1
|
Huang J, Zhang H, Bian X, Zhao Y, Ma J. COD concentration influence on membrane fouling and microbial communities in A/O-MBR and A/A-MBR systems. ENVIRONMENTAL TECHNOLOGY 2025:1-13. [PMID: 40399134 DOI: 10.1080/09593330.2025.2507391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
Carbon sources in membrane bioreactor (MBR) significantly affect membrane fouling by influencing microbial metabolic activities, mixed liquor characteristics, and microbial community structure. This study explores the impact of chemical oxygen demand (COD) concentrations (200 and 120 mg/L) on denitrification, phosphorus removal, membrane filtration performance, and microbial community characteristics in anaerobic/aerobic (A/O-MBR) and anaerobic/anoxic (A/A-MBR) systems. Results revealed that higher COD concentrations (200 mg/L) reduced phosphorus removal efficiency and significantly increased extracellular polymeric substance (EPS) production, membrane fouling index (FI), and flux decline rates. Under these conditions, A/A-MBR exhibited lower phosphorus removal efficiency compared to A/O-MBR. Correlation analysis showed strong relationships between FI and EPS relative hydrophobicity (RH), as well as EPS protein content (PN) and Zeta potential, highlighting EPS as a dominant factor in fouling. 16S rRNA high-throughput sequencing further demonstrated that A/O-MBR enriched denitrifying bacteria more effectively than A/A-MBR. These findings suggest that optimising COD concentrations can mitigate fouling and improve overall reactor performance.
Collapse
Affiliation(s)
- JianPing Huang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| | - Huiru Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| | - XiaoZheng Bian
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| | - YiHao Zhao
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| | - JianQin Ma
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People's Republic of China
| |
Collapse
|
2
|
Xiong L, Ma R, Yin F, Fu C, Peng L, Liu Y, Lu X, Li C. Simulation and optimisation of magnetic and experimental study of magnetic field coupling constructed wetland. ENVIRONMENTAL TECHNOLOGY 2024; 45:5083-5103. [PMID: 37955936 DOI: 10.1080/09593330.2023.2283801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023]
Abstract
This study developed a novel constructed wetland (CW) coupled with a magnetic field for treating domestic wastewater, and the magnetic field distribution was solved and optimised by the finite element method. Herein, we investigated the effects of optimising magnetic field optimisation and studied its impact on CW treatment performance and the responses of a microbial community. The optimisation results showed that the average magnetic field strength of the CW unit increases from 3 to 8 mT, and the proportion of areas with magnetic field strength greater than 5 mT also increases from 30% to 74%. The water quality analysis results showed that the removal of chemical oxygen demand (COD) and NH4+-N (p < 0.01) was significantly increased by the magnetic field (average 3 mT), increasing by 12.2% and 8.49%, respectively. Moreover, the removal of COD and NH4+-N (p < 0.01) was more significantly increased by M-VFCW(O) (average 8 mT), increasing by 15.58% and 49.1%, respectively. The magnetic field application shifted significantly the abundance of dominant bacteria in CWs. Relative abundance of dominant bacteria such as Proteobacteria (63.3%), Firmicutes (4.72%) and Actinobacteria (2.11%) that played an important role in organics removal and nitrification and denitrification-related bacteria such as Nitrospirae (1.48%) and Planctomycetes (9.58%) significantly promoted in M-VFCW(O). These results suggest that introducing a magnetic field into CWs may improve organics and nitrogen removal via the biological process, and the optimisation of the magnetic field was significant in enhancing the performance of VFCWs.
Collapse
Affiliation(s)
- Liechao Xiong
- School of Mechanical Engineering and Transportation, Southwest Forestry University, Kunming, People's Republic of China
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Rong Ma
- School of Mechanical Engineering and Transportation, Southwest Forestry University, Kunming, People's Republic of China
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Fajin Yin
- School of Mechanical Engineering and Transportation, Southwest Forestry University, Kunming, People's Republic of China
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Chuandong Fu
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Liping Peng
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Yungen Liu
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Xiuxiu Lu
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Chengrong Li
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| |
Collapse
|
3
|
Han J, Jia J, Hu X, Sun L, Ulbricht M, Lv L, Ren Z. Effect of magnetic field coupled magnetic biochar on membrane bioreactor efficiency, membrane fouling mitigation and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172549. [PMID: 38643881 DOI: 10.1016/j.scitotenv.2024.172549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
The excitation by magnetic field was established to mitigate the membrane fouling of magnetic biochar (MB)-supplemented membrane bioreactor (MBR) in this study. The results showed that the transmembrane pressure (TMP) increase rates decreased by about 8 % after introducing the magnetic field compared with the magnetic biochar-MBR (MB-MBR). Membrane characterization suggested that the flocs in the magnetic field-magnetic biochar-MBR (MF-MB-MBR) formed a highly permeable developed cake layer, and a fluffier and more porous deposited layer on membrane surface, which minimized fouling clogging of the membrane pores. Further mechanistic investigation revealed that the decrease in contact angle of fouled membrane surface in MF-MB-MBR, i.e. an enhanced membrane hydrophilicity, is considered important for forming highly permeable layers. Additionally, the magnetic field was demonstrated to have a positive effect on the improvement of the magneto-biological effect, the enhancement of charge neutralization and adsorption bridging between sludge and magnetic biochar, and the reduction of formation of extracellular polymeric substances (EPSs), which all yielded sludge flocs with a large pore structure conducive to form a fluffy and porous deposited layer in the membrane surface. Furthermore, high-throughput sequencing analysis revealed that the magnetic field also led to a reduction in microbial diversity, and that it promoted the enrichment of specific functional microbial communities (e.g. Bacteroidetes and Firmicutes) playing an important role in mitigating membrane fouling. Taken together, this study of magnetic field-enhanced magnetic biochar for MBR membrane fouling mitigation provides insights important new ideas for more effective and sustainable operation strategies.
Collapse
Affiliation(s)
- Jinlong Han
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jianna Jia
- Tianjin Research Institute for Water Transport Engineering, M.O.T., China
| | - Xiangjia Hu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Wuqing District Environmental Protection Bureau, Tianjin, 301700, China
| | - Li Sun
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II and Center for Envirommental Research (ZWU), Universität Duisburg-Essen, 45117 Essen, Germany
| | - Longyi Lv
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhijun Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
4
|
Yue W, Chen Y, Sui Q, Zheng L, Ritigala T, Wei Y. The Performance and Spatial Distribution of Membrane Fouling in a Sequencing Batch Ceramic Membrane Bioreactor: A Pilot Study for Swine Wastewater Treatment. MEMBRANES 2024; 14:142. [PMID: 38921509 PMCID: PMC11206136 DOI: 10.3390/membranes14060142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024]
Abstract
The extensive application of ceramic membranes in wastewater treatment draws increasing attention due to their ultra-long service life. A cost-effective treatment for high-strength swine wastewater is an urgent and current need that is a worldwide challenge. A pilot-scale sequencing batch flat-sheet ceramic membrane bioreactor (ScMBR) coupled with a short-cut biological nitrogen removal (SBNR) process was developed to treat high-strength swine wastewater. The ScMBR achieved stable and excellent removal of COD (95.3%), NH4+-N (98.3%), and TN (92.7%), though temperature went down from 20 °C, to 15 °C, to 10 °C stepwise along three operational phases. The COD and NH4+-N concentrations in the effluent met with the discharge standards (GB18596-2001). Microbial community diversity was high, and the genera Pseudomonas and Comamonas were dominant in denitritation, and Nitrosomonas was dominant in nitritation. Ceramic membrane modules of this pilot-scale reactor were separated into six layers (A, B, C, D, E, F) from top to bottom. The total filtration resistance of both the top and bottom membrane modules was relatively low, and the resistance of the middle ones was high. These results indicate that the spatial distribution of the membrane fouling degree was different, related to different aeration scour intensities demonstrated by computational fluid dynamics (CFD). The results prove that the membrane fouling mechanism can be attributed to the cake layer formation of the middle modules and pore blocking of the top and bottom modules, which mainly consist of protein and carbohydrates. Therefore, different cleaning measures should be adopted for membrane modules in different positions. In this study, the efficient treatment of swine wastewater shows that the ScMBR system could be applied to high-strength wastewater. Furthermore, the spatial distribution characteristics of membrane fouling contribute to cleaning strategy formulation for further full-scale MBR applications.
Collapse
Affiliation(s)
- Wenhui Yue
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Y.); (Y.C.); (Q.S.); (L.Z.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlin Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Y.); (Y.C.); (Q.S.); (L.Z.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qianwen Sui
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Y.); (Y.C.); (Q.S.); (L.Z.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Libing Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Y.); (Y.C.); (Q.S.); (L.Z.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tharindu Ritigala
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Y.); (Y.C.); (Q.S.); (L.Z.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (W.Y.); (Y.C.); (Q.S.); (L.Z.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Tan J, Hu Y, Ding C, Li Y, Gu Y, Li Z, Lin H. Strong adsorption enhanced nitrogen removal from landfill leachate by PVA/CMC/WPU pellets immobilized microorganisms. JOURNAL OF WATER PROCESS ENGINEERING 2024; 63:105480. [DOI: 10.1016/j.jwpe.2024.105480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Guo X, Tang X, Zhang M, Ma X, Wang J, Liang H. New progress in the deep understanding of the biocake layer property: Combined effect of neglected protein secondary structure, morphology, and mechanism. WATER RESEARCH 2024; 250:121038. [PMID: 38157600 DOI: 10.1016/j.watres.2023.121038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
The application of magnetic fields (MFs) and magnetic particles (MPs) in water treatment has attracted widespread attention due to their stability, strong biological compatibility, and less chemical consumption. This study introduced MPs and MFs to GDM and probed their effects on filtration performance. Predeposited large MPs (P-large) and batch-added little MPs (B-little) intervened biocake layer development, forming more open and porous structures, they also reduced biomass secretion, resulting in flux increases of 13 % in P-large and 40 % in B-little than P-little, respectively. Besides, MFs controlled MPs distribution on the biocake layer, resulting in forming of more rough and open structures. A relatively lower magnetic field of 20 mT facilitated biomass secretion, while a higher magnetic field of 50 mT decreased biomass. Furthermore, applying magnetic fields decreased the ratios of α-helix and β-sheet, and increased random coil percentage. Thus, applying magnetic field mediation would contribute to the flux improvements in I-20 and I-50 by 29 % and 32 % relative to I-0. Economic analysis suggested introducing MPs and MFs to GDM was economically feasible, synergy of MPs and MFs had more economic advantages on the community scale and MPs-assisted GDM had significant economic advantages on both community and household scales. Future works should focus on developing new technologies for the recycling of MPs and membranes. This study provided new insight into the protein secondary structures associated with GDM performance and would encourage new sustainable MFs and MPs-assisted GDM technological developments.
Collapse
Affiliation(s)
- Xishou Guo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Xiaobin Tang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Meng Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Xiaobin Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| |
Collapse
|
7
|
Chen DZ, Qiu J, Sun H, Liu Y, Ye J, Chen JM, Lu L. Enhanced chlorobenzene removal by internal magnetic field through initial cell adhesion and biofilm formation. Appl Microbiol Biotechnol 2024; 108:159. [PMID: 38252324 PMCID: PMC10803521 DOI: 10.1007/s00253-024-13001-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024]
Abstract
Magnetic fields (MF) have been proven efficient in bioaugmentation, and the internal MFs have become competitive because they require no configuration, despite their application in waste gas treatment remaining largely unexplored. In this study, we firstly developed an intensity-regulable bioaugmentation with internal MF for gaseous chlorobenzene (CB) treatment with modified packing in batch bioreactors, and the elimination capacity increased by up to 26%, surpassing that of the external MF. Additionally, the microbial affinity to CB and the packing surface was enhanced, which was correlated with the ninefold increased secreted ratio of proteins/polysaccharides, 43% promoted cell surface hydrophobicity, and half reduced zeta potential. Furthermore, the dehydrogenase content was promoted over 3 times, and CB removal steadily increased with the rising intensity indicating enhanced biofilm activity and reduced CB bioimpedance; this was further supported by kinetic analysis, which resulted in improved cell adhesive ability and biological utilisation of CB. The results introduced a novel concept of adjustable magnetic bioaugmentation and provided technical support for industrial waste gas treatments. KEY POINTS: • Regulable magnetic bioaugmentation was developed to promote 26% chlorobenzene removal • Chlorobenzene mineralisation was enhanced under the magnetic field • Microbial adhesion was promoted through weakening repulsive forces.
Collapse
Affiliation(s)
- Dong-Zhi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316004, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jinfeng Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316004, China
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhoushan, 316004, China
| | - Haimin Sun
- Zhejiang Zhonglan Environmental Technology Co., Ltd., Wenzhou, 325000, China
| | - Yanting Liu
- Yali High School, No. 428 Laodong Western Road, Changsha, Hunan, People's Republic of China, 410007
| | - Jiexu Ye
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jian-Meng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Lichao Lu
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316004, China.
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
8
|
Shen Y, Zhang Y, Jiang Y, Cheng H, Wang B, Wang H. Membrane processes enhanced by various forms of physical energy: A systematic review on mechanisms, implementation, application and energy efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167268. [PMID: 37748609 DOI: 10.1016/j.scitotenv.2023.167268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Membrane technologies in water and wastewater treatment have been eagerly pursued over the past decades, yet membrane fouling remains the major bottleneck to overcome. Membrane fouling control methods which couple membrane processes with online in situ application of external physical energy input (EPEI) are getting closer and closer to reality, thanks to recent advances in novel materials and energy deliverance methods. In this review, we summarized recent studies on membrane fouling control techniques that depend on (i) electric field, (ii) acoustic field, (iii) magnetic field, and (iv) photo-irradiation (mostly ultraviolet or visible light). Mechanisms of each energy input were first reported, which defines the applicability of these methods to certain wastewater matrices. Then, means of implementation were discussed to evaluate the compatibility of these fouling control methods with established membrane techniques. After that, preferred applications of each energy input to different foulant types and membrane processes in the experiment reports were summarized, along with a discussion on the trends and knowledge gaps of such fouling control research. Next, specific energy consumption in membrane fouling control and flux enhancement was estimated and compared, based on the experimental results reported in the literature. Lastly, strength and weakness of these methods and future perspectives were presented as open questions.
Collapse
Affiliation(s)
- Yuxiang Shen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yichong Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yulian Jiang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haibo Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Banglong Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongyu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
9
|
Wang K, Zhang H, Shen Y, Li J, Zhou W, Song H, Liu M, Wang H. Impact of salinity on anaerobic ceramic membrane bioreactor for textile wastewater treatment: Process performance, membrane fouling and machine learning models. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118717. [PMID: 37536141 DOI: 10.1016/j.jenvman.2023.118717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/25/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
Anaerobic membrane bioreactor (AnMBR) shows great potential for textile wastewater treatment, but high salinity in the influent may undermine its performance. This study evaluated the impact of salinity on the treatment performance of an upflow anaerobic sludge blanket (UASB) configured AnMBR using a flat sheet ceramic membrane. The salinity was stepwise increased (0, 5, 10 and 20 g/L) in four phases of the AnMBR operation. Results indicated that increased salinity jeopardized the COD removal efficiency of AnMBR from 92% to 73%, but had a marginal effect on dye removal efficacy (90-96%). Low salinity (5 g/L) boosted the biogas production whilst high salinity (>10 g/L) had a negative impact. Additionally, the increase of salinity resulted in the soluble microbial production (SMP) concentration soar and membrane fouling rate increase, peaking at a salinity of 10 g/L (Phase III) and recovering back to a lower level at a salinity of 20 g/L (Phase IV). This indicated a transition occurrence at a salinity of 10 g/L (Phase III). The microbial diversity analyses further suggested a transition from salinity-sensitive microbes (Aminiphilus, Caldatribacterium, Mesotoga, Methanobrevibacter, Methanobacterium, Methanosaeta) to salinity-tolerant microbes (Longilinea, Ignavibacterium, Rhodovarius, Bosea and Flexilinea). This transition can be associated with the increase SMP concentration and more severe membrane fouling in Phase III, which were mitigated after a new equilibrium was reached when the microbial consortium acclimatized to the high salinity. Finally, a machine learning model of the Adaboost algorithm was established to predict COD removal under different salinities. Importantly, this study revealed that AnMBR process performance and membrane operation can be maintained for high salinity textile wastewater treatment with a halophilic microbial community growth under high-salinity selection pressure.
Collapse
Affiliation(s)
- Kanming Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; College of Architecture and Environment, Sichuan University, Chengdu, 610000, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing, 312000, Zhejiang, China
| | - Haoliang Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuxiang Shen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiale Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wu Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hualong Song
- Shaoxing Water Treatment Development Co., Ltd, Shaoxing, 312074, Zhejiang, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610000, China
| | - Hongyu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
10
|
Guo J, Li Q, Gao Q, Shen F, Yang Y, Zhang X, Luo H. Comparative study on the treatment of swine wastewater by VFCW-MFC and VFCW: Pollutants removal, electricity generation, microorganism community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118299. [PMID: 37269721 DOI: 10.1016/j.jenvman.2023.118299] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
Swine wastewater, characterized by high organic and nutrient content, poses significant environmental challenges. This study aims to compare the effectiveness of two treatment technologies, namely Vertical Flow Constructed Wetland-Microbial Fuel Cell (VFCW-MFC) and Vertical Flow Constructed Wetland (VFCW), in terms of pollutant removal, electricity generation, and microorganism community dynamics. The results showed that the average removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen, total nitrogen (TN), total phosphorus (TP) and sulfadiazine antibiotics (SDZ) by VFCW-MFC were as high as 94.15%, 95.01%, 42.24%, 97.16% and 82.88%, respectively, which were all higher than that by VFCW. Both VFCW-MFC and VFCW have good tolerance to SDZ. In addition, VFCW-MFC has excellent electrical performance, with output voltage, power density, coulombic efficiency and net energy recovery up to 443.59 mV, 51.2 mW/m3, 52.91% and 2.04 W/(g·s), respectively, during stable operation. Moreover, the microbial community diversity of VFCW-MFC was more abundant, and the species abundance distribution in cathode region was more rich and even than in anode region. At phylum level, the dominant microorganisms in VFCW-MFC included Proteobacteria, Bacteroidota, Firmicutes and Actinobacteriota, which showed good degradation effect on SDZ. Proteobacteria and Firmicutes are also involved in electricity production. Chloroflexi, Proteobacteria and Bacteroidota play a major role in nitrogen reduction.
Collapse
Affiliation(s)
- Junyuan Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China.
| | - Quanhong Li
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Qifan Gao
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China; China 19th Metallurgical Group Corporation Limited, Chengdu, Sichuan 610031, China
| | - Fei Shen
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yiting Yang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Xinyu Zhang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Hong Luo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| |
Collapse
|
11
|
Wang Y, Xu Y, Zhang S, Li Y, Liu W. Effects of powdered activated carbon dosage on the performance of membrane bioreactors treating biochemical tail water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162429. [PMID: 36842604 DOI: 10.1016/j.scitotenv.2023.162429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/05/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
As a promising treatment technology for wastewater, the promotion of membrane bioreactors (MBR) is restricted by biological fouling. Among the measures used to mitigate membrane fouling, the addition of powdered activated carbon (PAC) to MBRs has been recognized as an effective practice. However, the effects of PAC dosage on the performance of MBRs that treat highly biochemical influent from wastewater treatment plants remain unclear. In this study, by investigating the treatment of biochemical tailwater by PAC-MBRs, we thoroughly analyzed the effects of PAC dosage on the contamination removal efficiency, membrane operation cycles, sludge mixture properties, and microorganism distributions. The results indicated that the addition of PAC enhanced the removal efficiency of MBRs depending on the contaminant of interest. For example, the removal efficiency of total nitrogen can be boosted from 30 % to 60 % with PAC addition, while the removal efficiencies of total phosphorus were comparable with or without PAC addition. Furthermore, the application of PAC in MBRs can prolong the duration of membranes by suppressing biological fouling. This was supported by the decreased microbial products, reduced smaller solid particles, and stronger stability of sludge particles. PAC addition also boosts the proportion of Proteus and decreases the proportion of Bacteroides, which helps to improve the removal efficiencies of contaminants. Finally, among the PAC dosages tested in our study, 1.5 g/L PAC was proposed as the optimal candidate for treating highly biochemical influents. For example, the corresponding time for transmembrane pressure to reach 0.03 MPa was 19 d at 1.5 g/L PAC, while these periods were 7 and 14 d at dosages of 0 and 0.5 g/L, respectively. Overall, the findings of this study will aid in the selection of optimal dosages for other systems with different types of influents.
Collapse
Affiliation(s)
- Yajun Wang
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yanchao Xu
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Siyong Zhang
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yanjuan Li
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Wenlong Liu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
12
|
Liu Q, Zhu J, Wang L, Wang X, Huang Z, Zhao F, Zou J, Liu Y, Ma J. Interpreting the degradation mechanism of triclosan in microbial fuel cell by combining analysis microbiome community and degradation pathway. CHEMOSPHERE 2023; 321:137983. [PMID: 36739987 DOI: 10.1016/j.chemosphere.2023.137983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/29/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Microbes play a dominant role for the transformation of organic contaminants in the environment, while a significant gap exists in understanding the degradation mechanism and the function of different species. Herein, the possible bio-degradation of triclosan in microbial fuel cell was explored, with the investigation of degradation kinetics, microbial community, and possible degradation products. 5 mg/L of triclosan could be degraded within 3 days, and an intermediate degradation product (2,4-dichlorophen) could be further degraded in system. 32 kinds of dominant bacteria (relative intensity >0.5%) were identified in the biofilm, and 10 possible degradation products were identified. By analyzing the possible involved bioreactions (including decarboxylation, dehalogenation, dioxygenation, hydrolysis, hydroxylation, and ring-cleavage) of the dominant bacteria and possible degradation pathway of triclosan based on the identified products, biodegradation mechanism and function of the bacteria involved in the degradation of triclosan was clarified simultaneously. This study provides useful information for further interpreting the degradation mechanism of organic pollutants in mixed flora by combining analysis microbiome community and degradation pathway.
Collapse
Affiliation(s)
- Qingliang Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinan Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin, 150090, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin, 150090, China
| | - Xianshi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhuangsong Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin, 150090, China
| | - Feng Zhao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jing Zou
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin, 150090, China; Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Yulei Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
13
|
Wang K, Ye Q, Shen Y, Wang Y, Hong Q, Zhang C, Liu M, Wang H. Biochar Addition in Membrane Bioreactor Enables Membrane Fouling Alleviation and Nitrogen Removal Improvement for Low C/N Municipal Wastewater Treatment. MEMBRANES 2023; 13:194. [PMID: 36837697 PMCID: PMC9960794 DOI: 10.3390/membranes13020194] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Membrane bioreactors (MBRs) are frequently used to treat municipal wastewater, but membrane fouling is still the main weakness of this technology. Additionally, the low carbon-nitrogen (C/N) ratio influent has been shown to not only increase the membrane fouling, but also introduce challenges to meet the effluent discharge standard for nitrogen removal. Herein, the authors addressed the challenges by adding cost-effective biochar. The results suggested that the biochar addition can enable membrane fouling alleviation and nitrogen removal improvement. The reduced membrane fouling can be ascribed to the biochar adsorption capacity, which facilitates to form bigger flocs with carbon skeleton in biochar as a core. As a result, the biochar addition significantly altered the mixed liquor suspension with soluble microbial product (SMP) concentration reduction of approximately 14%, lower SMP protein/polysaccharide ratio from 0.28 ± 0.02 to 0.22 ± 0.03, smaller SMP molecular weight and bigger sludge particle size from 67.68 ± 6.9 μm to 113.47 ± 4.8 μm. The nitrogen removal is also dramatically improved after biochar addition, which can be due to the initial carbon source release from biochar, and formation of aerobic-anaerobic microstructures. Microbial diversity analysis results suggested more accumulation of denitrification microbes including norank_f__JG30-KF-CM45 and Plasticicumulans. Less relative abundance of Aeromonas after biochar addition suggested less extracellular polymer substance (EPS) secretion and lower membrane fouling rate.
Collapse
Affiliation(s)
- Kanming Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiaoqiao Ye
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuxiang Shen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yajing Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiankun Hong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenlong Zhang
- Ningbo Communications Planning Institute Co., Ltd., Ningbo 315100, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Hongyu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
14
|
Liu Y, Gao X, Cao X, Sakamaki T, Zhang C, Li X. Study on the performance and mechanism of bio-electrochemical system to mitigate membrane fouling in bioreactors. BIORESOURCE TECHNOLOGY 2022; 365:128163. [PMID: 36283665 DOI: 10.1016/j.biortech.2022.128163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
To alleviate membrane fouling, a membrane of the membrane bioreactor was directly used as the anode of the bio-electrochemical system. On the 14th day, the control group had blocked, while the experimental group with a current of 0.44 mA, the increase in ΔTMP was only 2.2 kPa. The polysaccharide and protein concentrations in the open-circuit group were 4.2 and 2.9 times higher than those in the closed-circuit group, respectively. Three-dimensional fluorescence spectroscopy and gas chromatography mass spectrometry showed that most of the deposition in the control group contained high-molecular-weight compounds, especially long-chain ester derivatives, phenols, and complex hydrocarbons, whereas the experimental group was the opposite. Therefore, current (electrons) can change the composition of the cake layer. High-throughput sequencing indicated that a significantly higher abundance of electroactive microorganisms on the experimental than control group. Two-dimensional correlation spectroscopy showed that electrons promote the degradation of polysaccharides, thereby alleviating membrane fouling.
Collapse
Affiliation(s)
- Yanqing Liu
- College of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Xintong Gao
- College of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Xian Cao
- College of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Takashi Sakamaki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Chong Zhang
- College of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Xianning Li
- College of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China.
| |
Collapse
|
15
|
Zhang J, Jian Z, Jiang M, Peng B, Zhang Y, Wu Z, Zheng J. Influence of Dispersed TiO 2 Nanoparticles via Steric Interaction on the Antifouling Performance of PVDF/TiO 2 Composite Membranes. MEMBRANES 2022; 12:1118. [PMID: 36363673 PMCID: PMC9694972 DOI: 10.3390/membranes12111118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Herein, the influence of various contents of polyethylene glycol (PEG) on the dispersion of TiO2 nanoparticles and the comprehensive properties of PVDF/TiO2 composite membranes via the steric hindrance interaction was systematically explored. Hydrophilic PEG was employed as a dispersing surfactant of TiO2 nanoparticles in the pre-dispersion process and as a pore-forming additive in the following membrane preparation process. The slight overlap shown in the TEM image and low TSI value (<1) of the composite casting solution indicated the effective dispersion and stabilization under the steric interaction with a PEG content of 6 wt.%. Properties such as the surface pore size, the development of finger-like structures, permeability, hydrophilicity and Zeta potential were obviously enhanced. The improved antifouling performance between the membrane surface and foulants was corroborated by less negative free energy of adhesion (about −42.87 mJ/m2), a higher interaction energy barrier (0.65 KT) and low flux declination during the filtration process. The high critical flux and low fouling rate both in winter and summer as well as the long-term running operation in A/O-MBR firmly supported the elevated antifouling performance, which implies a promising application in the municipal sewage treatment field.
Collapse
Affiliation(s)
- Jie Zhang
- School of Chemistry and Materials Engineering, Huizhou University, 46 Yanda Road, Huizhou 516007, China
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
- School of Environmental Science and Engineering, South University of Science and Technology of China, No. 1088 Xueyuan Avenue, Shenzhen 518055, China
- Department of Electrical Engineering, National Cheng Kung University, No. 1 Daxue Road, Tainan 701401, China
| | - Zicong Jian
- School of Chemistry and Materials Engineering, Huizhou University, 46 Yanda Road, Huizhou 516007, China
| | - Minmin Jiang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Bo Peng
- School of Chemistry and Materials Engineering, Huizhou University, 46 Yanda Road, Huizhou 516007, China
| | - Yuanyuan Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Junjian Zheng
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, China
| |
Collapse
|
16
|
Feng J, Li X, Yang Y, Fan X, Zhou Z, Ren J, Tan X, Li H. Insight into biofouling mechanism in biofiltration-facilitated gravity-driven membrane (GDM) system: Beneficial effects of pre-deposited adsorbents. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Wu Y, Liu X, Wang Q, Han D, Lin S. Fe3O4-Fused Magnetic Air Stone Prepared From Wasted Iron Slag Enhances Denitrification in a Biofilm Reactor by Increasing Electron Transfer Flow. Front Chem 2022; 10:948453. [PMID: 35873056 PMCID: PMC9304712 DOI: 10.3389/fchem.2022.948453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
nFe3O4 was prepared from waste iron slag and loaded onto air stone (named magnetic air stone or MAS in the following text). The main component of air stone is carborundum. To study the magnetic effects of MAS on denitrification, a biofilm reactor was built, and its microbial community structure and electron transfer in denitrification were analyzed. The results showed that MAS improved the performance of the reactor in both carbon and nitrogen removal compared with air stone (AS) control, and the average removal efficiencies of COD, TN, and NH4+-N increased by 17.15, 16.1, and 11.58%, respectively. High-throughput sequencing revealed that magnetism of MAS had a significant effect on the diversity and richness of microorganisms in the biofilm. The MAS also reduced the inhibition of rotenone, mipalene dihydrochloride (QDH), and sodium azide on the respiratory chain in denitrification and enhanced the accumulation of nitrite, in order to provide sufficient substrate for the following denitrification process. Therefore, the denitrification process is accelerated by the MAS. The results allowed us to deduce the acceleration sites of MAS in the denitrification electron transport chain. The existence of MAS provides a new rapid method for the denitrifying electron transport process. Even in the presence of respiratory inhibitors of denitrifying enzymes, the electron transfer acceleration provided by MAS still exists objectively. This is the mechanism through which MAS can restore the denitrification process inhibited by respiratory inhibitors to a certain extent.
Collapse
|
18
|
Deb A, Gurung K, Rumky J, Sillanpää M, Mänttäri M, Kallioinen M. Dynamics of microbial community and their effects on membrane fouling in an anoxic-oxic gravity-driven membrane bioreactor under varying solid retention time: A pilot-scale study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150878. [PMID: 34627895 DOI: 10.1016/j.scitotenv.2021.150878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Membrane fouling in a membrane bioreactor (MBR) is highly influenced by the characteristics of the influent, the mixed liquor microbial community and the operational parameters, all of which are environment specific. Therefore, we studied the dynamics of microbial community during the treatment of real municipal wastewater in a pilotscale anoxic-oxic (A/O) MBR equipped with a gravity-driven membrane filtration system. The MBR was operated at three different solid retention times (SRTs): 25, 40 and 10 days for a total period of 180 days in Nordic environmental conditions. Analysis of microbial community dynamics revealed a high diversity of microbial species at SRT of 40 days, whereas SRT of 25 days was superior with microbial richness. Production of soluble microbial products (SMP) and extracellular polymeric substances (EPS) was found to be intensely connected with the SRT and food to microorganism (F/M) ratio. Relatively longer operational period with the lowest rate of membrane fouling was observed at SRT of 25 days, which was resulted from the superior microbial community, lowest production of SMP and loosely bound EPS as well as the lower filtration resistance of larger sludge flocs. Abundance of quorum quenching (QQ) bacteria and granular floc forming bacterial genera at SRT of 25 days provided relatively lower membrane fouling tendency and larger floc formation, respectively. On the other hand, substantial amount of various surface colonizing and EPS producing bacteria was found at SRT of 10 days, which promoted more rapid membrane fouling compared with the fouling rate seen at other tested SRTs. To sum up, this research provides a realistic insight into the impact of SRT on microbial community dynamics and resulting characteristics of mixed liquor, floc size distribution and membrane fouling for improved MBR operation.
Collapse
Affiliation(s)
- Anjan Deb
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT University), Sammonkatu 12, 50130 Mikkeli, Finland; Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), 00014 Helsinki, Finland.
| | - Khum Gurung
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT University), Sammonkatu 12, 50130 Mikkeli, Finland
| | - Jannatul Rumky
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT University), Sammonkatu 12, 50130 Mikkeli, Finland
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; School of Chemical and Metallurgical Engineering, University of the Witwatersrand, 2050 Johannesburg, South Africa; Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; School of Resources and Environment, University of Electronic Science and Technology of China (UESTC), NO. 2006, Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan 611731, PR China; Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; School of Chemistry, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Mika Mänttäri
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT University), Sammonkatu 12, 50130 Mikkeli, Finland
| | - Mari Kallioinen
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT University), Sammonkatu 12, 50130 Mikkeli, Finland
| |
Collapse
|
19
|
He H, Xin X, Qiu W, Li D, Liu Z, Ma J. Role of nano-Fe 3O 4 particle on improving membrane bioreactor (MBR) performance: Alleviating membrane fouling and microbial mechanism. WATER RESEARCH 2022; 209:117897. [PMID: 34861438 DOI: 10.1016/j.watres.2021.117897] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
This study would investigate the effect of nano-Fe3O4 particles on the performance of membrane bioreactor (MBR), including membrane fouling, membrane rejection and microbial community. It can effectively alleviate membrane fouling and improve the effluent quality in MBR by bio-effect rather than nanoparticle adsorption. The lowest membrane fouling resistance was achieved at R4-MBR (sludge and membrane surface with nano-Fe3O4), which decreased by 46.08%. Meanwhile, R3-MBR (sludge with nano-Fe3O4) had the lowest concentration of COD in effluent which was below 20 mg/L in the stable phase of MBR operation. After applying nano-Fe3O4, the content of extracellular polymeric substances (EPS) and soluble microbial products (SMP) were both reduced with a lower molecular weight. From the microbial community analysis, the abundance of Proteobacteria increased from 25.06 to 45.11% at the phylum level in R3-MBR. It contributed to removing organic substances in MBRs. Moreover, the nano-Fe3O4 restricted Bacteroidetes growth, especially in R4-MBR, leading to a more excellent performance of membrane flux. Besides, the applied nano-Fe3O4 promoted the abundance of Quorum Quenching (QQ) microorganism, and declined the percentage of Quorum Sensing (QS) bacteria. Then, a lower content of N-Acyl-l-Homoserine Lactones (AHLs) in containing nano-Fe3O4 sludge. That was also prone to control membrane fouling. Overall, this study indicates the nano-Fe3O4 particle is appropriate for elevating MBR performance, such as membrane fouling and effluent quality, by bio-effect.
Collapse
Affiliation(s)
- Haiyang He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaodong Xin
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Wei Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Dong Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhicen Liu
- School of Geosciences, The University of Edinburgh, Edinburgh EH8 9JU, UK
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
20
|
Guo R, Xu X, Sun Z, Hu X. Performance and bacterial community of bio-electrochemical system treating simulated domestic wastewater containing low concentration of cephalosporin antibiotics. ENVIRONMENTAL TECHNOLOGY 2022; 43:893-906. [PMID: 32807023 DOI: 10.1080/09593330.2020.1811390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the effects of five cephalosporin antibiotics (ceftazidime, ceftriaxone, cefdinir, cefixime and cefepime) on performance and bacterial community structure in bio-electrochemical systems (BES) and sequencing batch biofilm reactor (SBBR). The results showed that the external electric field had no significant effect on the removal of COD and ammonia nitrogen in water. The removal rates of five antibiotics in BES increased by 28.5%, 20.0%, 9.1%, 21.0%, and 11.5%, respectively. High-through sequencing showed that microbial membrane-growing process increased species diversity, and antibiotics had a significant inhibitory effect on the initial biofilm of the reactor. As time progressed, the inhibitory effect was weakened, and the microorganism were tolerated and re-enriched. The increase in the type and concentration of antibiotics and the applied electric field had a significant effect on the microorganisms in the reactor. The dominant microorganisms for antibiotic removal in the SBBR were Luteococcus, Cloacibacterium, Dysgonomonas, and Ottowia. The dominant bacteria in the BES were Ottowia and Tahibacte. The abundance of these strains increased significantly during antibiotic acclimation. The abundance of Ottowia, Tahibacter, and Nakamurella were significantly higher than SBBR. Thus the BES system had a good antibiotic degradation effect. The BES can effectively treat simulated domestic sewage containing multiple antibiotics, laying a theoretical foundation for the actual wastewater treatment.
Collapse
Affiliation(s)
- Ruijie Guo
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Xin Xu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Zhirong Sun
- College of Environmental & Energy Engineering, Beijing University of Technology, Beijing, People's Republic of China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| |
Collapse
|
21
|
Jang Y, Kim HS, Lee JH, Ham SY, Park JH, Park HD. Development of a new method to evaluate critical flux and system reliability based on particle properties in a membrane bioreactor. CHEMOSPHERE 2021; 280:130763. [PMID: 33975240 DOI: 10.1016/j.chemosphere.2021.130763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/11/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Membrane fouling occurs when the operating flux exceeds a certain point (i.e., critical flux). Critical flux has therefore been widely adopted to determine the initial operating flux in membrane bioreactor (MBR) processes. The flux steeping method currently used to measure the critical flux is time-consuming and uneconomical. This study was conducted to develop a novel approach for the evaluation of critical flux. Given that particle fouling is dominant during the initial fouling stage, we hypothesized that particle properties may be closely related to critical flux. A critical flux prediction model with an R2 of 0.9 was therefore derived, which indicates that particle properties regulate critical flux. The results imply that most of the fouling potential during the early stages of operation is caused by SS, and that the formation of cakes that comprise large particles is the dominant fouling mechanism. The new method proposed in this study reduced the measurement cost and time to evaluate critical flux by 3.5-and 8 times, respectively, compared to the flux-stepping method. In terms of practical application, the applicability of the model equation was identified by system reliability analysis, which indicates that the system failure increases significantly as the standard deviation of the variables increases. This study demonstrated that the prediction of critical flux and system reliability can be achieved through particle characteristic measurement. A similar approach is expected to be employed in real MBR plants as an economical and convenient fouling control strategy to solve problems involving resource shortages.
Collapse
Affiliation(s)
- Yongsun Jang
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Han-Shin Kim
- Korean Peninsula Infrastructure Cooperation Team, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang-si, Gyeonggi-do, 10223, Republic of Korea.
| | - Jeong-Hoon Lee
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - So-Young Ham
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Jeong-Hoon Park
- Clean Innovation Technology Group, Korea Institute of Industrial Technology (KITECH), Jeju-si, 63243, Republic of Korea.
| | - Hee-Deung Park
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
22
|
Chen Z, Li D, Liu H, Wen Q. Effects of polyurethane foam carrier addition on anoxic/aerobic membrane bioreactor (A/O-MBR) for coal gasification wastewater (CGW) treatment: Performance and microbial community structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:148037. [PMID: 34082207 DOI: 10.1016/j.scitotenv.2021.148037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Coal gasification wastewater (CGW) is a typical toxic and refractory industrial wastewater with abundant phenols contained. Two identical anoxic/aerobic membrane bioreactors (with (R2) and without (R1) polyurethane (PU) foam) were carried out in parallel to investigate the role of PU foam addition in enhancing pollutants removal in CGW. Results showed that both systems exhibited effective removal of chemical oxygen demand (>93%) and total phenols (>97%) but poor ammonia nitrogen removal (<35%) constrained by ammonia oxidation process. GC-MS analysis revealed that aromatic and other refractory intermediates were dramatically reduced in R2. Moreover, the PU addition had negligible influence on the total soluble microbial products and extracellular polymeric substances contents but significantly alleviated membrane fouling with the operating time 33% prolonged. Microbial community revealed that Flavobacterium, Holophaga, and Geobacter were enriched on PU. Influent type might be a main driver for microbial community succession.
Collapse
Affiliation(s)
- Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730070, China
| | - Da Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongguo Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
23
|
Jang Y, Kim HS, Ham SY, Park JH, Park HD. Investigation of critical sludge characteristics for membrane fouling in a submerged membrane bioreactor: Role of soluble microbial products and extracted extracellular polymeric substances. CHEMOSPHERE 2021; 271:129879. [PMID: 33736214 DOI: 10.1016/j.chemosphere.2021.129879] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Membrane bioreactors (MBRs) are considered a promising tool for resource recovery in wastewater treatment. Nevertheless, membrane fouling is an inevitable phenomenon that deteriorates the MBR performance. Although many studies have attempted to elucidate the effect of sludge characteristics on MBR fouling, they posed certain limitations. Most of the previous studies focused on the initial sludge or employ the results of short-term batch tests without long-term transmembrane pressure (TMP) profiles in the interpretation of fouling behaviors. This study was conducted considering these limitations to determine the sludge characteristics most closely related to long-term TMP profiles and to identify their role in fouling behaviors. In long-term TMP profiles, critical time (tc; time to TMP jump) and fouling rates (the increase in the TMP slope) were used as fouling indexes, which were used to correlate with average values of sludge characteristics before and after experiments. According to the results, the concentration of the total soluble microbial product (SMP) and extracted extracellular polymeric substance (eEPS) in sludge significantly increased by 1.9 times and up to 28 times after experiment. The increase in the SMP and eEPS caused early TMP jumps and resulted in low-fouling rates by increasing particle size. Owing to the increase in the SMP and eEPS concentration, the origin of fouling potential was shifted from suspended solids to colloids and soluble materials. Fouling resistance caused by soluble material increased by up to 11.38 times.
Collapse
Affiliation(s)
- Yongsun Jang
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Han-Shin Kim
- Korean Peninsula Infrastructure Cooperation Team, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang-si, Gyeonggi-do, 10223, Republic of Korea.
| | - So-Young Ham
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Jeong-Hoon Park
- Jeju Regional Division, Korea Institute of Industrial Technology (KITECH), Cheju, 63243, Republic of Korea.
| | - Hee-Deung Park
- Department of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
24
|
Feng C, Li Z, Zhu Y, Xu D, Geng J, Ren H, Xu K. Effect of magnetic powder on nitrous oxide emissions from a sequencing batch reactor for treating domestic wastewater at low temperatures. BIORESOURCE TECHNOLOGY 2020; 315:123848. [PMID: 32707505 DOI: 10.1016/j.biortech.2020.123848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Low temperatures can lead to an increase of N2O generation and emission from the nitrogen removal process in wastewater treatment plants. This study investigated the effect of the addition of magnetic powder on N2O generation and emission from a sequencing batch reactor treating domestic sewage at low temperatures. The results showed that the magnetic powder simultaneously inhibited N2O generation and emission and improved the removal of NH4+, total nitrogen (TN), and chemical oxygen demand at low temperatures. Furthermore, the conversion rate of N2O (N2O generation to TN removal) was reduced. The efficacy of the magnetic powder depended on its concentration, which could be ordered as 1 mg/L > 2 mg/L > 4 mg/L. With the addition of magnetic powder, especially at the 1 mg/L level, the activities of nitrification and denitrification enzymes in activated sludge were significantly improved and the growth of ammonium and nitrite oxidizing bacteria was also promoted.
Collapse
Affiliation(s)
- Chuanwen Feng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhihao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yuanmo Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
25
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
26
|
Deng L, Guo W, Ngo HH, Wang XC, Hu Y, Chen R, Cheng D, Guo S, Cao Y. Application of a specific membrane fouling control enhancer in membrane bioreactor for real municipal wastewater treatment: Sludge characteristics and microbial community. BIORESOURCE TECHNOLOGY 2020; 312:123612. [PMID: 32526665 DOI: 10.1016/j.biortech.2020.123612] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
The feasibility of a novel bioflocculant (GemFloc™) for membrane fouling mitigation in membrane bioreactor (MBR) was investigated during real municipal wastewater treatment. When compared to the conventional MBR (CMBR), suspended sludge in the MBR with GemFloc™ (G-MBR) showed less soluble microbial products (SMP), higher ratios of proteins to polysaccharides in SMP (SMPP/SMPC) and loosely bound extracellular polymeric substances (LB-EPS). Adding GemFloc™ also enlarged floc size (> 200 µm), and increased tightly bound EPS levels, zeta potential and relative hydrophobicity of sludge flocs, further reduced cake layer and pore blocking resistances. Moreover, more diverse microbial community and enrichment of fouling reduction microbes such as Arenimonas and Flavihumibacter were observed in the G-MBR, together with less abundant microbes (e.g. Sphaerotilus and Povalibacter) which could aggravate membrane fouling. Therefore, GemFloc™ has high capability in improving sludge characteristics, mitigating membrane fouling and increasing diversity of special functional bacterial community in MBR.
Collapse
Affiliation(s)
- Lijuan Deng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China
| | - Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China
| | - Rong Chen
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Dongle Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Shengquan Guo
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yunyang Cao
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| |
Collapse
|
27
|
Liu W, Bin L, Tang B, Li P, Huang S, Fu F, Huang Z, Guan G. Operational and fouling characteristics of the combined oxidation ditch—membrane bioreactor under a continuous-flow mode. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Xu H, Guo L, Guo S, Wang Y, She Z, Gao M, Zhao Y, Jin C. Effect of magnetic powder on denitrification using the sludge alkaline fermentation liquid as a carbon source. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7712-7719. [PMID: 31879873 DOI: 10.1007/s11356-019-07461-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
This work evaluates the impact of the different concentrations of Fe3O4 on nitrate removal and organic matters utilization in the sequencing batch reactors (SBRs) using the sludge alkaline digestion supernatant as external sludge carbon source. Results indicated that the optimal concentration of Fe3O4 was 1 g/L for enhancing denitrification with NO3--N removal efficiency of 93.13% (up to a 11.93% increase) and without NO2--N accumulation after 18 days. The changes of soluble chemical oxygen demand (SCOD), protein, and carbohydrate during denitrification process were analyzed to gauge the utilization of sludge fermentation products by denitrifiers. The SCOD was consumed for organisms involved in NO3--N removal and the Fe3O4 could promote the utilization of carbohydrate better than protein by denitrifiers during denitrification process. Denitrification rate (VDN) and the nitrate-to-nitrite transformation ratio (NTR), as the kinetics parameters, were also investigated in different concentrations of Fe3O4.
Collapse
Affiliation(s)
- Haiqing Xu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Shiliang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
29
|
Insights into membrane fouling implicated by physical adsorption of soluble microbial products onto D3520 resin. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2019.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Song W, Lee LY, You H, Shi X, Ng HY. Microbial community succession and its correlation with reactor performance in a sponge membrane bioreactor coupled with fiber-bundle anoxic bio-filter for treating saline mariculture wastewater. BIORESOURCE TECHNOLOGY 2020; 295:122284. [PMID: 31669869 DOI: 10.1016/j.biortech.2019.122284] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The application of MBR in high saline wastewater treatment is mainly constrained by poor nitrogen removal and severe membrane fouling caused by high salinity stress. A novel carriers-enhanced MBR system was successfully developed for treating saline mariculture wastewater, which showed efficient TN removal (93.2%) and fouling control. High-throughput sequencing revealed the enhancement mechanism of bio-carriers under high saline condition. Bio-carriers substantially improved the community structure, representatively, nitrifiers abundance (Nitrosomonas, Nitrospira) increased from 2.18% to 9.57%, abundance of denitrifiers (Sulfurimonas, Thermogutta, etc.) also rose from 3.81% to 14.82%. Thereby, the nitrogen removal process was enhanced. Noteworthy, ammonia oxidizer (Nitrosomonas, 8.26%) was the absolute dominant nitrifiers compared with nitrite oxidizer (Nitrospira, 1.13%). This supported the finding of shortcut nitrification-denitrification process in hybrid system. Moreover, a series of biomacromolecule degraders (Lutibacterium, Cycloclasticus, etc.) were detected in bio-carriers, which could account for the mitigation of membrane fouling as result of EPS and SMP degradation.
Collapse
Affiliation(s)
- Weilong Song
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| | - Lai Yoke Lee
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xueqing Shi
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - How Yong Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
31
|
Zhao Y, Liu D, Huang W, Yang Y, Ji M, Nghiem LD, Trinh QT, Tran NH. Insights into biofilm carriers for biological wastewater treatment processes: Current state-of-the-art, challenges, and opportunities. BIORESOURCE TECHNOLOGY 2019; 288:121619. [PMID: 31202712 DOI: 10.1016/j.biortech.2019.121619] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Biofilm carriers play an important role in attached growth systems for wastewater treatment processes. This study systematically summarizes the traditional and novel biofilm carriers utilized in biofilm-based wastewater treatment technology. The advantages and disadvantages of traditional biofilm carriers are evaluated and discussed in light of basic property, biocompatibility and applicability. The characteristics, applications performance, and mechanism of novel carriers (including slow-release carriers, hydrophilic/electrophilic modified carriers, magnetic carriers and redox mediator carriers) in wastewater biological treatment were deeply analyzed. Slow release biofilm carriers are used to provide a solid substrate and electron donor for the growth of microorganisms and denitrification for anoxic and/or anaerobic bioreactors. Carriers with hydrophilic/electrophilic modified surface are applied for promoting biofilm formation. Magnetic materials-based carriers are employed to shorten the start-up time of bioreactor. Biofilm carriers acting as redox mediators are used to accelerate biotransformation of recalcitrant pollutants in industrial wastewater.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Duo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Wenli Huang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ying Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Long Duc Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Quang Thang Trinh
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Ngoc Han Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; NUS Environmental Research Institute, National University of Singapore, 1-Create Way, #15-02 Create Tower, Singapore 138602, Singapore.
| |
Collapse
|
32
|
Systematic insight into the short-term and long-term effects of magnetic microparticles and nanoparticles on critical flux in membrane bioreactors. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Li X, Li Y, Li Y, Wu J. Diversity and distribution of bacteria in a multistage surface flow constructed wetland to treat swine wastewater in sediments. Appl Microbiol Biotechnol 2018; 102:10755-10765. [DOI: 10.1007/s00253-018-9426-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/23/2018] [Accepted: 09/30/2018] [Indexed: 01/15/2023]
|
34
|
Takada K, Shiba T, Yamaguchi T, Akane Y, Nakayama Y, Soda S, Inoue D, Ike M. Cake layer bacterial communities during different biofouling stages in full-scale membrane bioreactors. BIORESOURCE TECHNOLOGY 2018; 259:259-267. [PMID: 29571169 DOI: 10.1016/j.biortech.2018.03.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/06/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
A detailed understanding of the bacterial communities in the cake layers formed on the membrane surface is required to control biofouling in a membrane bioreactor (MBR). This study aimed to investigate the dynamics of the cake layer bacterial communities in full-scale MBRs operated in a wastewater treatment plant in Japan and to identify the key bacteria responsible for cake layer formation. The bacterial communities in the cake layer and the activated sludge were analyzed using 16S rRNA gene amplicon sequencing when biofouling occurred under different fouling conditions. The most dominant phyla in activated sludge were almost always Proteobacteria and Bacteroidetes. By contrast, when the cake layer had unique bacterial communities distinguishable from those in the activated sludge, members of Firmicutes were highly dominant in the cake layer, irrespective of the fouling conditions. This study reported for the first time that Firmicutes play an important role throughout the biofouling process.
Collapse
Affiliation(s)
- Kazuki Takada
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihiko Shiba
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takako Yamaguchi
- Sakai City Waterworks and Sewerage Bureau, 1-39-2 Mozuumekita-cho, Kita-ku, Sakai, Osaka 591-8505, Japan
| | - Yui Akane
- Sakai City Waterworks and Sewerage Bureau, 1-39-2 Mozuumekita-cho, Kita-ku, Sakai, Osaka 591-8505, Japan
| | - Yoshinari Nakayama
- Sakai City Waterworks and Sewerage Bureau, 1-39-2 Mozuumekita-cho, Kita-ku, Sakai, Osaka 591-8505, Japan
| | - Satoshi Soda
- Department of Environmental Systems Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|