteworthy role in biofilm formation, plant pathogen elimination, biodegradation, bioremediation, improving nutrient bioavailability, and can thrive well under stressful environments. Microbial biosurfactants are well suited for heavy metal and organic contaminants remediation in agricultural soil due to their low toxicity, high activity at fluctuating temperatures, biodegradability, and stability over a wide array of environmental conditions. This green technology will improve the agricultural soil quality by increasing the soil flushing efficiency, mobilization, and solubilization of nutrients by forming metal-biosurfactant complexes, and through the dissemination of complex nutrients. Such characteristics help it to play a pivotal role in environmental sustainability in the foreseeable future, which is required to increase the viability of biosurfactants for extensive commercial uses, making them accessible, affordable, and economically sustainable.
Collapse
Affiliation(s)
- Debarati Datta
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700 121, India
| | - Sourav Ghosh
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700 121, India.
| | - Saurabh Kumar
- ICAR-Research Complex for Eastern Region, Patna 800014, Bihar, India
| | - Saurabh Gangola
- Graphic Era Hill University, Bhimtal 263 156, Uttarakhand, India
| | - Bijan Majumdar
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700 121, India
| | - Ritesh Saha
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700 121, India
| | - Sonali Paul Mazumdar
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700 121, India
| | - Shiv Vendra Singh
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi 238004, Uttar Pradesh, India
| | - Gouranga Kar
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata 700 121, India
| |
Collapse
|
21
|
Blunt W, Blanchard C, Doyle C, Vasquez V, Ye M, Adewale P, Liu Y, Morley K, Monteil-Rivera F. The potential of Burkholderia thailandensis E264 for co-valorization of C 5 and C 6 sugars into multiple value-added bio-products. BIORESOURCE TECHNOLOGY 2023; 387:129595. [PMID: 37541546 DOI: 10.1016/j.biortech.2023.129595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
Despite known metabolic versatility of Burkholderia spp., sugar metabolism and end-product synthesis patterns in Burkholderia thailandensis have been poorly characterized. This work has demonstrated that B. thailandensis is capable of simultaneously uptaking glucose and xylose and accumulating up to 64% of its dry mass as poly(3-hydroxyalkanoate) (PHA) biopolymers, resulting in a PHA titer of up to 3.8 g L-1 in shake flasks. Rhamnolipids - mainly (68-75%) in the form of Rha-Rha-C14-C14 - were produced concomitantly with a titer typically in the range of 0.2-0.4 g L-1. Gluconic and xylonic acids were also detected in titers of up to 5.3 g L-1, and while gluconic acid appeared to be back consumed, xylonic acid formed as a major end product. This first example of co-production of three products from mixed sugars using B. thailandensis paves the way for improving biorefinery economics.
Collapse
Affiliation(s)
- Warren Blunt
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Catherine Blanchard
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Christopher Doyle
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Vinicio Vasquez
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Mengwei Ye
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Peter Adewale
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Yali Liu
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Krista Morley
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Fanny Monteil-Rivera
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada.
| |
Collapse
|
22
|
Kumar R, Barbhuiya RI, Bohra V, Wong JWC, Singh A, Kaur G. Sustainable rhamnolipids production in the next decade - Advancing with Burkholderia thailandensis as a potent biocatalytic strain. Microbiol Res 2023; 272:127386. [PMID: 37094547 DOI: 10.1016/j.micres.2023.127386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/26/2023]
Abstract
Rhamnolipids are one of the most promising eco-friendly green glycolipids for bio-replacements of commercially available fossil fuel-based surfactants. However, the current industrial biotechnology practices cannot meet the required standards due to the low production yields, expensive biomass feedstocks, complicated processing, and opportunistic pathogenic nature of the conventional rhamnolipid producer strains. To overcome these problems, it has become important to realize non-pathogenic producer substitutes and high-yielding strategies supporting biomass-based production. We hereby review the inherent characteristics of Burkholderia thailandensis E264 which favor its competence towards such sustainable rhamnolipid biosynthesis. The underlying biosynthetic networks of this species have unveiled unique substrate specificity, carbon flux control and rhamnolipid congener profile. Acknowledging such desirable traits, the present review provides critical insights towards metabolism, regulation, upscaling, and applications of B. thailandensis rhamnolipids. Identification of their unique and naturally inducible physiology has proved to be beneficial for achieving previously unmet redox balance and metabolic flux requirements in rhamnolipids production. These developments in part are targeted by the strategic optimization of B. thailandensis valorizing low-cost substrates ranging from agro-industrial byproducts to next generation (waste) fractions. Accordingly, safer bioconversions can propel the industrial rhamnolipids in advanced biorefinery domains to promote circular economy, reduce carbon footprint and increased applicability as both social and environment friendly bioproducts.
Collapse
Affiliation(s)
- Rajat Kumar
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | - Varsha Bohra
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Jonathan W C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Institute of Bioresources and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ashutosh Singh
- School of Engineering, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Guneet Kaur
- School of Engineering, University of Guelph, Guelph, ON N1G2W1, Canada.
| |
Collapse
|
23
|
Kumar V, Lakkaboyana SK, Tsouko E, Maina S, Pandey M, Umesh M, Singhal B, Sharma N, Awasthi MK, Andler R, Jayaraj I, Yuzir A. Commercialization potential of agro-based polyhydroxyalkanoates biorefinery: A technical perspective on advances and critical barriers. Int J Biol Macromol 2023; 234:123733. [PMID: 36801274 DOI: 10.1016/j.ijbiomac.2023.123733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
The exponential increase in the use and careless discard of synthetic plastics has created an alarming concern over the environmental health due to the detrimental effects of petroleum based synthetic polymeric compounds. Piling up of these plastic commodities on various ecological niches and entry of their fragmented parts into soil and water has clearly affected the quality of these ecosystems in the past few decades. Among the many constructive strategies developed to tackle this global issue, use of biopolymers like polyhydroxyalkanoates as sustainable alternatives for synthetic plastics has gained momentum. Despite their excellent material properties and significant biodegradability, polyhydroxyalkanoates still fails to compete with their synthetic counterparts majorly due to the high cost associated with their production and purification thereby limiting their commercialization. Usage of renewable feedstocks as substrates for polyhydroxyalkanoates production has been the thrust area of research to attain the sustainability tag. This review work attempts to provide insights about the recent developments in the production of polyhydroxyalkanoates using renewable feedstock along with various pretreatment methods used for substrate preparation for polyhydroxyalkanoates production. Further, the application of blends based on polyhydroxyalkanoates, and the challenges associated with the waste valorization based polyhydroxyalkanoates production strategy is elaborated in this review work.
Collapse
Affiliation(s)
- Vinay Kumar
- Ecotoxicity and Bioconversion Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| | - Sivarama Krishna Lakkaboyana
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, India; Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT)-Universiti Technologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| | - Erminta Tsouko
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, Metropolite Ioakeim 2, 81400, Myrina, Lemnos, Greece
| | - Sofia Maina
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Muskan Pandey
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P., India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru 560029, Karnataka, India
| | - Barkha Singhal
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P., India
| | - Neha Sharma
- Metagenomics and Bioprocess Design Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Rodrigo Andler
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Chile
| | - Iyyappan Jayaraj
- Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - Ali Yuzir
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT)-Universiti Technologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Mahato RP, Kumar S, Singh P. Production of polyhydroxyalkanoates from renewable resources: a review on prospects, challenges and applications. Arch Microbiol 2023; 205:172. [PMID: 37017747 DOI: 10.1007/s00203-023-03499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 04/06/2023]
Abstract
Bioplastics replace synthetic plastics of petrochemical origin, which contributes challenge to both polymer quality and economics. Novel polyhydroxyalkanoates (PHA)-composite materials, with desirable product quality, could be developed, thus targeting the global plastics market, in the coming years. It is possible that PHA can be a greener substitute for their petroleum-based competitors since they are simply decomposed, which may lessen the pressure on municipal and industrial waste management systems. PHA production has proven to be the bottleneck in industrial application and commercialization because of the high price of carbon substrates and downstream processes required to achieve reliability. Bacterial PHA production by these municipal and industrial wastes, which act as a cheap, renewable carbon substrate, eliminates waste management hassles and acts as an efficient substitute for synthetic plastics. In the present review, challenges and opportunities related to the commercialization of polyhydroxyalkanoates are discussed and presented. Moreover, it discusses critical steps of their production process, feedstock evaluation, optimization strategies, and downstream processes. This information may provide us the complete utilization of bacterial PHA during possible applications in packaging, nutrition, medicine, and pharmaceuticals.
Collapse
Affiliation(s)
- Richa Prasad Mahato
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, 249407, India.
| | - Saurabh Kumar
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Padma Singh
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, 249407, India
| |
Collapse
|
25
|
Zhang Y, Xiao P, Pan D, Zhou X. New Insights into the Modification of the Non-Core Metabolic Pathway of Steroids in Mycolicibacterium and the Application of Fermentation Biotechnology in C-19 Steroid Production. Int J Mol Sci 2023; 24:ijms24065236. [PMID: 36982310 PMCID: PMC10049677 DOI: 10.3390/ijms24065236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Androsta-4-ene-3,17-dione (AD), androsta-1,4-diene-3,17-dione (ADD), and 9α-hydroxy-4-androstene-3,17-dione (9-OHAD), which belong to C-19 steroids, are critical steroid-based drug intermediates. The biotransformation of phytosterols into C-19 steroids by Mycolicibacterium cell factories is the core step in the synthesis of steroid-based drugs. The production performance of engineered mycolicibacterial strains has been effectively enhanced by sterol core metabolic modification. In recent years, research on the non-core metabolic pathway of steroids (NCMS) in mycolicibacterial strains has made significant progress. This review discusses the molecular mechanisms and metabolic modifications of NCMS for accelerating sterol uptake, regulating coenzyme I balance, promoting propionyl-CoA metabolism, reducing reactive oxygen species, and regulating energy metabolism. In addition, the recent applications of biotechnology in steroid intermediate production are summarized and compared, and the future development trend of NCMS research is discussed. This review provides powerful theoretical support for metabolic regulation in the biotransformation of phytosterols.
Collapse
Affiliation(s)
- Yang Zhang
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Peiyao Xiao
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Delong Pan
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Xiuling Zhou
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
26
|
Ability of converting sugarcane bagasse hydrolysate into polyhydroxybutyrate (PHB) by bacteria isolated from stressed environmental soils. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
27
|
Dias MAM, Nitschke M. Bacterial-derived surfactants: an update on general aspects and forthcoming applications. Braz J Microbiol 2023; 54:103-123. [PMID: 36662441 PMCID: PMC9857925 DOI: 10.1007/s42770-023-00905-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
The search for sustainable alternatives to the production of chemicals using renewable substrates and natural processes has been widely encouraged. Microbial surfactants or biosurfactants are surface-active compounds synthesized by fungi, yeasts, and bacteria. Due to their great metabolic versatility, bacteria are the most traditional and well-known microbial surfactant producers, being Bacillus and Pseudomonas species their typical representatives. To be successfully applied in industry, surfactants need to maintain stability under the harsh environmental conditions present in manufacturing processes; thus, the prospection of biosurfactants derived from extremophiles is a promising strategy to the discovery of novel and useful molecules. Bacterial surfactants show interesting properties suitable for a range of applications in the oil industry, food, agriculture, pharmaceuticals, cosmetics, bioremediation, and more recently, nanotechnology. In addition, they can be synthesized using renewable resources as substrates, contributing to the circular economy and sustainability. The article presents a general and updated review of bacterial-derived biosurfactants, focusing on the potential of some groups that are still underexploited, as well as, recent trends and contributions of these versatile biomolecules to circular bioeconomy and nanotechnology.
Collapse
Affiliation(s)
- Marcos André Moura Dias
- grid.11899.380000 0004 1937 0722Departamento de Físico-Química, Instituto de Química de São Carlos, Universidade de São Paulo-USP, Av Trabalhador São Carlense 400, CP 780, CEP 13560-970 São Carlos, SP Brasil
| | - Marcia Nitschke
- Departamento de Físico-Química, Instituto de Química de São Carlos, Universidade de São Paulo-USP, Av Trabalhador São Carlense 400, CP 780, CEP 13560-970, São Carlos, SP, Brasil.
| |
Collapse
|
28
|
Carolin C F, Senthil Kumar P, Mohanakrishna G, Hemavathy RV, Rangasamy G, M Aminabhavi T. Sustainable production of biosurfactants via valorisation of industrial wastes as alternate feedstocks. CHEMOSPHERE 2023; 312:137326. [PMID: 36410507 DOI: 10.1016/j.chemosphere.2022.137326] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/01/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Globally, the rapid increase in the human population has given rise to a variety of industries, which have produced a variety of wastes. Due to their detrimental effects on both human and environmental health, pollutants from industry have taken centre stage among the various types of waste produced. The amount of waste produced has therefore increased the demand for effective waste management. In order to create valuable chemicals for sustainable waste management, trash must be viewed as valuable addition. One of the most environmentally beneficial and sustainable choices is to use garbage to make biosurfactants. The utilization of waste in the production of biosurfactant provides lower processing costs, higher availability of feedstock and environmental friendly product along with its characteristics. The current review focuses on the use of industrial wastes in the creation of sustainable biosurfactants and discusses how biosurfactants are categorized. Waste generation in the fruit industry, agro-based industries, as well as sugar-industry and dairy-based industries is documented. Each waste and wastewater are listed along with its benefits and drawbacks. This review places a strong emphasis on waste management, which has important implications for the bioeconomy. It also offers the most recent scientific literature on industrial waste, including information on the role of renewable feedstock for the production of biosurfactants, as well as the difficulties and unmet research needs in this area.
Collapse
Affiliation(s)
- Femina Carolin C
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Gunda Mohanakrishna
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580031, India.
| | - R V Hemavathy
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | | | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580031, India; University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, 140413, Panjab, India
| |
Collapse
|
29
|
Narisetty V, Adlakha N, Kumar Singh N, Dalei SK, Prabhu AA, Nagarajan S, Naresh Kumar A, Amruthraj Nagoth J, Kumar G, Singh V, Kumar V. Integrated biorefineries for repurposing of food wastes into value-added products. BIORESOURCE TECHNOLOGY 2022; 363:127856. [PMID: 36058538 DOI: 10.1016/j.biortech.2022.127856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Food waste (FW) generated through various scenarios from farm to fork causes serious environmental problems when either incinerated or disposed inappropriately. The presence of significant amounts of carbohydrates, proteins, and lipids enable FW to serve as sustainable and renewable feedstock for the biorefineries. Implementation of multiple substrates and product biorefinery as a platform could pursue an immense potential of reducing costs for bio-based process and improving its commercial viability. The review focuses on conversion of surplus FW into range of value-added products including biosurfactants, biopolymers, diols, and bioenergy. The review includes in-depth description of various types of FW, their chemical and nutrient compositions, current valorization techniques and regulations. Further, it describes limitations of FW as feedstock for biorefineries. In the end, review discuss future scope to provide a clear path for sustainable and net-zero carbon biorefineries.
Collapse
Affiliation(s)
- Vivek Narisetty
- Innovation Centre, Moolec Science Pvt. Ltd., Gallow Hill, Warwick CV34 6UW, United Kingdom
| | - Nidhi Adlakha
- Synthetic Biology and Bioprocessing Group, Regional Centre for Biotechnology, NCR-Biotech Cluster, Faridabad, India
| | - Navodit Kumar Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New-Delhi 110016, India
| | - Sudipt Kumar Dalei
- Synthetic Biology and Bioprocessing Group, Regional Centre for Biotechnology, NCR-Biotech Cluster, Faridabad, India
| | - Ashish A Prabhu
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana 506004, India
| | - Sanjay Nagarajan
- Sustainable Environment Research Centre, University of South Wales, Pontypridd CF37 4BB, United Kingdom
| | - A Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Joseph Amruthraj Nagoth
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Vijai Singh
- Department of Biosciences, Indrashil University, Rajpur, Gujarat, India
| | - Vinod Kumar
- School of Water, Energy, and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom.
| |
Collapse
|
30
|
Correia J, Gudiña EJ, Lazar Z, Janek T, Teixeira JA. Cost-effective rhamnolipid production by Burkholderia thailandensis E264 using agro-industrial residues. Appl Microbiol Biotechnol 2022; 106:7477-7489. [PMID: 36222896 DOI: 10.1007/s00253-022-12225-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/28/2022]
Abstract
The agro-industrial by-products corn steep liquor (CSL) and olive mill wastewater (OMW) were evaluated as low-cost substrates for rhamnolipid production by Burkholderia thailandensis E264. In a culture medium containing CSL (7.5% (v/v)) as sole substrate, B. thailandensis E264 produced 175 mg rhamnolipid/L, which is about 1.3 times the amount produced in the standard medium, which contains glycerol, peptone, and meat extract. When the CSL medium was supplemented with OMW (10% (v/v)), rhamnolipid production further increased up to 253 mg/L in flasks and 269 mg/L in a bioreactor. Rhamnolipids produced in CSL + OMW medium reduced the surface tension up to 27.1 mN/m, with a critical micelle concentration of 51 mg/L, better than the values obtained with the standard medium (28.9 mN/m and 58 mg/L, respectively). However, rhamnolipids produced in CSL + OMW medium displayed a weak emulsifying activity when compared to those produced in the other media. Whereas di-rhamnolipid congeners represented between 90 and 95% of rhamnolipids produced by B. thailandensis E264 in CSL and the standard medium, the relative abundance of mono-rhamnolipids increased up to 55% in the culture medium containing OMW. The difference in the rhamnolipid congeners produced in each medium explains their different surface-active properties. To the best of our knowledge, this is the first report of rhamnolipid production by B. thailandensis using a culture medium containing agro-industrial by-products as sole ingredients. Furthermore, rhamnolipids produced in the different media recovered around 60% of crude oil from contaminated sand, demonstrating its potential application in the petroleum industry and bioremediation. KEY POINTS: • B. thailandensis produced RL using agro-industrial by-products as sole substrates • Purified RL displayed excellent surface activity (minimum surface tension 27mN/m) • Crude RL (cell-free supernatant) recovered 60% of crude oil from contaminated sand.
Collapse
Affiliation(s)
- Jéssica Correia
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.,LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduardo J Gudiña
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal. .,LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630, Wrocław, Poland
| | - Tomasz Janek
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630, Wrocław, Poland
| | - José A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.,LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
31
|
Tejaswini MSSR, Pathak P, Gupta DK. Sustainable approach for valorization of solid wastes as a secondary resource through urban mining. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115727. [PMID: 35868187 DOI: 10.1016/j.jenvman.2022.115727] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/28/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
The incessant population has increased the production and consumption of plastics, paper, metals, and organic materials, which are discarded as solid waste after their end of life. The accumulation of these wastes has created growing concerns all over the world. However, conventional methods of solid waste management i.e., direct combustion and landfilling have caused several negative impacts on the environment (releasing toxic chemicals and greenhouse gases, huge land use) besides affecting human health. Therefore, it is requisite to determine sustainable alternative technologies that not only help in mitigating environmental issues but also increase the economic value of the discarded solid wastes. This process is known as urban mining where waste is converted into secondary resources and thereby conserves the natural primary resources. Thus, this review highlights the technological advancements in the valorization process of discarded wastes and their sustainable utilization. We also discussed several limitations of the existing urban mining processes and further the feasibility of valorization techniques was critically analyzed from a techno-economical perspective. This paper recommends a novel sustainable model based on the circular economy concept, where waste is urban mined and recovered as a secondary resource to support the united nations sustainable development goals (SDGs). The implementation of this model will ultimately help the developing countries to achieve the target of SDGs 11, 12, and 14.
Collapse
Affiliation(s)
- M S S R Tejaswini
- Department of Environmental Science, SRM University AP, Andhra Pradesh, 522502, India
| | - Pankaj Pathak
- Department of Environmental Science, SRM University AP, Andhra Pradesh, 522502, India.
| | - D K Gupta
- Hazardous Substance Management Division in the Ministry of Environment, Forest and Climate Change, New Delhi, 110011, India
| |
Collapse
|
32
|
Gautam K, Vishvakarma R, Sharma P, Singh A, Kumar Gaur V, Varjani S, Kumar Srivastava J. Production of biopolymers from food waste: Constrains and perspectives. BIORESOURCE TECHNOLOGY 2022; 361:127650. [PMID: 35907601 DOI: 10.1016/j.biortech.2022.127650] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 05/27/2023]
Abstract
Food is an essential commodity for the survival of any form of life on earth. Yet generation of plethora of food waste has significantly elevated the global concern for food scarcity, human and environment deterioration. Also, increasing use of polymers derived from petroleum hydrocarbons has elevated the concerns towards the depletion of this non-renewable resource. In this review, the use of waste food for the production of bio-polymers and their associated challenges has been thoroughly investigated using scientometric analysis. Various categories of food waste including fruit, vegetable, and oily waste can be employed for the production of different biopolymers including polyhydroxyalkanoates, starch, cellulose, collagen and others. The advances in the production of biopolymers through chemical, microbial or enzymatic process that increases the acceptability of these biopolymers has been reviewed. The comprehensive compiled information may assist researchers for addressing and solving the issues pertaining to food wastage and fossil fuel depletion.
Collapse
Affiliation(s)
- Krishna Gautam
- Centre for Energy and Environmental Sustainability, Lucknow, India
| | | | - Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Amarnath Singh
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Vivek Kumar Gaur
- Centre for Energy and Environmental Sustainability, Lucknow, India; School of Energy and Chemical Engineering, UNIST, Ulsan 44919, Republic of Korea; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India.
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | | |
Collapse
|
33
|
Binhweel F, Ahmad MI, Zaki SA. Utilization of Polymeric Materials toward Sustainable Biodiesel Industry: A Recent Review. Polymers (Basel) 2022; 14:3950. [PMID: 36235898 PMCID: PMC9572429 DOI: 10.3390/polym14193950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
The biodiesel industry is expanding rapidly in accordance with the high energy demand and environmental deterioration related to the combustion of fossil fuel. However, poor physicochemical properties and the malperformance of biodiesel fuel still concern the researchers. In this flow, polymers were introduced in biodiesel industry to overcome such drawbacks. This paper reviewed the current utilizations of polymers in biodiesel industry. Hence, four utilizing approaches were discussed, namely polymeric biodiesel, polymeric catalysts, cold-flow improvers (CFIs), and stabilized exposure materials. Hydroxyalkanoates methyl ester (HAME) and hydroxybutyrate methyl ester (HBME) are known as polymeric biodiesel sourced from carbon-enriched polymers with the help of microbial activity. Based on the literature, the highest HBME yield was 70.7% obtained at 10% H2SO4 ratio in methanol, 67 °C, and 50 h. With increasing time to 60 h, HAME highest yield was reported as 68%. In addition, polymers offer wide range of esterification/transesterification catalysts. Based on the source, this review classified polymeric catalysts as chemically, naturally, and waste derived polymeric catalysts. Those catalysts proved efficiency, non-toxicity, economic feasibility, and reusability till the 10th cycle for some polymeric composites. Besides catalysis, polymers proved efficiency to enhance the biodiesel flow-properties. The best effect reported in this review was an 11 °C reduction for the pour point (PP) of canola biodiesel at 1 wt% of ethylene/vinyl acetate copolymers and cold filter plugging point (CFPP) of B20 waste oil biodiesel at 0.08 wt% of EVA copolymer. Polymeric CFIs have the capability to modify biodiesel agglomeration and facilitate flowing. Lastly, polymers are utilized for storage tanks and auto parts products in direct contact with biodiesel. This approach is completely exclusive for polymers that showed stability toward biodiesel exposure, such as polyoxymethylene (POM) that showed insignificant change during static immersion test for 98 days at 55 °C. Indeed, the introduction of polymers has expanded in the biodiesel industry to promote green chemistry.
Collapse
Affiliation(s)
- Fozy Binhweel
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Mardiana Idayu Ahmad
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Sheikh Ahmad Zaki
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia
| |
Collapse
|
34
|
From Organic Wastes and Hydrocarbons Pollutants to Polyhydroxyalkanoates: Bioconversion by Terrestrial and Marine Bacteria. SUSTAINABILITY 2022. [DOI: 10.3390/su14148241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The use of fossil-based plastics has become unsustainable because of the polluting production processes, difficulties for waste management sectors, and high environmental impact. Polyhydroxyalkanoates (PHA) are bio-based biodegradable polymers derived from renewable resources and synthesized by bacteria as intracellular energy and carbon storage materials under nutrients or oxygen limitation and through the optimization of cultivation conditions with both pure and mixed culture systems. The PHA properties are affected by the same principles of oil-derived polyolefins, with a broad range of compositions, due to the incorporation of different monomers into the polymer matrix. As a consequence, the properties of such materials are represented by a broad range depending on tunable PHA composition. Producing waste-derived PHA is technically feasible with mixed microbial cultures (MMC), since no sterilization is required; this technology may represent a solution for waste treatment and valorization, and it has recently been developed at the pilot scale level with different process configurations where aerobic microorganisms are usually subjected to a dynamic feeding regime for their selection and to a high organic load for the intracellular accumulation of PHA. In this review, we report on studies on terrestrial and marine bacteria PHA-producers. The available knowledge on PHA production from the use of different kinds of organic wastes, and otherwise, petroleum-polluted natural matrices coupling bioremediation treatment has been explored. The advancements in these areas have been significant; they generally concern the terrestrial environment, where pilot and industrial processes are already established. Recently, marine bacteria have also offered interesting perspectives due to their advantageous effects on production practices, which they can relieve several constraints. Studies on the use of hydrocarbons as carbon sources offer evidence for the feasibility of the bioconversion of fossil-derived plastics into bioplastics.
Collapse
|
35
|
Gil CV, Rebocho AT, Esmail A, Sevrin C, Grandfils C, Torres CAV, Reis MAM, Freitas F. Characterization of the Thermostable Biosurfactant Produced by Burkholderia thailandensis DSM 13276. Polymers (Basel) 2022; 14:polym14102088. [PMID: 35631971 PMCID: PMC9143496 DOI: 10.3390/polym14102088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Biosurfactants synthesized by microorganisms represent safe and sustainable alternatives to the use of synthetic surfactants, due to their lower toxicity, better biodegradability and biocompatibility, and their production from low-cost feedstocks. In line with this, the present study describes the physical, chemical, and functional characterization of the biopolymer secreted by the bacterium Burkholderia thailandensis DSM 13276, envisaging its validation as a biosurfactant. The biopolymer was found to be a glycolipopeptide with carbohydrate and protein contents of 33.1 ± 6.4% and 23.0 ± 3.2%, respectively. Galactose, glucose, rhamnose, mannose, and glucuronic acid were detected in the carbohydrate moiety at a relative molar ratio of 4:3:2:2:1. It is a high-molecular-weight biopolymer (1.0 × 107 Da) with low polydispersity (1.66), and forms aqueous solutions with shear-thinning behavior, which remained after autoclaving. The biopolymer has demonstrated a good emulsion-stabilizing capacity towards different hydrophobic compounds, namely, benzene, almond oil, and sunflower oil. The emulsions prepared with the biosurfactant, as well as with its autoclaved solution, displayed high emulsification activity (>90% and ~50%, respectively). Moreover, the almond and sunflower oil emulsions stabilized with the biosurfactant were stable for up to 4 weeks, which further supports the potential of this novel biopolymer for utilization as a natural bioemulsifier.
Collapse
Affiliation(s)
- Cátia V. Gil
- Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 1099-085 Caparica, Portugal; (C.V.G.); (A.T.R.); (A.E.); (M.A.M.R.); (F.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829–516 Caparica, Portugal
| | - Ana Teresa Rebocho
- Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 1099-085 Caparica, Portugal; (C.V.G.); (A.T.R.); (A.E.); (M.A.M.R.); (F.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829–516 Caparica, Portugal
| | - Asiyah Esmail
- Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 1099-085 Caparica, Portugal; (C.V.G.); (A.T.R.); (A.E.); (M.A.M.R.); (F.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829–516 Caparica, Portugal
| | - Chantal Sevrin
- Interfaculty Research Centre of Biomaterials (CEIB), University of Liège, B-4000 Liège, Belgium; (C.S.); (C.G.)
| | - Christian Grandfils
- Interfaculty Research Centre of Biomaterials (CEIB), University of Liège, B-4000 Liège, Belgium; (C.S.); (C.G.)
| | - Cristiana A. V. Torres
- Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 1099-085 Caparica, Portugal; (C.V.G.); (A.T.R.); (A.E.); (M.A.M.R.); (F.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829–516 Caparica, Portugal
- Correspondence: ; Tel.: +351-212948300
| | - Maria A. M. Reis
- Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 1099-085 Caparica, Portugal; (C.V.G.); (A.T.R.); (A.E.); (M.A.M.R.); (F.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829–516 Caparica, Portugal
| | - Filomena Freitas
- Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 1099-085 Caparica, Portugal; (C.V.G.); (A.T.R.); (A.E.); (M.A.M.R.); (F.F.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829–516 Caparica, Portugal
| |
Collapse
|
36
|
Gufrana T, Islam H, Khare S, Pandey A, P R. In-situ transesterification of single-cell oil for biodiesel production: a review. Prep Biochem Biotechnol 2022; 53:120-135. [PMID: 35499507 DOI: 10.1080/10826068.2022.2065684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In recent years, biodiesel synthesis and production demands have increased because of its high degradability, cleaner emissions, non-toxicity, and an alternative to petroleum diesel. In this context, Single Cell Oil (SCO) has been identified as an alternative feedstock, having the advantage of accumulating high intracellular lipid. SCO/microbial lipids are potential alternatives for sustainable biodiesel production. The traditional technique for biodiesel production from the oils obtained from microbes generally requires two steps: lipid extraction and transesterification. In-situ transesterification is an innovative and renewable process for biodiesel production. It rules out the need to isolate and refine the feedstock lipid, as it directly uses biomass in a single step, i.e., the pretreated biomass will be subjected to in-situ transesterification in the presence of catalysts. Hence, the production cost can be reduced by eliminating the lipid extraction procedure. The current review focuses on the basic features and advantages of in-situ transesterification of SCO for biodiesel production with the aid of short-chain alcohols along with different acid, base, and enzyme catalysts. In addition, a comparative study was carried out to highlight the merits of in-situ transesterification over conventional transesterification.
Collapse
Affiliation(s)
- Tasneem Gufrana
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Hasibul Islam
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Shivani Khare
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ankita Pandey
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Radha P
- Bioprocess and Bioseparation Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
37
|
Zhou W, Colpa DI, Geurkink B, Euverink GJW, Krooneman J. The impact of carbon to nitrogen ratios and pH on the microbial prevalence and polyhydroxybutyrate production levels using a mixed microbial starter culture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152341. [PMID: 34921889 DOI: 10.1016/j.scitotenv.2021.152341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Growth conditions have been frequently studied in optimizing polyhydroxybutyrate (PHB) production, while few studies were performed to unravel the dynamic mixed microbial consortia (MMCs) in the process. In this study, the relationship between growth conditions (C/N ratios and pH) and the corresponding key-microbes were identified and monitored during PHB accumulation. The highest PHB level (70 wt% of dry cell mass) was obtained at pH 9, C/N 40, and acetic acid 10 g/L. Linking the dominant genera with the highest point of PHB accumulation, Thauera was the most prevalent species in all MMCs of pH 9, except when a C/N ratio of 1 was applied. Notably, dominant bacteria shifted at pH 7 (C/N 10) from Thauera (0 h) to Paracoccus, and subsequently to Alcaligenes following the process of PHB accumulation and consumption. Further understanding of the relationship between the structure of the microbial community and the performance will be beneficial for regulating and obtaining high PHB accumulation within an MMC. Our study illustrates the impact of C/N ratios and pH on microbial prevalence and PHB production levels using a mixed microbial starter culture. This knowledge will broaden industrial perspectives for regulating high PHB production and timely harvesting.
Collapse
Affiliation(s)
- Wen Zhou
- Products and Processes for Biotechnology, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Dana Irene Colpa
- Products and Processes for Biotechnology, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Bert Geurkink
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
| | - Gert-Jan Willem Euverink
- Products and Processes for Biotechnology, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Janneke Krooneman
- Products and Processes for Biotechnology, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
38
|
Tamang P, Nogueira R. Valorisation of waste cooking oil using mixed culture into short- and medium-chain length polyhydroxyalkanoates: Effect of concentration, temperature and ammonium. J Biotechnol 2021; 342:92-101. [PMID: 34688787 DOI: 10.1016/j.jbiotec.2021.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022]
Abstract
The production of polyhydroxyalkanoates (PHAs) from waste cooking oil (WCO) by a mixed culture was investigated in the present study at increasing WCO concentrations, temperature and ammonium availability. The PHA production was done in two steps: in the first step, a mixed culture was enriched in PHA-accumulating bacteria from activated sludge in a sequencing batch reactor operated in a feast-famine mode and in the second step the PHA accumulation by the enriched mixed culture was assessed in a batch reactor. In the enrichment step, two substrates, WCO and nonanoic acid were used for enrichment and in the PHA accumulation step only WCO was used. It was not possible to enrich a mixed culture in PHA-accumulating bacteria using WCO as substrate due to the development of filamentous bacteria causing foam formation and bulking in the reactor. However, our results showed that the mixed culture continuously fed with nonanoic acid was enriched in PHA-accumulating bacteria. This enriched culture accumulated both scl- and mcl-PHA using WCO as substrate. The maximum PHA accumulation capacity of this mixed culture from WCO was 38.2% cdw. Increasing the temperature (30-40 ℃) or WCO concentrations (5-20 g/l) increased the PHA accumulation capacity of the mixed culture and the ratios of scl-PHA to mcl-PHA. The presence of ammonium increased PHA accumulation (21.9% cdw) compared to the complete absence of ammonium (5.8% cdw). The thermal characterization of the PHA exhibited the advantageous properties of both scl- and mcl-PHA, i.e., higher melting temperature (152-172 ℃) similar to scl-PHA and a lower degree of crystallinity (12%) similar to mcl-PHA. This is the first study to report the potential of open mixed culture to produce scl- and mcl-PHA from WCO and thus contributing to the understanding of sustainable polymer production.
Collapse
Affiliation(s)
- Pravesh Tamang
- Leibniz Universität Hannover, Institute of Sanitary Engineering and Waste Management, Welfengarten 1, 30167 Hannover, Germany.
| | - Regina Nogueira
- Leibniz Universität Hannover, Institute of Sanitary Engineering and Waste Management, Welfengarten 1, 30167 Hannover, Germany.
| |
Collapse
|
39
|
Shen L, Zhang S, Chen G. Regulated strategies of cold-adapted microorganisms in response to cold: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68006-68024. [PMID: 34648167 DOI: 10.1007/s11356-021-16843-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There are a large number of active cold-adapted microorganisms in the perennial cold environment. Due to their high-efficiency and energy-saving catalytic properties, cold-adapted microorganisms have become valuable natural resources with potential in various biological fields. In this study, a series of cold response strategies for microorganisms were summarized. This mainly involves the regulation of cell membrane fluidity, synthesis of cold adaptation proteins, regulators and metabolic changes, energy supply, and reactive oxygen species. Also, the potential of biocatalysts produced by cold-adapted microorganisms including cold-active enzymes, ice-binding proteins, polyhydroxyalkanoates, and surfactants was introduced, which provided a guidance for expanding its application values. Overall, new insights were obtained on response strategies of microorganisms to cold environments in this review. This will deepen the understanding of the cold tolerance mechanism of cold-adapted microorganisms, thus promoting the establishment and application of low-temperature biotechnology.
Collapse
Affiliation(s)
- Lijun Shen
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Changchun, China
| | - Sitong Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, China.
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Changchun, China.
| | - Guang Chen
- College of Life Sciences, Jilin Agricultural University, Changchun, China.
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Changchun, China.
| |
Collapse
|
40
|
Londoño Feria JM, Nausa Galeano GA, Malagón-Romero DH. Production of Bio‐Oil from Waste Cooking Oil by Pyrolysis. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202100018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Chien Bong CP, Alam MNHZ, Samsudin SA, Jamaluddin J, Adrus N, Mohd Yusof AH, Muis ZA, Hashim H, Salleh MM, Abdullah AR, Chuprat BRB. A review on the potential of polyhydroxyalkanoates production from oil-based substrates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113461. [PMID: 34435568 DOI: 10.1016/j.jenvman.2021.113461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Polyhydroxyalkanoate (PHA) is a type of polyesters produced in the form of accumulated intracellular granules by many microorganisms. It is viewed as an environmentally friendly bioproduct due to its biodegradability and biocompatibility. The production of the PHA using oil substrates such as waste oil and plant oil, has gained considerable attention due to the high product yield and lower substrate cost. Nevertheless, the PHA fermentation using oil substrate is complicated due to the heterogenous fatty acid composition, varied bio-accessibility and possible inhibitory effect on the bacterial culture. This review presents the current state-of-the-art of PHA production from oil-based substrates. This paper firstly discusses the technical details, such as the choice of bacteria strain and fermentation conditions, characteristic of the oil substrate as well as the PHA composition and application. Finally, the paper discusses the challenges and prospects for up-scaling towards a cleaner and effective bioprocess. From the literature review, depending on the cell culture and the type of PHA produced, the oil platform can have a PHA yield of 0.2-0.8 g PHA/g oil substrate, with PHA content mostly from 40 to 90% of the cell dry weight. There is an on-going search for more effective oil-utilising PHA producers and lower cost substrate for effective PHA production. The final application of the PHA polymer influences the treatment needed during downstream processing and its economic performance. PHA with different compositions exhibits varied decomposition behaviour under different conditions, requiring further insight towards its management towards a sustainable circular economy.
Collapse
Affiliation(s)
- Cassendra Phun Chien Bong
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Muhd Nazrul Hisham Zainal Alam
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Sani Amril Samsudin
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Jamarosliza Jamaluddin
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Nadia Adrus
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Abdul Halim Mohd Yusof
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Zarina Ab Muis
- Process Systems Engineering Centre (PROSPECT), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Haslenda Hashim
- Process Systems Engineering Centre (PROSPECT), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| | - Madihah Md Salleh
- Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | | | | |
Collapse
|
42
|
Biotechnological Conversion of Grape Pomace to Poly(3-hydroxybutyrate) by Moderately Thermophilic Bacterium Tepidimonas taiwanensis. Bioengineering (Basel) 2021; 8:bioengineering8100141. [PMID: 34677214 PMCID: PMC8533406 DOI: 10.3390/bioengineering8100141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are microbial polyesters that have recently come to the forefront of interest due to their biodegradability and production from renewable sources. A potential increase in competitiveness of PHA production process comes with a combination of the use of thermophilic bacteria with the mutual use of waste substrates. In this work, the thermophilic bacterium Tepidimonas taiwanensis LMG 22826 was identified as a promising PHA producer. The ability to produce PHA in T. taiwanensis was studied both on genotype and phenotype levels. The gene encoding the Class I PHA synthase, a crucial enzyme in PHA synthesis, was detected both by genome database search and by PCR. The microbial culture of T. taiwanensis was capable of efficient utilization of glucose and fructose. When cultivated on glucose as the only carbon source at 50 °C, the PHA titers reached up to 3.55 g/L, and PHA content in cell dry mass was 65%. The preference of fructose and glucose opens the possibility to employ T. taiwanensis for PHA production on various food wastes rich in these abundant sugars. In this work, PHA production on grape pomace extracts was successfully tested.
Collapse
|
43
|
Oliveira-Filho ER, Gomez JGC, Taciro MK, Silva LF. Burkholderia sacchari (synonym Paraburkholderia sacchari): An industrial and versatile bacterial chassis for sustainable biosynthesis of polyhydroxyalkanoates and other bioproducts. BIORESOURCE TECHNOLOGY 2021; 337:125472. [PMID: 34320752 DOI: 10.1016/j.biortech.2021.125472] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
This is the first review presenting and discussing Burkholderia sacchari as a bacterial chassis. B. sacchari is a distinguished polyhydroxyalkanoates producer strain, with low biological risk, reaching high biopolymer yields from sucrose (0.29 g/g), and xylose (0.38 g/g). It has great potential for integration into a biorefinery using residues from biomass, achieving 146 g/L cell dry weight containing 72% polyhydroxyalkanoates. Xylitol (about 70 g/L) and xylonic acid [about 390 g/L, productivity 7.7 g/(L.h)] are produced by the wild-type B. sacchari. Recombinants were constructed to allow the production and monomer composition control of diverse tailor-made polyhydroxyalkanoates, and some applications have been tested. 3-hydroxyvalerate and 3-hydroxyhexanoate yields from substrate reached 80% and 50%, respectively. The genome-scale reconstruction of its metabolic network, associated with the improvement of tools for genetic modification, and metabolic fluxes understanding by future research, will consolidate its potential as a bioproduction chassis.
Collapse
Affiliation(s)
| | | | - Marilda Keico Taciro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Luiziana Ferreira Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| |
Collapse
|
44
|
Yadav B, Talan A, Tyagi RD, Drogui P. Concomitant production of value-added products with polyhydroxyalkanoate (PHA) synthesis: A review. BIORESOURCE TECHNOLOGY 2021; 337:125419. [PMID: 34147774 DOI: 10.1016/j.biortech.2021.125419] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 06/12/2023]
Abstract
The concern over the damaging effects of petrochemical plastics has inspired innumerable researchers to synthesize green plastics. Polyhydroxyalkanoates (PHAs) are promising candidates as they are biodegradable and possess characteristics similar to conventional plastics. However, their large-scale production and market application still have a long way to go due to the high production cost associated. Approaches like using industrial wastes as substrates and developing green strategies for PHA extraction during downstream processing have been investigated to make the process more economical. Recently, PHA production cost was minimized by concomitant synthesis of other valuable bioproducts with PHA. Investigating these co-products and recovering them can also make the process circular bioeconomic. Therefore, the paper attempts to review the recent strategies for the simultaneous synthesis of value-added bioproducts with PHA together with the challenges and opportunities for their large-scale production and applications.
Collapse
Affiliation(s)
- Bhoomika Yadav
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Anita Talan
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - R D Tyagi
- School of Technology, Huzhou University, China; BOSK-Bioproducts, 100-399 rue Jacquard, Québec QC G1N 4J6, Canada.
| | - Patrick Drogui
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
45
|
Wang T, Chang D, Huang D, Liu Z, Wu Y, Liu H, Yuan H, Jiang Y. Application of surfactants in papermaking industry and future development trend of green surfactants. Appl Microbiol Biotechnol 2021; 105:7619-7634. [PMID: 34559284 DOI: 10.1007/s00253-021-11602-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
In this work, the application of chemical surfactants, including cooking aids, detergents, surface sizing agents, and deinking agents as core components, is introduced in the wet end of pulping and papermaking. This method for the combined application of enzymes and surfactants has expanded, promoting technological updates and improving the effect of surfactants in practical applications. Finally, the potential substitution of green surfactants for chemical surfactants is discussed. The source, classification, and natural functions of green surfactants are introduced, including plant extracts, biobased surfactants, fermentation products, and woody biomass. These green surfactants have advantages over their chemically synthesized counterparts, such as their low toxicity and biodegradability. This article reviews the latest developments in the application of surfactants in different paper industry processes and extends the methods of use. Additionally, the application potential of green surfactants in the field of papermaking is discussed. KEY POINTS: • Surfactants as important chemical additives in papermaking process are reviewed. • Deinking technologies by combined of surfactants and enzymes are reviewed. • Applications of green surfactant in papermaking industry are prospected.
Collapse
Affiliation(s)
- Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China. .,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.
| | - Dejun Chang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Di Huang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China. .,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.
| | - Zetong Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Yukang Wu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Yi Jiang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.,Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| |
Collapse
|
46
|
Ene N, Vladu MG, Lupescu I, Ionescu AD, Vamanu E. The Production and Analysis of Biodegradable Polymers of Type of Medium-Chain-Length Polyhydroxyalkanoates (mcl-PHA) by Pseudomonas putida Strain for the Biomedical Engineering. Curr Pharm Biotechnol 2021; 23:1109-1117. [PMID: 34375190 DOI: 10.2174/1389201022666210810114117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Polyhydroxyalkanoates (PHAs) are bacteria-synthetized biopolymers under unbalanced growth conditions. These biopolymers are considered potential biomaterials for future applications for their biocompatibility and biodegradable features and potential biomaterials for future applications for their biocompatibility and biodegradable characteristics and their ability to be quickly produced and functionalize with strong mechanical resistance. This article is intended to perform microbial fermentation using Pseudomonas putida strain to show the amount of biopolymers of the type polyhydroxyalkanoates with medium-chain-length (mcl-PHA) obtained depending on the type and quantity of added precursors (glucose and fatty acids). METHODS It is important to understand the microbial interaction and mechanism involved in PHA biosynthetis.For these, several methods were used, such as: obtaining microbial biomass by using a Pseudomonas putida strain able of PHA-producing, analysis of biopolymer production by acetone extraction following the Soxhlet method, purification of biopolymer by methanol-ethanol treatment, followed by the estimation of biomass by spectrophotometric analysis and the measurement of the dry weight of cells and the quantification of the amount of biopolymer produced following the gas chromatographic method (GC). RESULTS The highest PHA yield was obtained using octanoic (17 mL in 2000 mL medium) and hexanoic acids (14 mL in 2000 mL medium) as precursors. Consequently, octanoic acid - octanoic acid, heptanoic acid - nonanoic acid, and octanoic acid - hexanoic acid were the mix of precursors that supported the amount of PHA obtained. CONCLUSION Of the 4 types of structurally related substrate, the strain Pseudomonas putida ICCF 319 prefers the C8 sublayer for an elastomeric PHA's biosynthesis with a composition in which the C8 monomer predominates over C6 and C10.
Collapse
Affiliation(s)
- Nicoleta Ene
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine, Mărăs,ti Blv. 59, 011464 Bucharest, Romania
| | - Mariana-Gratiela Vladu
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine, Mărăs,ti Blv. 59, 011464 Bucharest, Romania
| | - Irina Lupescu
- National Institute for Chemical Pharmaceutical Research and Development-ICCF, Vitan Avenue 112, 031299 Bucharest, Romania
| | - Ana-Despina Ionescu
- National Institute for Chemical Pharmaceutical Research and Development-ICCF, Vitan Avenue 112, 031299 Bucharest, Romania
| | - Emanuel Vamanu
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine, Mărăs,ti Blv. 59, 011464 Bucharest, Romania
| |
Collapse
|
47
|
Vieira IMM, Santos BLP, Ruzene DS, Silva DP. An overview of current research and developments in biosurfactants. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Pan L, Li J, Wang R, Wang Y, Lin Q, Li C, Wang Y. Biosynthesis of polyhydroxyalkanoate from food waste oil by Pseudomonas alcaligenes with simultaneous energy recovery from fermentation wastewater. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 131:268-276. [PMID: 34175751 DOI: 10.1016/j.wasman.2021.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/02/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Bioconversion of food waste oil (FWO) into biodegradable plastic is a promising method for converting waste into high-value products. In this study, a strain (Pseudomonas sp. H3) was isolated for polyhydroxyalkanoate (PHA) synthesis from FWO. After 72 h of cultivation with 20 g/L of FWO, the high cell dry weight (CDW) of 3.6 g/L, PHA yield of 2.4 g/L, and PHA content of 65 wt% were obtained under the optimal temperature (25 °C) and inoculum amount (6% (v/v)). Fed-batch fermentation was conducted in a 5 L bioreactor with a maximum CDW of 16 g/L, PHA content of 54 wt%, and PHA productivity of 0.23 g/(L·h) after 36 h. The PHA had a molecular weight of 54 782 Da and a low polydispersity index of 1.41 with glass transition, melting, and degradation temperatures of -20 °C, 34 °C, and 210 °C, respectively. To further utilize the wastewater after PHA production, anaerobic digestion was employed for CH4 production, and the CH4 yield was 284 mL/g volatile solids. Microbial community analysis showed that the abundance of acetate-oxidizing bacteria and Methanobacterium significantly increased during anaerobic digestion. This study describes a new strain for the economical synthesis of biodegradable plastics and presents a novel framework for fully utilizing FWO with the production of PHA and CH4.
Collapse
Affiliation(s)
- Lanjia Pan
- Amoy Institute of Technovation, Xiamen 361000, PR China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Jie Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Ruming Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yu Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qinghuai Lin
- Amoy Institute of Technovation, Xiamen 361000, PR China
| | - Chunxing Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, PR China.
| | - Yin Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| |
Collapse
|
49
|
Kong S, Shen C, Li Y, Meng Q. Rhamnolipids Sustain Unchanged Surface Activities during Decomposition in Alkaline Solutions. ACS OMEGA 2021; 6:15750-15755. [PMID: 34179619 PMCID: PMC8223203 DOI: 10.1021/acsomega.1c01099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Biosurfactant rhamnolipids (RLs) have gained global interests owing to their fully green properties, potentially wide applications in diverse fields, as well as high stabilities under various harsh conditions. Nevertheless, we doubted the reputed stability of RLs in considering their natural structure of carbohydrate heads and lipid tails. This study, for the first time, systematically investigated the stability of RLs at varying temperatures and pH. As found, the concentration of RLs in an aqueous solution was significantly reduced when the pH was over 11 at room temperature, and this was much more severe with the increase in temperature and preservation time. According to the high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis, degradation yielded other RL congeners, 3-hydroxy fatty acids, rhamnose, methyl furfural, and organic acids. The newly generated RL congeners and fatty acids still possessed equivalent surface activities in reducing the surface tension of the aqueous solution, well explaining the previously claimed high stability of RLs. The finding will be greatly valued for commercially developing the industrial applications of RLs and other biosurfactants.
Collapse
|
50
|
Genome-Wide Metabolic Reconstruction of the Synthesis of Polyhydroxyalkanoates from Sugars and Fatty Acids by Burkholderia Sensu Lato Species. Microorganisms 2021; 9:microorganisms9061290. [PMID: 34204835 PMCID: PMC8231600 DOI: 10.3390/microorganisms9061290] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Burkholderia sensu lato (s.l.) species have a versatile metabolism. The aims of this review are the genomic reconstruction of the metabolic pathways involved in the synthesis of polyhydroxyalkanoates (PHAs) by Burkholderia s.l. genera, and the characterization of the PHA synthases and the pha genes organization. The reports of the PHA synthesis from different substrates by Burkholderia s.l. strains were reviewed. Genome-guided metabolic reconstruction involving the conversion of sugars and fatty acids into PHAs by 37 Burkholderia s.l. species was performed. Sugars are metabolized via the Entner-Doudoroff (ED), pentose-phosphate (PP), and lower Embden-Meyerhoff-Parnas (EMP) pathways, which produce reducing power through NAD(P)H synthesis and PHA precursors. Fatty acid substrates are metabolized via β-oxidation and de novo synthesis of fatty acids into PHAs. The analysis of 194 Burkholderia s.l. genomes revealed that all strains have the phaC, phaA, and phaB genes for PHA synthesis, wherein the phaC gene is generally present in ≥2 copies. PHA synthases were classified into four phylogenetic groups belonging to class I II and III PHA synthases and one outlier group. The reconstruction of PHAs synthesis revealed a high level of gene redundancy probably reflecting complex regulatory layers that provide fine tuning according to diverse substrates and physiological conditions.
Collapse
|