1
|
Ni J, Miao H, Zhang W, Chen X, Tu Y, Yang K, Gu P, Ren X, Guo H, Li C, Zhang Z. Effects of impurities on the syngas fermentation: Mechanism and future perspectives. BIORESOURCE TECHNOLOGY 2025; 425:132301. [PMID: 40020880 DOI: 10.1016/j.biortech.2025.132301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
In the process of syngas bioconversion into high value-added chemicals, the presence and impact of impurities must be acknowledged. The present review aims to summarize the progress regarding the effects of various impurities on the syngas fermentation, with the focus on impurity formation in gasification, its inhibition on syngas conversion and influential mechanism. The production of impurities is influenced by various parameters in the gasification process, but substance characteristics is the most relevant factor on impurities composition and concentration. The inhibitory threshold of H2S, NH3 and CN- on syngas bioconversion was 108 ppm, 1520 ppm and 0.025 mM, respectively. In the response to impurities, functional microorganisms related to syngas bioconversion were normally inhibited. Furthermore, the inhibitory mechanisms in aspect of electron transfer and energy synthesis were revealed via the analysis of syngas and impurities metabolic pathway. To alleviate the impurity inhibition, the potential solutions are proposed.
Collapse
Affiliation(s)
- Jun Ni
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China
| | - Hengfeng Miao
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China; Water Treatment Technology and Material Innovation Center, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wanqing Zhang
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China
| | - Xin Chen
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China
| | - Yiheng Tu
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China
| | - Kunlun Yang
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Peng Gu
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Xueli Ren
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Guo
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China; Zhejiang Juneng Environmental Co., Ltd., Tongxiang 314599, China
| | - Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zengshuai Zhang
- School of Environmental and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory of Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Adams M. Ammonia-stressed anaerobic digestion: Sensitivity dynamics of key syntrophic interactions and methanogenic pathways-A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123183. [PMID: 39492135 DOI: 10.1016/j.jenvman.2024.123183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The problematic anaerobic digestion (AD) of protein-rich substrates owing to their high ammonia content continues to hinder optimum methanation despite their high potential for offsetting greenhouse gas (GHG) emissions. This review focuses on the analyses of the sensitivity dynamics of key AD processes as well as the microbial interactions and exchanges that occur with them. Aside from the apparent increased risk associated with thermophilic ammonia-rich substrate AD, the marginally higher energy generation compared to mesophilic systems is not commensurate to the energy requirement. Moreover, while comparable FAN thresholds have been confirmed, TAN thresholds are susceptible to physical chemistry and so vary greatly. Profiling of the metabolic capability of front-end AD microbiome revealed Bacteroidetes, Firmicutes, and Synergistetes as some of the ammonia-resilient bacteria groups while Proteobacteria and Actinobacteria were the most fragile taxa. Besides the predominance of incomplete propionate oxidizing bacteria under ammonia stress conditions, syntrophic propionate oxidation (SPO) is usually shifted from the methylmalonyl CoA to the dismutation pathway. Furthermore, besides their different recoverability potentials, distinct methanogenic groups are differentially impacted by different ammonia species. Prevailing literature evidence suggests that conductive material assisted bioaugmentation with SAO-HM consortia, and in-situ H2 supplementation are the most effective for expediting electron transfer and relieving ammonia stress. These valuable insights should inform the design of targeted ammonia inhibition mitigation strategies.
Collapse
Affiliation(s)
- Mabruk Adams
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 TK33, Ireland.
| |
Collapse
|
3
|
Li ZY, Nagao S, Inoue D, Ike M. Different bioaugmentation regimes that mitigate ammonium/salt inhibition in repeated batch anaerobic digestion: Generic converging trend of microbial communities. BIORESOURCE TECHNOLOGY 2024; 413:131481. [PMID: 39277054 DOI: 10.1016/j.biortech.2024.131481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Bioaugmentation regimes (i.e., dosage, repetition, and timing) in AD must be optimized to ensure their effectiveness. Although previous studies have investigated these aspects, most have focused exclusively on short-term effects, with some reporting conflicting conclusions. Here, AD experiments of three consecutive repeated batches were conducted to determine the effect of bioaugmentation regimes under ammonium/salt inhibition conditions. A positive correlation between reactor performance and inoculum dosage was confirmed in the first batch, which diminished in subsequent batches for both inhibitors. Moreover, a diminishing marginal effect was observed with repeated inoculum introduction. While the bacterial community largely influenced the reactor performance, the archaeal community exhibited only a minor impact. Prediction of the key enzyme abundances suggested an overall decline in different AD steps. Overall, repeated batch experiments revealed that a homogeneous bacterial community deteriorated the AD process during long-term operation. Thus, a balanced bacterial community is key for efficient methane production.
Collapse
Affiliation(s)
- Zi-Yan Li
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shintaro Nagao
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
4
|
Lee JTE, Bu J, Senadheera S, Tiong YW, Majid MBA, Yuan X, Wang CH, Zhang J, Ok YS, Tong YW. Methanosarcina thermophila bioaugmentation with biochar growth support for valorisation of food waste via thermophilic anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122869. [PMID: 39423614 DOI: 10.1016/j.jenvman.2024.122869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Methanosarcina thermophila bioaugmentation on biochar as the growth support particle has previously been shown to enhance biomethane production of anaerobic digestion of food waste. In this paper, the duration of the beneficial effects is examined by a semi-continuous thermophilic regime starting from pooled digestate from a previous batch digestion. An additional experiment is performed to decouple the solids retention time, mitigating the washout effect and resulting in improved methane yield for 17 days. The second experiment is extended incorporating various permutations of biochar amendment, and the findings suggest that liquid soluble supplements are essential for prolonging the advantages. Experimental and microbiological analyses indicate that the biochar's enhancement is likely due to microbial factors like direct interspecies electron transfer (DIET) or syntrophic interactions, rather than physicochemical mechanisms.
Collapse
Affiliation(s)
- Jonathan T E Lee
- Environmental Research Institute, National University of Singapore, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore
| | - Jie Bu
- Environmental Research Institute, National University of Singapore, Singapore
| | - Sachini Senadheera
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Yong Wei Tiong
- Environmental Research Institute, National University of Singapore, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE(2)), Agency for Science, Technology and Research (A∗STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | | | - Xiangzhou Yuan
- Ministry of Education of Key Laboratory of Energy Thermal Conversion and Control, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Chi-Hwa Wang
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore; Department of Chemical & Biomolecular Engineering, NUS, Singapore
| | - Jingxin Zhang
- China-US Low Carbon College, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Yen Wah Tong
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore; Department of Chemical & Biomolecular Engineering, NUS, Singapore.
| |
Collapse
|
5
|
Li Y, Yin DM, Du XJ, Li HX, Zhang XY, Mahboubi A. Genome-centric metagenomics and methanogenic pathway analysis for acclimated anaerobic digestion of chicken manure with high ammonia stressed under thermophilic condition. ENVIRONMENTAL RESEARCH 2024; 258:119453. [PMID: 38909951 DOI: 10.1016/j.envres.2024.119453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/30/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Thermophilic anaerobic digestion (AD) of animal manure offers various environmental benefits but the process requires a microbial community acclimatized to high ammonia. In current study, a lab-scale continuous stirred tank reactor (CSTR) fed with chicken manure was operated under thermophilic condition for 450 days in total. Results showed that the volumetric methane production decreased from 445 to 328 and sharply declined to 153 mL L-1·d-1 with feeding total solid (TS) step increased from 5% to 7.5% and 10%, respectively. While, after a long-term stop feeding for 80 days, highly disturbed reactor was able to recover methane generation to 739 mL L-1·d-1 at feeding TS of 10%. Isotope analysis indicted acetate converted to methane through the syntrophic acetate oxidation and hydrogenotrophic methanogenesis (SAO-HM) pathway increased from 33% to 63% as the concentration of ammonium increased from 2493 to 6258 mg L-1. Significant different in the genome expression of the SAO bacterial from 0.09% to 1.23%, combining with main hydrogenotrophic partners (Methanoculleus spp. and Methanothermobacter spp.) contented of 2.1% and 99.9% during inhibitory and recovery stages, respectively. The highly expressed KEGG pathway in level 3 (enzyme genes) for the Recovery sludge combining with the extraordinary high abundance of genera Halocella sp. suggested that Halocella sp. might be a highly efficient hydrolytic and acidogenic microorganism and enhance the process of SAO during carbon metabolic flow to methane. This report will be a basis for further study of AD studies on high nitrogen content of poultry manure.
Collapse
Affiliation(s)
- Yan Li
- School of Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou, 213032, Jiangsu Province, China.
| | - Dong-Min Yin
- Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, Jiangsu Province, China.
| | - Xiao-Jiao Du
- School of Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou, 213032, Jiangsu Province, China.
| | - Hao-Xuan Li
- School of Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou, 213032, Jiangsu Province, China.
| | - Xue-Ying Zhang
- School of Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou, 213032, Jiangsu Province, China.
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, Borås, SE-50190, Sweden.
| |
Collapse
|
6
|
Gaspari M, Ghiotto G, Centurion VB, Kotsopoulos T, Santinello D, Campanaro S, Treu L, Kougias PG. Decoding Microbial Responses to Ammonia Shock Loads in Biogas Reactors through Metagenomics and Metatranscriptomics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:591-602. [PMID: 38112274 PMCID: PMC10785759 DOI: 10.1021/acs.est.3c07840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
The presence of elevated ammonia levels is widely recognized as a significant contributor to process inhibition in biogas production, posing a common challenge for biogas plant operators. The present study employed a combination of biochemical, genome-centric metagenomic and metatranscriptomic data to investigate the response of the biogas microbiome to two shock loads induced by single pulses of elevated ammonia concentrations (i.e., 1.5 g NH4+/LR and 5 g NH4+/LR). The analysis revealed a microbial community of high complexity consisting of 364 Metagenome Assembled Genomes (MAGs). The hydrogenotrophic pathway was the primary route for methane production during the entire experiment, confirming its efficiency even at high ammonia concentrations. Additionally, metatranscriptomic analysis uncovered a metabolic shift in the methanogens Methanothrix sp. MA6 and Methanosarcina flavescens MX5, which switched their metabolism from the acetoclastic to the CO2 reduction route during the second shock. Furthermore, multiple genes associated with mechanisms for maintaining osmotic balance in the cell were upregulated, emphasizing the critical role of osmoprotection in the rapid response to the presence of ammonia. Finally, this study offers insights into the transcriptional response of an anaerobic digestion community, specifically focusing on the mechanisms involved in recovering from ammonia-induced stress.
Collapse
Affiliation(s)
- Maria Gaspari
- Soil
and Water Resources Institute, Hellenic Agricultural Organisation
Dimitra, Thermi, Thessaloniki 57001, Greece
- Department
of Hydraulics, Soil Science and Agricultural Engineering, School of
Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Gabriele Ghiotto
- Department
of Biology, University of Padova, Padova 35121, Italy
| | | | - Thomas Kotsopoulos
- Department
of Hydraulics, Soil Science and Agricultural Engineering, School of
Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | | | - Laura Treu
- Department
of Biology, University of Padova, Padova 35121, Italy
| | - Panagiotis G. Kougias
- Soil
and Water Resources Institute, Hellenic Agricultural Organisation
Dimitra, Thermi, Thessaloniki 57001, Greece
| |
Collapse
|
7
|
Thapa A, Jo H, Han U, Cho SK. Ex-situ biomethanation for CO 2 valorization: State of the art, recent advances, challenges, and future prospective. Biotechnol Adv 2023; 68:108218. [PMID: 37481094 DOI: 10.1016/j.biotechadv.2023.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Ex-situ biomethanation is an emerging technology that facilitates the use of surplus renewable electricity and valorizes carbon dioxide (CO2) for biomethane production by hydrogenotrophic methanogens. This review offers an up-to-date overview of the current state of ex-situ biomethanation and thoroughly analyzes key operational parameters affecting hydrogen (H2) gas-liquid mass transfer and biomethanation performance, along with an in-depth discussion of the technical challenges. To the best of our knowledge, this is the first review article to discuss microbial community structure in liquid and biofilm phases and their responses after exposure to H2 starvation during ex-situ biomethanation. In addition, future research in areas such as reactor configuration and optimization of operational parameters for improving the H2 mass transfer rate, inhibiting opportunistic homoacetogens, integration of membrane technology, and use of conductive packing material is recommended to overcome challenges and improve the efficiency of ex-situ biomethanation. Furthermore, this review presents a techno-economic analysis for the future development and facilitation of industrial implementation. The insights presented in this review will offer useful information to identify state-of-the-art research trends and realize the full potential of this emerging technology for CO2 utilization and biomethane production.
Collapse
Affiliation(s)
- Ajay Thapa
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, IIsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hongmok Jo
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, IIsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Uijeong Han
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, IIsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, IIsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
8
|
Ngo T, Khudur LS, Krohn C, Hassan S, Jansriphibul K, Hakeem IG, Shah K, Surapaneni A, Ball AS. Wood biochar enhances methanogenesis in the anaerobic digestion of chicken manure under ammonia inhibition conditions. Heliyon 2023; 9:e21100. [PMID: 37920507 PMCID: PMC10618790 DOI: 10.1016/j.heliyon.2023.e21100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
The process of breaking down chicken manure through anaerobic digestion is an effective waste management technology. However, chicken manure can be a challenging feedstock, causing ammonia stress and digester instability. This study examined the impacts of adding wood biochar and acid-alkali-treated wood biochar to anaerobically digest chicken manure under conditions of ammonia inhibition. The results highlighted that only the addition of 5 % acid-alkali-treated wood biochar by volume can achieve cumulative methane production close to the typical methane potential range of chicken manure. The treated wood biochar also exhibited highest total ammonia nitrogen removal compared to the Control treatment. Scanning Electron Microscope revealed growing interactions between biochar and methanogens over time. Real-time polymerase chain reaction showed that treated wood biochar produced the highest number of bacterial biomass. In addition, 16S amplicon-based sequencing identified a more robust archaeal community from treated biochar addition. Overall, the acid-alkali treatment of biochar represents an effective method of modifying biochar to improve its performance in anaerobic digestion.
Collapse
Affiliation(s)
- Tien Ngo
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Leadin S. Khudur
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Christian Krohn
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Soulayma Hassan
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Kraiwut Jansriphibul
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Ibrahim Gbolahan Hakeem
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Kalpit Shah
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Aravind Surapaneni
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
- South East Water, 101 Wells Street, Frankston, VIC 3199, Australia
| | - Andrew S. Ball
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
9
|
Kalamaras SD, Christou ML, Tzenos CA, Vasileiadis S, Karpouzas DG, Kotsopoulos TA. Investigation of the Critical Biomass of Acclimated Microbial Communities to High Ammonia Concentrations for a Successful Bioaugmentation of Biogas Anaerobic Reactors with Ammonia Inhibition. Microorganisms 2023; 11:1710. [PMID: 37512885 PMCID: PMC10386354 DOI: 10.3390/microorganisms11071710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
This study aimed to investigate the role of the bioaugmented critical biomass that should be injected for successful bioaugmentation for addressing ammonia inhibition in anaerobic reactors used for biogas production. Cattle manure was used as a feedstock for anaerobic digestion (AD). A mixed microbial culture was acclimated to high concentrations of ammonia and used as a bioaugmented culture. Different volumes of bioaugmented culture were injected in batch anaerobic reactors under ammonia toxicity levels i.e., 4 g of NH4+-N L-1. The results showed that injecting a volume equal to 65.62% of the total working reactor volume yielded the best methane production. Specifically, this volume of bioaugmented culture resulted in methane production rates of 196.18 mL g-1 Volatile Solids (VS) and 245.88 mL g-1 VS after 30 and 60 days of AD, respectively. These rates were not significantly different from the control reactors (30d: 205.94 mL CH4 g-1 VS and 60d: 230.26 mL CH4 g-1 VS) operating without ammonia toxicity. Analysis of the microbial community using 16S rRNA gene sequencing revealed the dominance of acetoclastic methanogen members from the genus Methanosaeta in all reactors.
Collapse
Affiliation(s)
- Sotirios D Kalamaras
- Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Lida Christou
- Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christos A Tzenos
- Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Sotirios Vasileiadis
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Thomas A Kotsopoulos
- Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
10
|
Yi Y, Dolfing J, Jin G, Fang X, Han W, Liu L, Tang Y, Cheng L. Thermodynamic restrictions determine ammonia tolerance of methanogenic pathways in Methanosarcina barkeri. WATER RESEARCH 2023; 232:119664. [PMID: 36775717 DOI: 10.1016/j.watres.2023.119664] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Ammonia is a ubiquitous potential inhibitor of anaerobic digestion processes, mainly exhibiting inhibition towards methanogenic activity. However, knowledge as to how ammonia affects the methanogens is still limited. In this study, we cultured a multitrophic methanogen, Methanosarcina barkeri DSM 800, with acetate, H2/CO2, and methanol to evaluate the influence of ammonia on different methanogenic pathways. Aceticlastic methanogenesis was more sensitive to increased ammonia concentrations than hydrogenotrophic and methylotrophic methanogenesis. Theoretical maximum NH3 tolerances of M. barkeri fed with acetate, H2/CO2, and methanol were calculated to be 39.1 ± 9.0, 104.3 ± 7.4, and 85.7 ± 1.0 mg/L, respectively. The order of the ΔG range of M. barkeri under three methanogenic pathways reflected the order of ammonia tolerance of M. barkeri. Our results provide insights into the role of the thermodynamic potential of methanogenesis on the tolerance of ammonia stress; and shed light on the mechanism of ammonia inhibition on anaerobic digestion.
Collapse
Affiliation(s)
- Yue Yi
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu, Sichuan 610041, China; College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Wynne Jones 2.11, Ellison Place, Newcastle-upon-Tyne NE1 8QH, UK
| | - Ge Jin
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu, Sichuan 610041, China
| | - XiaoYu Fang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu, Sichuan 610041, China
| | - WenHao Han
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu, Sichuan 610041, China
| | - LaiYan Liu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu, Sichuan 610041, China
| | - YueQin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China.
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin South Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
11
|
Vasilakis G, Rigos EM, Giannakis N, Diamantopoulou P, Papanikolaou S. Spent Mushroom Substrate Hydrolysis and Utilization as Potential Alternative Feedstock for Anaerobic Co-Digestion. Microorganisms 2023; 11:microorganisms11020532. [PMID: 36838496 PMCID: PMC9964826 DOI: 10.3390/microorganisms11020532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Valorization of lignocellulosic biomass, such as Spent Mushroom Substrate (SMS), as an alternative substrate for biogas production could meet the increasing demand for energy. In view of this, the present study aimed at the biotechnological valorization of SMS for biogas production. In the first part of the study, two SMS chemical pretreatment processes were investigated and subsequently combined with thermal treatment of the mentioned waste streams. The acidic chemical hydrolysate derived from the hydrothermal treatment, which yielded in the highest concentration of free sugars (≈36 g/100 g dry SMS, hydrolysis yield ≈75% w/w of holocellulose), was used as a potential feedstock for biomethane production in a laboratory bench-scale improvised digester, and 52 L biogas/kg of volatile solids (VS) containing 65% methane were produced in a 15-day trial of anaerobic digestion. As regards the alkaline hydrolysate, it was like a pulp due to the lignocellulosic matrix disruption, without releasing additional sugars, and the biogas production was delayed for several days. The biogas yield value was 37 L/kg VS, and the methane content was 62%. Based on these results, it can be concluded that SMS can be valorized as an alternative medium employed for anaerobic digestion when pretreated with both chemical and hydrothermal hydrolysis.
Collapse
Affiliation(s)
- Gabriel Vasilakis
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Evangelos-Markos Rigos
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Nikos Giannakis
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Panagiota Diamantopoulou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “Dimitra”, 1 Sofokli Venizelou Str., 14123 Lykovryssi, Greece
| | - Seraphim Papanikolaou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
- Correspondence:
| |
Collapse
|
12
|
A Review of Basic Bioinformatic Techniques for Microbial Community Analysis in an Anaerobic Digester. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Biogas production involves various types of intricate microbial populations in an anaerobic digester (AD). To understand the anaerobic digestion system better, a broad-based study must be conducted on the microbial population. Deep understanding of the complete metagenomics including microbial structure, functional gene form, similarity/differences, and relationships between metabolic pathways and product formation, could aid in optimization and enhancement of AD processes. With advancements in technologies for metagenomic sequencing, for example, next generation sequencing and high-throughput sequencing, have revolutionized the study of microbial dynamics in anaerobic digestion. This review includes a brief introduction to the basic process of metagenomics research and includes a detailed summary of the various bioinformatics approaches, viz., total investigation of data obtained from microbial communities using bioinformatics methods to expose metagenomics characterization. This includes (1) methods of DNA isolation and sequencing, (2) investigation of anaerobic microbial communities using bioinformatics techniques, (3) application of the analysis of anaerobic microbial community and biogas production, and (4) restriction and prediction of bioinformatics analysis on microbial metagenomics. The review has been concluded, giving a summarized insight into bioinformatic tools and also promoting the future prospects of integrating humungous data with artificial intelligence and neural network software.
Collapse
|
13
|
Elucidating interactive effects of sulfidated nanoscale zero-valent iron and ammonia on anaerobic digestion of food waste. J Biosci Bioeng 2023; 135:63-70. [PMID: 36336573 DOI: 10.1016/j.jbiosc.2022.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/16/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
In our previous study, anaerobic digestion of food waste could be effectively enhanced by adding sulfidated nanoscale zero-valent iron (S-nZVI) under high-strength ammonia concentrations. In this study, in order to further elucidate the specific interactive effects of S-nZVI and ammonia on anaerobic digestion of nitrogen-rich food waste, the methanogenic performance of anaerobic digestion systems respectively added with nanoscale zero-valent iron (nZVI) and S-nZVI were compared and monitored under different ammonia stress conditions. Both nZVI and S-nZVI could effectively stimulate the methanogenesis process among ammonia concentrations ranging from 0 to 3500 mg/L. However, the enhancing effects of S-nZVI and nZVI on anaerobic digestion of food waste were different, in which anaerobic digestion systems added with S-nZVI and nZVI performed best under 2500 mg/L of ammonia and 1500 mg/L of ammonia, respectively. Furthermore, the analysis of microbial communities suggested that ammonia stress enriched acetoclastic methanogens, while adding nZVI and S-nZVI into anaerobic digestions stimulated the process of hydrogenotrophic methanogenesis. Moreover, S-nZVI performed better in promoting the evolution of DIET-related microorganisms than nZVI, resulting in enhanced methane production under high ammonia-stressed conditions. This work provided fundamental knowledge about the interactive effects of S-nZVI and ammonia on the anaerobic digestion of food waste.
Collapse
|
14
|
Yan Y, Yan M, Angelidaki I, Fu D, Fotidis IA. Osmoprotectants boost adaptation and protect methanogenic microbiome during ammonia toxicity events in continuous processes. BIORESOURCE TECHNOLOGY 2022; 364:128106. [PMID: 36243262 DOI: 10.1016/j.biortech.2022.128106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Different osmoprotectants were used to counteract ammonia toxicity in continuous anaerobic reactors. The anaerobic microbiome osmoadaptation process and its role to the methanogenic recovery are also assessed. Three osmoprotectants (i.e., glycine betaine, MgCl2 and KCl) were respectively introduced in continuous reactors at high ammonia levels, namely RGB, RMg, RK, while a control reactor (RCtrl) was also used. After ammonia was introduced, the RGB, RMg, RK and RCtrl suffered 39.0%, 36.6%, 39.9% and 36.2% methane production loss, respectively. Osmoprotectants addition recovered significantly methane production by up to 68.9%, 54.3% and 32.2% for RGB, RMg and RK, respectively contrary to RCtrl, where production increased only by 13.6%. The recovered methane production was maintained in RGB and RMg for at least four HRTs, even after the addition of osmoprotectants was stopped, due to the formed methanogenic microbiota by osmoadaptation process, with Methanoculleus sp. as the dominant species.
Collapse
Affiliation(s)
- Yixin Yan
- School of Civil Engineering, Southeast University, 210096 Nanjing, China; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Miao Yan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Dafang Fu
- School of Civil Engineering, Southeast University, 210096 Nanjing, China
| | - Ioannis A Fotidis
- School of Civil Engineering, Southeast University, 210096 Nanjing, China; Faculty of Environment, Ionian University, 29100 Zakynthos, Greece.
| |
Collapse
|
15
|
Wang Z, Wang S, Hu Y, Du B, Meng J, Wu G, Liu H, Zhan X. Distinguishing responses of acetoclastic and hydrogenotrophic methanogens to ammonia stress in mesophilic mixed cultures. WATER RESEARCH 2022; 224:119029. [PMID: 36099760 DOI: 10.1016/j.watres.2022.119029] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/14/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
A shift from the acetoclastic to the hydrogenotrophic pathway in methanogenesis under ammonia inhibition is a common observation in anaerobic digestion. However, there are still considerable knowledge gaps concerning the differential ammonia tolerance of acetoclastic and hydrogenotrophic methanogens (AMs and HMs), their responses to different ammonia species (NH4+, NH3), and their recoverability after ammonia inhibition. With the successful enrichment of mesophilic AMs and HMs cultures, this study aimed at addressing the above knowledge gaps through batch inhibition/recovery tests and kinetic modeling under varying total ammonia (TAN, 0.2-10 g N/L) and pH (7.0-8.5) conditions. The results showed that the tolerance level of HMs to free ammonia (FAN, IC50=1345 mg N/L) and NH4+ (IC50=6050 mg N/L) was nearly 11 times and 3 times those of AMs (NH3, IC50=123 mg N/L; NH4+, IC50=2133 mg N/L), respectively. Consistent with general belief, the AMs were more impacted by FAN. However, the HMs were more adversely affected by NH4+ when the pH was ≤8.0. A low TAN (1.0-4.0 g N/L) could cause irreversible inhibition of the AMs due to significant cell death, whereas the activity of HMs could be fully or even over recovered from severe ammonia stress (FAN≤ 0.9 g N/L or TAN≤10 g N/L; pH ≤8.0). The different tolerance responses of AMs and HMs might be associated with the cell morphology, multiple energy-converting systems, and Gibbs free energy from substrate-level phosphorylation.
Collapse
Affiliation(s)
- Zhongzhong Wang
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland; MaREI Center for Marine and Renewable Energy, National University of Ireland, Galway, Ireland
| | - Shun Wang
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland; MaREI Center for Marine and Renewable Energy, National University of Ireland, Galway, Ireland
| | - Yuansheng Hu
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland.
| | - Bang Du
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland
| | - Jizhong Meng
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland
| | - Guangxue Wu
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland
| | - He Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China
| | - Xinmin Zhan
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland; MaREI Center for Marine and Renewable Energy, National University of Ireland, Galway, Ireland.
| |
Collapse
|
16
|
Xu J, Kumar Khanal S, Kang Y, Zhu J, Huang X, Zong Y, Pang W, Surendra KC, Xie L. Role of interspecies electron transfer stimulation in enhancing anaerobic digestion under ammonia stress: Mechanisms, advances, and perspectives. BIORESOURCE TECHNOLOGY 2022; 360:127558. [PMID: 35780934 DOI: 10.1016/j.biortech.2022.127558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Ammonia stress is a commonly encountered issue in anaerobic digestion (AD) process when treating proteinaceous substrates. The enhanced relationship between syntrophic bacteria and methanogens triggered by interspecies electron transfer (IET) stimulation is one of the potential mechanisms for an improved methane yield from the AD plant under ammonia-stressed condition. There is, however, lack of synthesized information on the mechanistic understanding of IET facilitation in the ammonia-stressed AD processes. This review critically discusses recovery of AD system from ammonia-stressed condition, focusing on H2 transfer, redox compound-mediated IET, and conductive material-induced direct IET. The effects and the associated mechanisms of IET stimulation on mitigating ammonia stress and promoting methanogenesis were elucidated. Finally, prospects and challenges of IET stimulation were critically discussed. This review highlights, for the first time, the critical role of IET stimulation in enhancing AD process under ammonia-stressed condition.
Collapse
Affiliation(s)
- Jun Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, 1955 East-West Road, Agricultural Science Building 218, Honolulu, HI 96822, USA
| | - Yurui Kang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jiaxin Zhu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xia Huang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yang Zong
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Weihai Pang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, 1955 East-West Road, Agricultural Science Building 218, Honolulu, HI 96822, USA; Global Institute for Interdisciplinary Studies, 44600 Kathmandu, Nepal
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
17
|
Zhang S, Ma X, Sun H, Xie D, Zhao P, Wang Q, Wu C, Gao M. Semi-continuous mesophilic-thermophilic two-phase anaerobic co-digestion of food waste and spent mushroom substance: Methanogenic performance, microbial, and metagenomic analysis. BIORESOURCE TECHNOLOGY 2022; 360:127518. [PMID: 35760249 DOI: 10.1016/j.biortech.2022.127518] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
The methanogenic efficiency and system stability of anaerobic co-digestion of food waste (FW) and spent mushroom substance (SMS) are important for its application. A 90-day semi-continuous study was conducted to compare the co-digestion performance of an ethanologenic-methanogenic two-phase system and an acidogenic-methanogenic system using FW and SMS as substrates. The results showed that the ethanologenic-methanogenic system increased the contents of ethanol and acetate in the hydrolytic acidification phase. Microbial-community analysis showed that ethanologenic-methanogenic system enriched hydrolytic acidifying bacteria and methanogens such as Methanoculleus, resulting in an increase in the average methane yield of methanogenic phase by 1.91-2.43 times at the same organic loading rate (OLR = 3.0-4.0 g-VS·L-1·d-1). Metagenomic analysis indicated that the ethanologenic-methanogenic system increased the abundance of enzyme-encoding genes and promoted the degradation of acetate and CO2/H2, thereby enhancing methanogenic metabolic pathways, compared to the acidogenic-methanogenic system.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xinxin Ma
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Haishu Sun
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dong Xie
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Pan Zhao
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qunhui Wang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Chuanfu Wu
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Ming Gao
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
18
|
Jo Y, Cayetano RDA, Kim GB, Park J, Kim SH. The effects of ammonia acclimation on biogas recovery and the microbial population in continuous anaerobic digestion of swine manure. ENVIRONMENTAL RESEARCH 2022; 212:113483. [PMID: 35588770 DOI: 10.1016/j.envres.2022.113483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the ammonia toxicity and the acclimation of anaerobic microbiome in continuous anaerobic digestion of swine manure using unacclimated inoculum. When the total ammonia nitrogen concentration (TAN) reached 2.5 g N/L, the methane yield decreased from 254.1 ± 9.6 to 154.6 ± 9.9 mL/g COD. The free ammonia nitrogen concentration of the inhibited condition was 190 mg N/L. The methane yield was eventually recovered as 269.6 ± 3.6 mL/g COD with a further operation. Anaerobic toxicity assay (ATA) showed that mixed liquor from the recovered phase possessed enhanced tolerance to ammonia, not only within the exposed level in continuous operation (<2.5 g NH3/L) but also over the range (>2.5 g NH3/L). Microbial analysis revealed that continuous operation under ammonia stress resulted in the change of both bacterial and archaeal populations. The ammonia adaptation was concurrent with the archaeal population shift from Methanosaeta to Methanosarcina and Methanobacterium. The dominancy of Clostridia in bacterial population was found in the recovered phase. It is highly recommended to use an inoculum acclimated to a target ammonia level which can be pre-checked by ATA and to secure a start-up period for ammonia adaptation in the field application of anaerobic digestion for swine manure.
Collapse
Affiliation(s)
- Yura Jo
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Roent Dune A Cayetano
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Gi-Beom Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jungsu Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
19
|
Adeniyi A, Bello I, Mukaila T, Hammed A. A Review of Microbial Molecular Profiling during Biomass Valorization. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Zhang D, Wei Y, Wu S, Zhou L. Consolidation of hydrogenotrophic methanogenesis by sulfidated nanoscale zero-valent iron in the anaerobic digestion of food waste upon ammonia stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153531. [PMID: 35104513 DOI: 10.1016/j.scitotenv.2022.153531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The feasibility of adding sulfidated nanoscale zero-valent iron (S-nZVI) into anaerobic systems to improve anaerobic digestion of food waste (FW) under ammonia stress was evaluated in this study. The addition of S-nZVI improved the methane production compared to nanoscale zero-valent iron (nZVI), indicating that sulfidation significantly reinforced the enhancement effect of nZVI in consolidating the hydrogenotrophic methanogenesis. The promoted methanogenic performance was associated with chemical reaction and variances of microbial community induced by S-nZVI. With the characteristics of generation of Fe2+ and slow-release of H2, S-nZVI made the anaerobic system respond positively in facilitating extracellular polymeric substances secretion and optimizing the microbial community structure. Moreover, microbial community analysis showed that S-nZVI addition enriched the species related to biohydrogen production (e.g., Prevotella) and ammonia-tolerant hydrogenotrophic methanogenesis (e.g., Methanoculleus), possibly enhancing the hydrogenotrophic methanogenesis pathway to accelerate methane production. Therefore, adding S-nZVI into the anaerobic systems might propose a feasible engineering strategy to improve the methanogenic performance of the anaerobic digestion of FW upon ammonia stress.
Collapse
Affiliation(s)
- Dejin Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yidan Wei
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shuyue Wu
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
21
|
Wood Biochar Enhances the Valorisation of the Anaerobic Digestion of Chicken Manure. CLEAN TECHNOLOGIES 2022. [DOI: 10.3390/cleantechnol4020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, the efficacy of biochar to mitigate ammonia stress and improve methane production is investigated. Chicken manure (CM) was subjected to high-solid mesophilic anaerobic digestion (15% total solid content) with wood biochar (BC). Wood biochar was further treated using HNO3 and NaOH to produce acid–alkali-treated wood biochar (TBC), with an improvement in its overall ammonium adsorption capacity and porosity. Three treatments were loaded in triplicate into the digesters, without biochar, with biochar and with acid–alkali-treated biochar and maintained at 37 °C for 110 days. The study found a significant improvement in CH4 formation kinetics via enhanced substrate degradation, leading to CH4 production of 74.7 mL g−1 VS and 70.1 mL g−1 VS by BC and TBC treatments, compared to 39.5 mL g−1 VS by control treatments on the 28th day, respectively. However, only the use of TBC was able to prolong methane production during the semi-inhibition phase. The use of TBC also resulted in the highest removal of total ammonia nitrogen (TAN) of 86.3%. In addition, the treatment with TBC preserved the highest microbial biomass at day 110. The presence of TBC also resulted in an increase in electrical conductivity, possibly promoting DIET-mediated methanogenesis. Overall, the acid–alkali treatment of biochar can be a novel approach to improve biochar’s existing characteristics for its utilisation as an additive in anaerobic digestion.
Collapse
|
22
|
Behera B, Selvam S M, Paramasivan B. Research trends and market opportunities of microalgal biorefinery technologies from circular bioeconomy perspectives. BIORESOURCE TECHNOLOGY 2022; 351:127038. [PMID: 35331886 DOI: 10.1016/j.biortech.2022.127038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 05/16/2023]
Abstract
Microalgae as an alternative feedstock for sustainable bio-products have gained significant interest over years. Even though scientific productivity related to microalgae-based research has increased in recent decades, translation to industrial scale is still lacking. Therefore, it is essential to understand the current state-of-art and, identify research gaps and hotspots driving industrial scale up. The present review through scientometric analysis attempted to delineate the research evolution contributing to this emerging field. The research trends were analysed over the last decade globally highlighting the collaborative network between the countries. The comprehensive knowledge map generated confirmed microalgal biorefinery as a scientifically active field, where the present research interest is focussed on synergistically integrating the unit processes involved to make it enviro-economically feasible. Market opportunities and regulatory policy requirements along with the consensus need to adopt circular bio-economy perspectives were highlighted to facilitate real-time implementation of microalgal biorefinery.
Collapse
Affiliation(s)
- Bunushree Behera
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India.
| | - Mari Selvam S
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Balasubramanian Paramasivan
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| |
Collapse
|
23
|
Lim EY, Lee JTE, Zhang L, Tian H, Ong KC, Tio ZK, Zhang J, Tong YW. Abrogating the inhibitory effects of volatile fatty acids and ammonia in overloaded food waste anaerobic digesters via the supplementation of nano-zero valent iron modified biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152968. [PMID: 35016943 DOI: 10.1016/j.scitotenv.2022.152968] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The effects of different recovery strategies on inhibited anaerobic digestion (AD) of food waste (FW) was examined in this study, with the finding that dosing pine woodchip biochar could reverse the effect of volatile fatty acids (VFA) inhibition (mainly propionic acid) and yielded 105.55% more methane than the control. The addition of nano-zerovalent iron (nZVI) promoted the generation of VFA while causing a slight inhibition of the methanogens initially. In due time, the nZVI digester was able to recover and eventually produced 192.22% more methane compared to the control. Finally, nZVI-modified biochar was proved to be able to avoid the inhibitory effects brought about by the nanoparticles. The results indicated reduced dosage requirements as compared to using pristine pine woodchip biochar and accumulated 204.84% more methane than the control. The introduction of nZVI-biochar also promoted the growth of Methanosarcina species methanogens, which can perform direct-interspecies electron transfer. While all the recovery strategies using the additives were feasible, the results suggested that the use of modified biochar holds great potential as a significantly lower amount of amendment is required for the recovery of the inhibited AD system.
Collapse
Affiliation(s)
- Ee Yang Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, S117576, Singapore
| | - Jonathan Tian En Lee
- NUS Environment Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Le Zhang
- NUS Environment Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Hailin Tian
- NUS Environment Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Kok Chung Ong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, S117576, Singapore
| | - Zhi Kai Tio
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, S117576, Singapore
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Yen Wah Tong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, S117576, Singapore; NUS Environment Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore.
| |
Collapse
|
24
|
Simegn W, Dagnew B, Dagne H. Health professionals’ practice to care cytotoxic drug handling and associated factors: The case of university of gondar specialized hospital. J Oncol Pharm Pract 2022:10781552221090200. [DOI: 10.1177/10781552221090200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Health care professionals are potential to be in contact with cytotoxic drugs during their daily work activities. The study aimed to assess the practice of health professionals to care for cytotoxic drugs and associated factors in the University of Gondar Specialized Hospital. Methods Cross-sectional study design was employed. EPI Info 7 was used for data entry and then exported into SPSS 20 for statistical analysis. Frequencies and mean with standard deviation were computed. Logistic regression had been performed to find out associated factors. Crude’ and adjusted Odds’ ratio with 95% uncertainty interval was done. Variables with a p < 0.05 were declared as significant factors for practice of cytotoxic drug handling. Results The study used four-hundred and twelve health professionals took part in the study with 97.4% response rate. The mean age of study participants was 29.9 years ranging from 20–60 years and twenty (53.4%) participants were males. One hundred and fifty-five (37.6%) health professionals had good cytotoxic drug handling practice. Attending an average of 4–9 patients per day (AOR = 2.12, 95% CI: 1.05, 4.22), Medium work stress (AOR = 2.01, 95% CI: 1.04, 3.90), availability of cytotoxic drug handling manual (AOR = 2.51: 95% CI: 1.22, 5.12), and good knowledge (AOR = 4.09, 95% CI: 2.35, 7.11) were significantly associated with cytotoxic drug handling practice. Conclusion The practice of cytotoxic drug handling care was low. It demands the engagement of the health sector to avert such inadequate practice and has to focus on delivering knowledge and logistics for the practice of cytotoxic drug handling.
Collapse
Affiliation(s)
- Wudneh Simegn
- Department of Social and Administrative Pharmacy, School of pharmacy, University of Gondar, Gondar, Ethiopia
| | - Baye Dagnew
- Department of Human Physiology, School of Medicine, University of Gondar, Gondar, Ethiopia
| | - Henok Dagne
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
25
|
Gao M, Yang J, Li S, Liu S, Xu X, Liu F, Gu L. Effects of incineration leachate on anaerobic digestion of excess sludge and the related mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114831. [PMID: 35255325 DOI: 10.1016/j.jenvman.2022.114831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion (AD) refers to a reliable channel for energy recovery from organics. However, the digestion efficiency of excess sludge (ES) has been unsatisfactory since there are defects relating to ES hydrolysis. Therefore, this study explored a method to improve the anaerobic digestion of ES, which could simultaneously treat ES and incineration leachate, and revealed the potential mechanism of AD process. As the investigation was conducted on the influences exerted by incineration leachate on the four phases (i.e., solubilization, methanogenesis, acidogenesis and hydrolysis) of ES anaerobic digestion, and the effect mechanism. According to obtained results, adding appropriate amounts of incineration leachate could facilitate the steps of solubilization, hydrolysis, acidogenesis and methanogenesis of ES. The hydrolysis and acidogenesis efficiency in the leachate added digesters were 5.7%-17.1% and 13%-45% higher than that of the control digester, respectively. Meanwhile, cumulative methane yields (CMY) were 27-86 mL/gVS higher than that in the control digester. Besides, the sludge floc stability was reduced by the leachate with the decrease in the median particle size (MPS) and apparent activation energy (AAE) of the sludge. According to microbial community and diversity analysis, adding incineration leachate increased the relative abundance of hydrolytic-acidification bacteria in the digesters and the relative abundance of Methanosaeta and Methanosarcina. Thus, the digestive performance exhibited by the leachate participated system was improved. These mentioned findings may provide an approach for treating ES and incineration leachate in practical engineering.
Collapse
Affiliation(s)
- Meng Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Jiahui Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Siqi Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Sinan Liu
- Chongqing Sino-French Tangjiatuo Sewage Treatment Co., Ltd, Chongqing, 400045, PR China
| | - Xiaofeng Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Feng Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.
| |
Collapse
|
26
|
Microbial Activity during Composting and Plant Growth Impact: A Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replacing harmful chemical pesticides with compost extracts is steadily gaining attention, offering an effective way for plant growth enhancement and disease management. Food waste has been a major issue globally due to its negative effects on the environment and human health. The methane and other harmful organisms released from the untreated waste have been identified as causes of this issue. Soil bacteria impart a very important role in biogeochemical cycles. The interactions between plants and bacteria in the rhizosphere are some of the factors that determine the health and fertility of the soil. Free-living soil bacteria are known to promote plant growth through colonizing the plant root. PGPR (Plant Growth Promoting Rhizobacteria) inoculants in compost are being commercialized as they help in the improvement of crop growth yield and provide safeguard and resistance to crops from disease. Our focus is to understand the mechanism of this natural, wet waste recycling process and implementation of a sustainable operative adaptation with microbial association to ameliorate the waste recycling system.
Collapse
|
27
|
Yan Y, Yan M, Ravenni G, Angelidaki I, Fu D, Fotidis IA. Novel bioaugmentation strategy boosted with biochar to alleviate ammonia toxicity in continuous biomethanation. BIORESOURCE TECHNOLOGY 2022; 343:126146. [PMID: 34673199 DOI: 10.1016/j.biortech.2021.126146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
This study investigated for the first time if ammonia tolerant methanogenic consortia can be stored in gel (biogel) and used in a later time on-demand as bioaugmentation inocula, to efficiently relieve ammonia inhibition in continuous biomethanation systems. Moreover, wood biochar was assessed as a potential enhancer of the novel biogel bioaugmentation process. Three thermophilic (55 °C), continuous stirred-tank reactors (RBgel, RChar and RMix), operated at 4.5 g NH4+-N L-1 were exposed to biogel, biochar and mixture of biogel and biochar, respectively, while a fourth reactor (RCtrl) was used as control. The results showed that the methane production yields of RMix, RChar and RBgel increased by 28.6%, 20.2% and 10.7%, respectively compared to RCtrl. The highest methane yield was achieved by the synergistic interaction between biogel and biochar. Additionally, biogel stimulated a rapid recovery of Methanoculleus thermophilus sp. and syntrophic acetate oxidising bacteria populations.
Collapse
Affiliation(s)
- Yixin Yan
- School of Civil Engineering Southeast University, 210096, Nanjing, China; Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800, Kgs. Lyngby, Denmark
| | - Miao Yan
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800, Kgs. Lyngby, Denmark; NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore
| | - Giulia Ravenni
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 313, 4000, Roskilde, Denmark
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Dafang Fu
- School of Civil Engineering Southeast University, 210096, Nanjing, China
| | - Ioannis A Fotidis
- School of Civil Engineering Southeast University, 210096, Nanjing, China; Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland; Faculty of Environment, Ionian University, 29100, Zakynthos, Greece.
| |
Collapse
|
28
|
Han Y, Agyeman F, Green H, Tao W. Stable, high-rate anaerobic digestion through vacuum stripping of digestate. BIORESOURCE TECHNOLOGY 2022; 343:126133. [PMID: 34655785 DOI: 10.1016/j.biortech.2021.126133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
This study coupled anaerobic digestion with vacuum stripping to achieve stable digestion at higher organic loading rates. Besides mitigation of ammonia inhibition, vacuum stripping of digestate improves solids solubilization and dewaterability due to vacuum-enhanced low-temperature thermal and mild-alkaline treatment under the vacuum stripping conditions (65 °C, 25-27 kPa, and pH 9). Batch vacuum stripping for 8 h removed 97.4-99.4% of ammonia, increased the dissolved fraction of volatile solids (VS) by 72.5%, and improved dewaterability with 30% decreases in time-to-filter and viscosity. The digesters having 2.9% of digestate replaced daily by vacuum stripped digestate were stable up to organic loading rate of 4.3 g-VS/Lreactor/d with biogas production at 3.15 L/Lreactor/d, while the digesters without stripping attained biogas production of 1.90 L/Lreactor/d at its highest stable organic loading rate of 2.5 g-VS/Lreactor/d. Acetoclastic Methanosaeta were the dominant methanogens, which became more resistant to ammonia stress in the digesters with vacuum stripping.
Collapse
Affiliation(s)
- Youl Han
- Department of Environmental Resources Engineering, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Fred Agyeman
- Department of Environmental Resources Engineering, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Hyatt Green
- Department of Environmental Biology, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Wendong Tao
- Department of Environmental Resources Engineering, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, USA.
| |
Collapse
|
29
|
Thanarasu A, Periyasamy K, Subramanian S. An integrated anaerobic digestion and microbial electrolysis system for the enhancement of methane production from organic waste: Fundamentals, innovative design and scale-up deliberation. CHEMOSPHERE 2022; 287:131886. [PMID: 34523450 DOI: 10.1016/j.chemosphere.2021.131886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/19/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
In the foreseeable future, renewable energy generation from electromethanogenesis to be more cost-effective energy. Electromethanogenesis system is a recent and efficient CO2 to methane technology to upgrade biogas to 100% methane for power generation. And this can be attained through by integrating anaerobic digestion with microbial electrolysis system. Microbial electrolysis system can able to support carbon reduction on cathode and oxidation on anode by CO2 capture thereby provides more CH4 production from an integrated anaerobic digestion system. Scale-up the recent advance technique of microbial electrolysis system in the anaerobic digestion process for 100% methane production for power generation is need of the hour. The overall objective of this review is to facilitate the recent technology of microbial electrolysis system in the anaerobic digestion process. At first, the function of electromethanogenesis system and innovative integrated design method are outlined. Secondly, different external parameters such as applied voltage, operating temperature, pH etc are examined for the significance on process optimization. Eventually, electrode selections, electrode spacing, surface chemistry and surface area are critically reviewed for the scale-up considerations of integration process.
Collapse
Affiliation(s)
- Amudha Thanarasu
- Department of Applied Science & Technology, AC Tech Campus, Anna University, Chennai, India
| | - Karthik Periyasamy
- Department of Applied Science & Technology, AC Tech Campus, Anna University, Chennai, India
| | - Sivanesan Subramanian
- Department of Applied Science & Technology, AC Tech Campus, Anna University, Chennai, India.
| |
Collapse
|
30
|
Llamas M, Greses S, Tomás-Pejó E, González-Fernández C. Carboxylic acids production via anaerobic fermentation: Microbial communities' responses to stepwise and direct hydraulic retention time decrease. BIORESOURCE TECHNOLOGY 2022; 344:126282. [PMID: 34752887 DOI: 10.1016/j.biortech.2021.126282] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 05/11/2023]
Abstract
Carboxylic acids, traditionally produced from fossil fuels, might be generated from renewable biomass resources via anaerobic fermentation. Considering that the microbial activity of this bioprocess is ruled by the imposed hydraulic retention time (HRT), this investigation explored the relationship between process stability and microbial community. Stepwise and direct HRT reduction strategies were assessed in terms of waste bioconversion into volatile fatty acids (VFAs). Microbial community dynamics revealed a microbial specialization along the HRT decrease. The direct implementation of low HRT resulted in drastic microbial fluctuations, leading to process failure at HRT below 6 days. Stepwise strategy for HRT reduction favored microbial adaptation, supporting maximum bioconversions efficiencies (32 % VFACOD/tCODin) at low HRT values (HRT 4 days). Microbial similarity analysis revealed Clostridiales, Lactobacillales and Bacteroidales orders as keystone microorganisms involved in VFAs production, being responsible for protein degradation and propionic acid accumulation.
Collapse
Affiliation(s)
- Mercedes Llamas
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
| | - Silvia Greses
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
| | - Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
| | | |
Collapse
|
31
|
Zhang D, Wei Y, Wu S, Zhou L. Rapid initiation of methanogenesis in the anaerobic digestion of food waste by acclimatizing sludge with sulfidated nanoscale zerovalent iron. BIORESOURCE TECHNOLOGY 2021; 341:125805. [PMID: 34438284 DOI: 10.1016/j.biortech.2021.125805] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Although coupling of sulfidated nanoscale zero-valent iron (S-nZVI) into anaerobic digestion of food waste (FW) for improving methanogenesis has been reported, the specific role of S-nZVI during start-up process and its influence on subsequent methanogenesis and system stability remains unknown. In this study, S-nZVI was added into the unacclimatized sludge system to investigate its influence on microbial acclimatization and methanogenic performance. During acclimatization phase, CH4 production improved and VFAs transformation facilitated with the addition of S-nZVI. Furthermore, enzymatic activity analysis and electrochemical measurements presented direct evidence that electron transfer capacity of acclimatized sludge was significantly improved. S-nZVI favored the transition of microbial community to a robust and specialized population. During evaluation phase, acclimatized sludge still exhibited strong methanogenic ability, but the microbial community inevitably changed under the stress of FW. This research provides a novel perspective on initiating anaerobic digestion of FW for shorter start-up time and stronger methanogenesis.
Collapse
Affiliation(s)
- Dejin Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yidan Wei
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shuyue Wu
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
32
|
Xu RZ, Fang S, Zhang L, Huang W, Shao Q, Fang F, Feng Q, Cao J, Luo J. Distribution patterns of functional microbial community in anaerobic digesters under different operational circumstances: A review. BIORESOURCE TECHNOLOGY 2021; 341:125823. [PMID: 34454239 DOI: 10.1016/j.biortech.2021.125823] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) processes are promising to effectively recover resources from organic wastes or wastewater. As a microbial-driven process, the functional anaerobic species played critical roles in AD. However, the lack of effective understanding of the correlations of varying microbial communities with different operational factors hinders the microbial regulation to improve the AD performance. In this paper, the main anaerobic functional microorganisms involved in different stages of AD processes were first demonstrated. Then, the response of anaerobic microbial community to different operating parameters, exogenous interfering substances and digestion substrates, as well as the digestion efficiency, were discussed. Finally, the research gaps and future directions on the understanding of functional microorganisms in AD were proposed. This review provides insightful knowledge of distribution patterns of functional microbial community in anaerobic digesters, and gives critical guidance to regulate and enrich specific functional microorganisms to accumulate certain AD products.
Collapse
Affiliation(s)
- Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Le Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qianqi Shao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
33
|
Scheliga CG, Teixeira CMLL, da Costa Marques Calderari MR. Evaluation of strategies to enhance ammoniacal nitrogen tolerance by cyanobacteria. World J Microbiol Biotechnol 2021; 38:7. [PMID: 34837108 DOI: 10.1007/s11274-021-03189-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/14/2021] [Indexed: 11/28/2022]
Abstract
In anaerobic digestion of agro-industrial effluents and livestock wastes, concentrations of ammoniacal nitrogen above 800 mg L-1 are reported to lead to the eutrophication of water bodies. Through the metabolic versatility of microalgae, this nitrogen source can be used and removed, producing carotenoids, phycobiliproteins, polyhydroxyalkanoates, and fatty acids of industrial interest. The challenge of making it feasible is the toxicity of ammoniacal nitrogen to microalgae. Therefore, three strategies were evaluated. The first one was to find species of cyanobacteria with high ammoniacal nitrogen removal efficiency comparing Arthrospira platensis, Synechocystis D202, and Spirulina labyrinthiformis cultivations. The most promising species was cultivated in the second strategy, where cell acclimatization and increasing of the inoculum were evaluated. The cultivation condition that culminated in the best efficiency of ammoniacal nitrogen removal was combined with the third strategy, which consisted of conducting the fed-batch bioprocess. In the batch mode, ammoniacal nitrogen was supplied only once in one fed and was present in high initial concentrations. In fed-batch, multiple feedings with low concentrations of ammoniacal nitrogen were used to decrease the inhibitory effect of ammoniacal nitrogen. Arthrospira platensis showed high potential for ammoniacal nitrogen removal. Using the highest initial cell concentration of Arthrospira platensis cultivated by fed-batch, an increase in the consumption of NH3 to 165.1 ± 1.8 mg L-1 and an ammoniacal nitrogen removal efficiency close to 90% were observed. Under this condition, 180.52 ± 11.67 mg g-1 of phycocyanin was attained. Also, the fed-batch cultivations have the potential to reduce the biomass cost production by 33% in comparison to batch experiments.
Collapse
Affiliation(s)
- Camylle Guimarães Scheliga
- Laboratório de Biotecnologia de Microalgas, Divisão de Energia, Instituto Nacional de Tecnologia, Av. Venezuela, 82, Sala 716, Rio de Janeiro, RJ, 20081-312, Brasil.,Centro de Ciências e Tecnologia, Instituto de Química, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524 PHLC Sala 109-Central Analítica Fernanda Coutinho, Maracanã, Rio de Janeiro, RJ, 20550013, Brasil
| | - Cláudia Maria Luz Lapa Teixeira
- Laboratório de Biotecnologia de Microalgas, Divisão de Energia, Instituto Nacional de Tecnologia, Av. Venezuela, 82, Sala 716, Rio de Janeiro, RJ, 20081-312, Brasil
| | - Mônica Regina da Costa Marques Calderari
- Centro de Ciências e Tecnologia, Instituto de Química, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524 PHLC Sala 109-Central Analítica Fernanda Coutinho, Maracanã, Rio de Janeiro, RJ, 20550013, Brasil.
| |
Collapse
|
34
|
Zhang W, Alessi AM, Heaven S, Chong JPJ, Banks CJ. Dynamic changes in anaerobic digester metabolic pathways and microbial populations during acclimatisation to increasing ammonium concentrations. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 135:409-419. [PMID: 34619622 DOI: 10.1016/j.wasman.2021.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Transitions in microbial community structure in response to increasing ammonia concentrations were determined by monitoring mesophilic anaerobic digesters seeded with a predominantly acetoclastic methanogenic community from a sewage sludge digester. Ammonia concentration was raised by switching the feed to source segregated domestic food waste and applying two organic loading rates (OLR) and hydraulic retention times (HRT) in paired digesters. One of each pair was dosed with trace elements (TE) known to be essential to the transition, with the other unsupplemented digester acting as a control. Samples taken during the trial were used to determine the metabolic pathway to methanogenesis using 14C labelled acetate. Partitioning of 14C between the product gases was interpreted via an equation to indicate the proportion produced by acetoclastic and hydrogenotrophic routes. Archaeal and selected bacterial groups were identified by 16S rRNA sequencing, to determine relative abundance and diversity. Acclimatisation for digesters with TE was relatively smooth, but OLR and HRT influenced both metabolic route and community structure. The 14C ratio could be used quantitatively and, when interpreted alongside archaeal community structure, showed that at longer HRT and lower loading Methanobacteriaceae were dominant and hydrogenotrophic activity accounted for 77% of methane production. At the higher OLR and shorter HRT, Methanosarcinaceae were dominant with the 14C ratio indicating simultaneous production of methane by acetoclastic and hydrogenotrophic pathways: the first reported observation of this in digestion under mesophilic conditions. Digesters without TE supplementation showed similar initial changes but, as expected failed to complete the transition to stable operation.
Collapse
Affiliation(s)
- Wei Zhang
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Anna M Alessi
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK; Biorenewables Development Centre Ltd., 1 Hassacarr Close, Chessingham Park, Dunnington, York YO19 5SN, UK
| | - Sonia Heaven
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | - James P J Chong
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Charles J Banks
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
35
|
Chapleur O, Poirier S, Guenne A, Lê Cao KA. Time-course analysis of metabolomic and microbial responses in anaerobic digesters exposed to ammonia. CHEMOSPHERE 2021; 283:131309. [PMID: 34467946 DOI: 10.1016/j.chemosphere.2021.131309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/01/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Omics longitudinal studies are effective experimental designs to inform on the stability and dynamics of microbial communities in response to perturbations, but time-course analytical frameworks are required to fully exploit the temporal information acquired in this context. In this study we investigate the influence of ammonia on the stability of anaerobic digestion (AD) microbiome with a new statistical framework. Ammonia can severely reduce AD performance. Understanding how it affects microbial communities development and the degradation progress is a key operational issue to propose more stable processes. Thirty batch digesters were set-up with different levels of ammonia. Microbial community structure and metabolomic profiles were monitored with 16 S-metabarcoding and GCMS (gas-chromatography-mass-spectrometry). Digesters were first grouped according to similar degradation performances. Within each group, time profiles of OTUs and metabolites were modelled, then clustered into similar time trajectories, evidencing for example a syntrophic interaction between Syntrophomonas and Methanoculleus that was maintained up to 387 mg FAN/L. Metabolites resulting from organic matter fermentation, such as dehydroabietic or phytanic acid, decreased with increasing ammonia levels. Our analytical framework enabled to fully account for time variability and integrate this parameter in data analysis.
Collapse
Affiliation(s)
- Olivier Chapleur
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France.
| | - Simon Poirier
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France.
| | - Angéline Guenne
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement, 92761, Antony, France.
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics and the School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
36
|
Llamas M, Greses S, Tomás-Pejó E, González-Fernández C. Tuning microbial community in non-conventional two-stage anaerobic bioprocess for microalgae biomass valorization into targeted bioproducts. BIORESOURCE TECHNOLOGY 2021; 337:125387. [PMID: 34134053 DOI: 10.1016/j.biortech.2021.125387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Unspecific microorganisms consortia are normally used in anaerobic biodegradation of solid wastes. However, these consortia can be tuned to optimally obtain determined bioproducts. In this study, high value-added products and biogas were obtained via an innovative two-stage anaerobic bioprocess from microalgae biomass. The anaerobic fermentation (AF) entailed the production of short-chain fatty acids (SCFAs) and subsequently, only the solid spent of AF effluent was valorized for methane production via conventional anaerobic digestion (AD). Applied conditions in AF (25 °C, HRT 8 days) favored Firmicutes predominance (64%) enabling a conversion efficiency of 32.1% g SCFAs-COD/g CODin. Opposite, a wider microbial biodiversity was determined in the AD reactor (35 °C, HRT 20 days), being mainly composed by Firmicutes (28.6%), Euryarchaeota (17.7%) and Proteobacteria (15.3%). AD of the AF-solid spent reached 168.9 mL CH4 /g CODin. Strikingly, operational conditions imposed mediated a microbial specialization that maximized product output.
Collapse
Affiliation(s)
- Mercedes Llamas
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
| | - Silvia Greses
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
| | - Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
| | | |
Collapse
|
37
|
Quispe-Cardenas E, Rogers S. Microbial adaptation and response to high ammonia concentrations and precipitates during anaerobic digestion under psychrophilic and mesophilic conditions. WATER RESEARCH 2021; 204:117596. [PMID: 34530226 DOI: 10.1016/j.watres.2021.117596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/19/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
This study explored microbial adaptation to high ammonia concentrations (<1000 mg/L to 4000 mg/L) during anaerobic digestion (AD) under psychrophilic and mesophilic conditions, the latter of which yielded precipitates facilitating investigation of microbial response. The experimental setup was performed at bench-scale using microbial consortia from four different operating anaerobic digesters treating different organic wastes (WW-wastewater sludge, MN-manure, FW- food waste and CO-co-digestion (FW & MN)). Adaptation experiments were conducted with semi-continuous flow mode to resemble large-scale operation. Metagenome and 16S RNA analysis were performed for the first time in a psychrophilic reactor during an ammonia acclimation process. These analyses were also performed in mesophilic reactor exposed to precipitates and high ammonia levels. Diversity reduced when adaptation occurred successfully from 1.1 to 4 g/L of total ammonia nitrogen (TAN) under psychrophilic conditions, while the microbial community became more diverse under mesophilic conditions with ammonia inhibition. We report for the first time Methanocorposculum as a robust hydrogenotrophic methanogen at high ammoniacal concentrations under psychrophilic conditions. Additionally, Methanosarcina was present in low and high ammoniacal concentrations in mesophilic conditions, but there was a shift in species dominance. Methanosarcina barkeri stands out as a more resilient methanogen compared to Methanosarcina mazei, which initially dominated at <1.1 g/L TAN. We also explored the effects of sudden precipitates on methanogenic communities and methane production when they occurred under mesophilic conditions in two reactors. Methane production declined by more than 50% when precipitates occurred and was accompanied by pH reduction and VFA accumulation. Diversity data corroborated that methanogens were severely reduced. These two reactors were not able to recover with 50 days of added operation, demonstrating potential for long-term negative impacts of precipitate formation on AD performance stemming from negative impact to methanogenic communities.
Collapse
Affiliation(s)
| | - Shane Rogers
- Institute for a Sustainable Environment, Clarkson University, Potsdam 13699, NY, USA; Civil and Environmental Engineering, Clarkson University, Potsdam 13699, NY, USA.
| |
Collapse
|
38
|
Gao M, Li S, Zou H, Wen F, Cai A, Zhu R, Tian W, Shi D, Chai H, Gu L. Aged landfill leachate enhances anaerobic digestion of waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112853. [PMID: 34044237 DOI: 10.1016/j.jenvman.2021.112853] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) is considered as a sustainable pathway to recover energy from organic wastes, but the digestive efficiency for waste activated sludge (WAS) is not as expected due to the limitations in WAS hydrolysis. This study proposes an effective strategy to simultaneously treat WAS and landfill leachate, aiming to promote WAS hydrolysis and enhance organics converting to methane. The effects of landfill leachate on the four stages (i.e., solubilization, hydrolysis, acidogenesis, and methanogenesis) of AD of WAS, as well as the effect mechanisms were investigated. Results showed that adding appropriate amounts of landfill leachate could promote the steps of solubilization, hydrolysis and acidogenesis of WAS, but had no-effect on methanogenesis. The hydrolysis and acidogenesis efficiency in the leachate added digesters were 2.0%-8.4% and 35.2%-72.7% higher than the control digester. Mechanism studies indicated that humic acid (HA) contained in the leachate was conducive to the processes of both hydrolysis and acidogenesis, but detrimental to the methanogenesis. Effects of heavy metals (HMs) on AD of WAS was also dose-dependent. Digestive performance was inhibited by excessive HMs but promoted by moderate dosages. Humic acid and metal ions tend to interact to form complexes, and thus relieve their each inhibition effects. It is also found that the stability of sludge flocs was reduced by the leachate through reducing both apparent activation energy (AAE) and median particle size (MPS) of the sludge. Microbial community and diversity results revealed that the relative abundance of microbes responsible for hydrolysis and acidogenesis increased when landfill leachate was present. This research provides a more technically and economically feasible approach to co-treating and co-utilizing WAS and landfill leachate.
Collapse
Affiliation(s)
- Meng Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Siqi Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Huijing Zou
- Hunan Architectural Design Institute Co., Ltd, Hunan, 410125, PR China
| | - Fushan Wen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Anrong Cai
- Chongqing Yuxi Water Co., Ltd, Chongqing, 400045, PR China
| | - Ruilin Zhu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Wenjing Tian
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Dezhi Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Hongxiang Chai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.
| |
Collapse
|
39
|
Lee J, Kim E, Hwang S. Effects of inhibitions by sodium ion and ammonia and different inocula on acetate-utilizing methanogenesis: Methanogenic activity and succession of methanogens. BIORESOURCE TECHNOLOGY 2021; 334:125202. [PMID: 33957457 DOI: 10.1016/j.biortech.2021.125202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Acetate-fed anaerobic sequential batch experiments with four different inhibitory conditions (non-inhibitory (Lo), sodium-ion inhibitory (Na), ammonia inhibitory (Am), combined inhibitory (Hi)) were conducted using thirteen different inocula to investigate the inhibition effects by sodium-ion and ammonia and different inocula on acetate-utilizing methanogenesis and succession of methanogens. Sodium-ion and ammonia significantly extended lag-time λ and reduced specific-methanogenic-activity RCH4, and caused synergistic inhibition. The inhibition differed according to the initial methanogen community structures: the inhibition effects on λ and RCH4 were strongest ininocula with Methanosaeta concilii dominant and weakest in inocula with Methanoculleus bourgensis dominant. These inhibitory conditions determined the succession of methanogens: the most competitive methanogens were Methanosaeta concilii in Lo, Methanosarcina sp. in Na, Methanosarcina sp. and Methanoculleus bourgensis in Am, Methanoculleus bourgensis in Hi. This study provides valuable information for microbial management and optimization for AD processes treating wastewater that is rich in protein and/or salt.
Collapse
Affiliation(s)
- Joonyeob Lee
- Department of Environmental Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Eunji Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seokhwan Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
40
|
Wang Q, Yu Z, Wei D, Chen W, Xie J. Mixotrophic Chlorella pyrenoidosa as cell factory for ultrahigh-efficient removal of ammonium from catalyzer wastewater with valuable algal biomass coproduction through short-time acclimation. BIORESOURCE TECHNOLOGY 2021; 333:125151. [PMID: 33892430 DOI: 10.1016/j.biortech.2021.125151] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
To achieve ultrahigh-efficient ammonium removal and valuable biomass coproduction, Chlorella-mediated short-time acclimation was implemented in photo-fermentation. The results demonstrated short-time acclimation of mixotrophic Chlorella pyrenoidosa could significantly improve NH4+ removal and biomass production in shake flasks. After acclimation through two batch cultures in 5-L photo-fermenter, the maximum NH4+ removal rate (1,400 mg L-1 d-1) were achieved under high NH4+ level (4,750 mg L-1) in batch 3. In 50-L photo-fermenter, through one batch acclimated culture, the maximum NH4+ removal rate (2,212 mg L-1 d-1) and biomass concentration (58.4 g L-1) were achieved in batch 2, with the highest productivities of protein (5.56 g L-1 d-1) and total lipids (5.66 g L-1 d-1). The hypothetical pathway of nutrients assimilation in mixotrophic cells as cell factory was proposed with detailed discussion. This study provided a novel strategy for high-ammonium wastewater treatment without dilution, facilitating the algae-based "waste-to-treasure" bioconversion process for green manufacturing.
Collapse
Affiliation(s)
- Qingke Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zongyi Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dong Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou, China.
| | - Weining Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Chinese Academy of Fishery Sciences Pearl River Fisheries Research Institute, Guangzhou, China
| |
Collapse
|
41
|
Zheng X, Wang H, Yan Q, Zhang G, Chen C. Simultaneous nitrogen removal and methane production from Taihu blue algae against ammonia inhibition using integrated bioelectrochemical system (BES). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146144. [PMID: 33684748 DOI: 10.1016/j.scitotenv.2021.146144] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Simultaneous nitrogen removal and methane production using an integrated bioelectrochemical system (BES) during the anaerobic digestion (AD) process of Taihu blue algae were investigated. Upon an applied voltage of 0.4 V and total solids (TS) ratio of blue algae to anaerobic sludge as 1:1, the highest methanogenesis potential as 69.12 mL/g VS could be obtained, attaining 18.7 times of the TS ratio group of 3:1. Moreover, methane production of the integrated BES group reached 3.18 times of the AD group using conical flask, even with the same TS ratio (1:1) and initial ammonia nitrogen concentration (1000 mg NH4+-N/L). Apart from the bettered electrochemical performance, bio-augmented microbial genus responsible for acetoclastic methanogenesis, power generation, resisting to hostile circumstance, co-existence with hydrogenotrophic methanogens could all be enriched. Therefore, integrated BES with appropriate TS ratio under applied voltage might help offset both the ammonia and electrical stress, thereby to maintain enhanced biomethanation performance.
Collapse
Affiliation(s)
- Xiaoxiao Zheng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Han Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China..
| | - Guangsheng Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
42
|
Okoro-Shekwaga CK, Ross AB, Camargo-Valero MA. Enhanced in-situ biomethanation of food waste by sequential inoculum acclimation: Energy efficiency and carbon savings analysis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 130:12-22. [PMID: 34044360 DOI: 10.1016/j.wasman.2021.04.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
The increasing rate of food waste (FW) generation globally, makes it an attractive resource for renewable energy through anaerobic digestion (AD). The biogas recovered from AD can be upgraded by the methanation of internally produced carbon dioxide, CO2 with externally sourced hydrogen gas, H2 (biomethanation). In this work, H2 was added to AD reactors processing FW in three successive phases, with digestate from preceding phases recycled in succession with the addition of fresh inoculum to enhance acclimation. The concentration of H2 was increased for succeeding phases: 5%, 10% and 15% of the reactor headspace in Phase 1 (EH1), Phase 2 (EH2) and Phase 3 (EH3), respectively. The H2 utilisation rate and biomethane yields increased as acclimation progressed from EH1 through EH3. Biomethane yield from the controls: EH1_Control, EH2_Control and EH3_Control were 417.6, 435.4 and 453.3 NmL-CH4/gVSadded accounting for 64.8, 73.9 and 77.8% of the biogas respectively. And the biomethane yield from the test reactors EH1_Test, EH2_Test and EH3_Test were 468.3, 483.6, and 499.0 NmL-CH4/gVSadded, accounting for 77.2, 78.1 and 81.0% of the biogas respectively. A progressive in-situ biomethanation could lead to biomethane production that meets higher fuel standards for gas-to-grid (GtG) injections and vehicle fuel - i.e. >95% CH4. This would increase the energy yield and carbon savings compared to conventional biogas upgrade methods. For example, biogas upgrade for GtG by in-situ biomethanation could yield 7.3 MWh/tFW energy and 1343 kg-CO2e carbon savings, which is better than physicochemical upgrade options (i.e., 4.6-4.8 MWh/tFW energy yield and 846-883 kg-CO2e carbon savings).
Collapse
Affiliation(s)
- Cynthia Kusin Okoro-Shekwaga
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom; Department of Agricultural and Bioresources Engineering, Federal University of Technology, Minna P.M.B. 65, Niger State, Nigeria
| | - Andrew Barry Ross
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Miller Alonso Camargo-Valero
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom; Departamento de Ingeniería Química, Universidad Nacional de Colombia, Campus La Nubia, Manizales, Colombia.
| |
Collapse
|
43
|
Pasalari H, Gholami M, Rezaee A, Esrafili A, Farzadkia M. Perspectives on microbial community in anaerobic digestion with emphasis on environmental parameters: A systematic review. CHEMOSPHERE 2021; 270:128618. [PMID: 33121817 DOI: 10.1016/j.chemosphere.2020.128618] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 05/07/2023]
Abstract
This paper review is aiming to comprehensively identify and appraise the current available knowledge on microbial composition and microbial dynamics in anaerobic digestion with focus on the interconnections between operational parameters and microbial community. We systematically searched Scopus, Web of Science, pubmed and Embase (up to August 2019) with relative keywords to identify English-language studies published in peer-reviewed journals. The data and information on anaerobic reactor configurations, operational parameters such as pretreatment methods, temperature, trace elements, ammonia, organic loading rate, and feedstock composition and their association with the microbial community and microbial dynamics were extracted from eligible articles. Of 306 potential articles, 112 studies met the present review objectives and inclusion criteria. The results indicated that both aceticlastic and hydrogenotrophic methanogenesis are dominant in anaerobic digesters and their relative composition is depending on environmental conditions. However, hydrogenotrophic methanogens are more often observed in extreme conditions due to their higher robustness compared to aceticlastic methangoens. Firmicutes and Bacteroidetes phyla are most common fermentative bacteria of the acidogenic phase. These bacteria secrete lytic enzymes to degrade organic matters and are able to survive in extreme conditions and environments due to their spores. In addition, among archaea Methanosaeta, Methanobacterium, and Methanosarcinaceae are found at high relative abundance in anaerobic digesters operated with different operational parameters. Overall, understanding the shifts in microbial composition and diversity as results of operational parameters variation in anaerobic digestion process would improve the stability and process performance.
Collapse
Affiliation(s)
- Hasan Pasalari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Mitra Gholami
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Abbas Rezaee
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Esrafili
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, IR, Iran.
| |
Collapse
|
44
|
Rincón-Pérez J, Celis LB, Morales M, Alatriste-Mondragón F, Tapia-Rodríguez A, Razo-Flores E. Improvement of methane production at alkaline and neutral pH from anaerobic co-digestion of microalgal biomass and cheese whey. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107972] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Giménez-Lorang A, Vázquez-Padín JR, Dorado-Barragán C, Sánchez-Santos G, Vila-Armadas S, Flotats-Ripoll X. Treatment of the Supernatant of Anaerobically Digested Organic Fraction of Municipal Solid Waste in a Demo-Scale Mesophilic External Anaerobic Membrane Bioreactor. Front Bioeng Biotechnol 2021; 9:642747. [PMID: 33912547 PMCID: PMC8072359 DOI: 10.3389/fbioe.2021.642747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Conventional aerobic biological treatments of digested organic fraction of municipal solid waste (OFMSW) slurries-usually conventional activated sludge or aerobic membrane bioreactor (AeMBR)-are inefficient in terms of energy and economically costly because of the high aeration requirements and the high amount of produced sludge. In this study, the supernatant obtained after the anaerobic digestion of OFMSW was treated in a mesophilic demo-scale anaerobic membrane bioreactor (AnMBR) at cross flow velocities (CFVs) between 1 and 3.5 m⋅s-1. The aim was to determine the process performance of the system with an external ultrafiltration unit, in terms of organic matter removal and sludge filterability. In previous anaerobic continuous stirred tank reactor (CSTR) tests, without ultrafiltration, specific gas production between 40 and 83 NL CH4⋅kg-1 chemical oxygen demand (COD) fed and removals in the range of 10-20% total COD (tCOD) or 59-77% soluble COD (sCOD) were obtained, for organic loading rates (OLR) between 1.7 and 4.4 kg COD⋅m-3 reactor d-1. Data helped to identify a simplified model with the aim of understanding and expressing the process performance. Methane content in biogas was in the range of 74-77% v:v. In the AnMBR configuration, the COD removal has been in the ranges of 15.6-38.5 and 61.3-70.4% for total and sCOD, respectively, with a positive correlation between solids retention time (SRT, ranging from 7.3 to 24.3 days) and tCOD removal. The constant used in the model expressing inhibition, attributable to the high nitrogen content (3.6 ± 1.0 g N-NH4 +⋅L-1), indicated that this inhibition decreased when SRT increased, explaining values measured for volatile fatty acids concentration, which decreased when SRT increased and OLR, measured per unit of volatile suspended solids in the reactor, decreased. The alkalinity was high enough to allow a stable process throughout the experiments. Constant CFV operation resulted in excessive fouling and sudden trans-membrane pressure (TMP) increases. Nevertheless, an ultrafiltration regime based on alternation of CFV (20 min with a certain CFVi and then 5 min at CFVi + 1 m⋅s-1) allowed the membranes to filter at a flux (standardized at 20°C temperature) ranging from 2.8 to 7.3 L⋅m-2⋅h-1, over 331 days of operation, even at very high suspended solids concentrations (>30 g total suspended solids⋅L-1) in the reactor sludge. This flux range confirms that fouling is the main issue that can limit the spread of AnMBR potential for the studied stream. No clear correlation was found between CFV or SRT vs. fouling rate, in terms of either TMP⋅time-1 or permeability⋅time-1. As part of the demo-scale study, other operational limitations were observed: irreversible fouling, scaling (in the form of struvite deposition), ragging, and sludging. Because ragging and sludging were also observed in the existing AeMBR, it can be stated that both are attributable to the stream and to the difficulty of removing existing fibers. All the mentioned phenomena could have contributed to the high data dispersion of experimental results.
Collapse
Affiliation(s)
| | | | | | - Gloria Sánchez-Santos
- Direction of Prevention and Management Services of Área Metropolitana de Barcelona, Barcelona, Spain
| | - Sandra Vila-Armadas
- Direction of Prevention and Management Services of Área Metropolitana de Barcelona, Barcelona, Spain
| | - Xavier Flotats-Ripoll
- GIRO Joint Research Unit IRTA-UPC, Department of Agrifood Engineering and Biotechnology, Universitat Politècnica de Catalunya UPC-BarcelonaTECH, Barcelona, Spain
| |
Collapse
|
46
|
Wang J, Yang Z, Wang H, Wu S, Lu H, Wang X. Decomposition process of cefotaxime sodium from antibiotic wastewater by Up-flow Blanket Filter (UBF) reactor: Reactor performance, sludge characteristics and microbial community structure analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143670. [PMID: 33257062 DOI: 10.1016/j.scitotenv.2020.143670] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
In this study, a novel Up-flow Blanket Filter (UBF) reactor was applied to the degradation of antibiotic wastewater. The experiments showed that when the hydraulic retention time (HRT) was 24 h and the ratio of volatile fatty acids (VFA) to alkalinity (ALK) was 0.3, the best removal efficiency was achieved in the combined packing UBF reactor, and the COD removal efficiency reached 80.1%-84.6%, exhibiting a significant difference in reaction performance from the other two reactors (P < 0.05) and a good efficiency of cefotaxime sodium removal. Moreover, the microstructure and surface characteristics of the reactor fillers were studied through scanning electron microscope (SEM) analysis, which showed that three fillers all had biofilm adhesion, but the combined packing gave best performance. Energy dispersive spectrometer (EDS) tests indicated abundant element components in the combined packing. The particle size distribution of sludge was also considered in the experiment, and the result showed the particle size of sludge increased with the operation of the reactor. In addition, microbial community structures of sludge and biofilm with the combined packing were analyzed. High-throughput sequencing confirmed the existence of Pseudomonas, which had good adaptability to antibiotic wastewater and became the dominant bacteria. Decomposition process of cefotaxime sodium after hydrolysis and anaerobic treatment was analyzed through Fourier transform infrared spectroscopy (FTIR). The reactor, which is economical, exhibited favorable performance in degrading the pollutions in the antibiotic wastewater.
Collapse
Affiliation(s)
- Jia Wang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Zhinian Yang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Hao Wang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China.
| | - Shuangrong Wu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Huan Lu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Xingguo Wang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, PR China
| |
Collapse
|
47
|
Zheng Z, Cai Y, Zhang Y, Zhao Y, Gao Y, Cui Z, Hu Y, Wang X. The effects of C/N (10-25) on the relationship of substrates, metabolites, and microorganisms in "inhibited steady-state" of anaerobic digestion. WATER RESEARCH 2021; 188:116466. [PMID: 33027695 DOI: 10.1016/j.watres.2020.116466] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/04/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
The carbon/nitrogen ratio (C/N) is a key parameter that affects the performance of anaerobic digestion (AD). Recent AD research has focused on optimizing the C/N of feedstock. The so-called "inhibited steady-state" refers to a special state of ammonia inhibition of AD that often occurs at low-C/N (below 25) when degradable nitrogen-rich substrates, such as livestock manure, are used as feedstock. However, the mechanism behind the "inhibited steady-state" is still unknown. In the current study, co-digestion and recirculation were used to create a C/N gradient in the influent to explore the relationship between substrates, metabolites, and microorganisms in the "inhibited steady-state." Data were collected at the macro, microbial, and genetic levels. Three CSTRs were successfully made run into the "inhibited steady-state" using influent C/Ns of 10-12. Digestion performance levels of R10-R12 were low and stable, transitioning from an aceticlastic methane-producing pathway to a hydrogenotrophic pathway as the C/N gradually decreased. As the abundance of the hydrogenophilic methanogens increased, the abundance of syntrophic acetate-oxidizing bacteria (SAOB) also increased. The succession between populations of Methanosaeta and Methanosarcina may be used as a microbiological indicator of ammonia inhibition. Under high-C/Ns, cooperation among bacteria was high, while under low-C/Ns, competition among bacteria was high. These results clarify the processes underlying the "inhibited steady-state," which is a condition often faced in actual large-scale biogas facilities that use degradable nitrogen-rich substrates. Moreover, practical guidelines for evaluating ammonia inhibition are provided, and strategies to alleviate ammonia suppression are developed.
Collapse
Affiliation(s)
- Zehui Zheng
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Yafan Cai
- Department of Biochemical conversion, Deutsches Biomassforschungszentrum gemeinnütziges GmbH, Torgauer Straße116, 04347 Leipzig, Germany.
| | - Yue Zhang
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Yubin Zhao
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Youhui Gao
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Zongjun Cui
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Yuegao Hu
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Xiaofen Wang
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
48
|
Yu D, Zhang Q, De Jaegher B, Liu J, Sui Q, Zheng X, Wei Y. Effect of proton pump inhibitor on microbial community, function, and kinetics in anaerobic digestion with ammonia stress. BIORESOURCE TECHNOLOGY 2021; 319:124118. [PMID: 32957047 DOI: 10.1016/j.biortech.2020.124118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The proton pump is a convincing mechanism for ammonia inhibition in anaerobic digestion, which explained how the ammonia accumulated intercellularly due to diffusion of free ammonia. Proton pump inhibitor (PPI) was dosed for mitigating the accumulation in anaerobic digestion with ammonia stress, with respect to kinetics. Results show PPI inhibited β-oxidation of fatty acids by targeting ATPase in anaerobic digestion with ammonia stress. Alternatively, PPI stimulated syntrophic acetate oxidization. Random forest located key genera as syntrophic consortia. Methane increased 18.72 ± 7.39% with 20 mg/L PPI at the first peak, consistent with microbial results. The deterministic Gompertz kinetics and stochastic Gaussian processes contributed 97.63 ± 8.93% and 2.37 ± 8.93% in accumulated methane production, respectively. Thus, the use of PPI for anaerobic digestion allowed mitigate ammonia inhibition based on the mechanism of proton pump, facilitate intercellularly ammonia accumulation, stimulate syntrophic consortia, and eliminate uncertainty of process failure, which resulted in efficient methane production under ammonia stress.
Collapse
Affiliation(s)
- Dawei Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Qingqing Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Bram De Jaegher
- BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Jibao Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianwen Sui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Zheng
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
49
|
Llamas M, Magdalena JA, Greses S, Tomás-Pejó E, González-Fernández C. Insights on the microbial communities developed during the anaerobic fermentation of raw and pretreated microalgae biomass. CHEMOSPHERE 2021; 263:127942. [PMID: 32835976 DOI: 10.1016/j.chemosphere.2020.127942] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Short-chain fatty acids (SCFAs) are considered building blocks for bioproducts in the so-called carboxylate platform. These compounds can be sustainably produced via anaerobic fermentation (AF) of organic substrates, such as microalgae. However, SCFAs bioconversion efficiency is hampered by the hard cell wall of some microalgae. In this study, one thermal and two enzymatic pretreatments (carbohydrases and proteases) were employed to enhance Chlorella vulgaris biomass solubilization prior to AF. Pretreated and non-pretreated microalgae were assessed in continuous stirred tank reactors (CSTRs) for SCFAs production. Aiming to understand microorganisms' roles in AF depending on the employed substrate, not only bioconversion yields into SCFAs were evaluated but microbial communities were thoroughly characterized. Proteins were responsible for the inherent limitation of raw biomass conversion into SCFAs. Indeed, the proteolytic pretreatment resulted in the highest bioconversion (33.4% SCFAs-COD/CODin), displaying a 4-fold enhancement compared with raw biomass. Population dynamics revealed a microbial biodiversity loss along the AF regardless of the applied pretreatment, evidencing that the imposed operational conditions specialized the microbial community. In fact, a reduced abundance in Euryarchaeota phylum explained the low methanogenic activity, implying SCFAs accumulation. The bacterial community developed in the reactors fed with pretreated microalgae exhibited high acidogenic activities, being dominated by Firmicutes and Bacteroidetes. Firmicutes was by far the dominant phylum when using protease (65% relative abundance) while Bacteroidetes was prevailing in the reactor fed with carbohydrase-pretreated microalgae biomass (40% relative abundance). This fact indicated that the applied pretreatment and macromolecule solubilization have a strong effect on microbial distribution and therefore in SCFAs bioconversion yields.
Collapse
Affiliation(s)
- Mercedes Llamas
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de La Sagra 3,28935, Móstoles, Madrid, Spain
| | - Jose Antonio Magdalena
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de La Sagra 3,28935, Móstoles, Madrid, Spain
| | - Silvia Greses
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de La Sagra 3,28935, Móstoles, Madrid, Spain
| | - Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de La Sagra 3,28935, Móstoles, Madrid, Spain
| | | |
Collapse
|
50
|
Letelier-Gordo CO, Mancini E, Pedersen PB, Angelidaki I, Fotidis IA. Saline fish wastewater in biogas plants - Biomethanation toxicity and safe use. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 275:111233. [PMID: 32827897 DOI: 10.1016/j.jenvman.2020.111233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/29/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Increasing marine land-based recirculating aquaculture systems (RAS) and stricter environmental regulations, pose new challenges to the aquaculture industry on how to treat and dispose saline fish wastewater. The fish wastewater could be incorporated into biogas reactors, but currently, the effects of salinity on the biomethanation process are poorly known. This study aimed to assess the toxicity of fish wastewater with different salinities on the biomethanation process and to propose optimum co-digestion scenarios for maximal methane potential and safe use in biogas plants. Results showed that, depending on salinity and organic content, it is possible to efficiently co-digest from 3.22 to 61.85% fish wastewater (v/v, wastewater/manure) and improve the maximum methane production rate from 2.72 to 61.85%, respectively compared to cow manure mono-digestion. Additionally, salinity was identified as the main inhibitor of biomethanation process with a half-maximal inhibitory concentration (IC50) of 4.37 g L-1, while sulphate reduction was identified as a secondary inhibitor.
Collapse
Affiliation(s)
- Carlos O Letelier-Gordo
- National Institute of Aquatic Resources, Section for Aquaculture, North Sea Research Centre, Technical University of Denmark, DK-9850, Hirtshals, Denmark
| | - Enrico Mancini
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800, Kgs. Lyngby, Denmark
| | - Per Bovbjerg Pedersen
- National Institute of Aquatic Resources, Section for Aquaculture, North Sea Research Centre, Technical University of Denmark, DK-9850, Hirtshals, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800, Kgs. Lyngby, Denmark
| | - Ioannis A Fotidis
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800, Kgs. Lyngby, Denmark; School of Civil Engineering Southeast University Nanjing, 210096, China.
| |
Collapse
|