1
|
Chang YC, Reddy MV, Mawatari Y, Sarkar O. Enhanced polyhydroxyalkanoate biosynthesis by Cupriavidus sp. CY-1 utilizing CO 2 under controlled non-explosive conditions. CHEMOSPHERE 2025; 373:144181. [PMID: 39908848 DOI: 10.1016/j.chemosphere.2025.144181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/09/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
The production of polyhydroxyalkanoate (PHA) using CO2 through hydrogen-oxidizing bacteria under safe, non-explosive conditions is making impressive strides. The present study aimed to evaluate and demonstrate the growth and productivity of PHA by Cupriavidus sp. CY-1 under different non-explosive conditions, thereby providing critical data for practical applications. The experimental results highlighted the efficiency of the CY-1 strain in PHA biosynthesis, achieving a production rate of 11.87 g L-1, which corresponds to a 90.6% yield when fermenting a gaseous substrate composed of H2 (70%), O2 (20%), and CO2 (10%). The study also examined PHA production under different non-explosive conditions, including H2 concentrations of 3.8% (v/v) and O2 at 6.5% (v/v). Furthermore, the impact of CO (30% and higher) was assessed, revealing a detrimental effect on growth and PHA production. Notably, the addition of Tween 80 significantly enhanced PHA productivity. The effective utilization of CO2 has confirmed poly[(R)-3-hydroxybutyrate] (PHB) as a valuable derived form of PHA. By implementing a two-step treatment with valeric acid, we successfully produced P(3HB-co-3HV) (PHBV) at a concentration of 1.47 g L-1. This achievement highlights the potential to enhance PHA production through innovative strategies. Furthermore, the examination of phaC gene expression levels has facilitated accurate predictions of PHA productivity. The use of CO2 from trichloroethylene (TCE) biodegradation faced concentration-related challenges; however, the higher CO2 levels achieved from phenol biodegradation, at 1200 mg L-1, indicate substantial potential for efficient PHA production.
Collapse
Affiliation(s)
- Young-Cheol Chang
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, 050-8585, Japan.
| | - M Venkateswar Reddy
- University of Kentucky, Veterinary Diagnostic Laboratory, 1490, Bull Lea RD, Lexington, KY, 40512-4125, USA
| | - Yasuteru Mawatari
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, 050-8585, Japan
| | - Omprakash Sarkar
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971-87, Luleå, Sweden
| |
Collapse
|
2
|
Tamamura M, Gibu N, Toda T, Takenaka K, Hang DT, Huong NL, Andler R, Kasai D. Characterization of the conversion system of natural rubber to poly(3-Hydroxyalkanoate) in Piscinibacter gummiphilus strain NS21 T. N Biotechnol 2024; 84:1-8. [PMID: 39216800 DOI: 10.1016/j.nbt.2024.08.507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Poly(3-hydroxyalkanoate) (PHA), a bacteria-synthesized biodegradable polyester, is a useful alternative to fossil resources, and current systems for its production rely predominantly on edible resources, raising concerns about microbial competition for nutrients. Therefore, we investigated mechanisms underlying PHA production from non-edible resources by Piscinibacter gummiphilus strain NS21T. Strain NS21T can utilize natural rubber as a carbon source on solid media and potentially produces PHA. Gas chromatography and nuclear magnetic resonance analyses of NS21T cell extracts revealed the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(3-hydroxybutyrate) from natural rubber and glucose, respectively. Transcriptional analysis suggested that phaC is involved in PHA production. An increased PHBV accumulation rate under nitrogen-limiting conditions indicates the potential of this strain to be used as a PHBV production enhancement strategy. Furthermore, the disruption of PHA depolymerase genes resulted in enhanced PHA production, indicating the involvement of these genes in PHA degradation. These findings highlight the potential of NS21T for PHBV production from natural rubber, a non-edible resource.
Collapse
Affiliation(s)
- Masaki Tamamura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Namiko Gibu
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Tomoyuki Toda
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Katsuhiko Takenaka
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Dam Thuy Hang
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, No 1 Dai Co Viet, Hai Ba Trung, Hanoi, Viet Nam
| | - Nguyen Lan Huong
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, No 1 Dai Co Viet, Hai Ba Trung, Hanoi, Viet Nam
| | - Rodrigo Andler
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca, Maule, Chile
| | - Daisuke Kasai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan.
| |
Collapse
|
3
|
Jo SY, Lim SH, Lee JY, Son J, Choi JI, Park SJ. Microbial production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), from lab to the shelf: A review. Int J Biol Macromol 2024; 274:133157. [PMID: 38901504 DOI: 10.1016/j.ijbiomac.2024.133157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are natural biopolyesters produced by microorganisms that represent one of the most promising candidates for the replacement of conventional plastics due to their complete biodegradability and advantageous material properties which can be modulated by varying their monomer composition. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] has received particular research attention because it can be synthesized based on the same microbial platform developed for poly(3-hydroxybutyrate) [P(3HB)] without much modification, with as high productivity as P(3HB). It also offers more useful mechanical and thermal properties than P(3HB), which broaden its application as a biocompatible and biodegradable polyester. However, a significant commercial disadvantage of P(3HB-co-3HV) is its rather high production cost, thus many studies have investigated the economical synthesis of P(3HB-co-3HV) from structurally related and unrelated carbon sources in both wild-type and recombinant microbial strains. A large number of metabolic engineering strategies have also been proposed to tune the monomer composition of P(3HB-co-3HV) and thus its material properties. In this review, recent metabolic engineering strategies designed for enhanced production of P(3HB-co-3HV) are discussed, along with their current status, limitations, and future perspectives.
Collapse
Affiliation(s)
- Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Yeon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
4
|
Nhu TT, Boone L, Guillard V, Chatellard L, Reis M, Matos M, Dewulf J. Environmental sustainability assessment of biodegradable bio-based poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from agro-residues: Production and end-of-life scenarios. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120522. [PMID: 38493645 DOI: 10.1016/j.jenvman.2024.120522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
In the context of a circular bio-based economy, more public attention has been paid to the environmental sustainability of biodegradable bio-based plastics, particularly plastics produced using emerging biotechnologies, e.g. poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV. However, this has not been thoroughly investigated in the literature. Therefore, this study aimed to address three aspects regarding the environmental impact of PHBV-based plastic: (i) the potential environmental benefits of scaling up pellet production from pilot to industrial scale and the environmental hotspots at each scale, (ii) the most favourable end-of-life (EOL) scenario for PHBV, and (iii) the environmental performance of PHBV compared to benchmark materials considering both the pellet production and EOL stages. Life cycle assessment (LCA) was implemented using Cumulative Exergy Extraction from the Natural Environment (CEENE) and Environmental Footprint (EF) methods. The results show that, firstly, when upscaling the PHBV pellet production from pilot to industrial scale, a significant environmental benefit can be achieved by reducing electricity and nutrient usage, together with the implementation of better practices such as recycling effluent for diluting feedstock. Moreover, from the circularity perspective, mechanical recycling might be the most favourable EOL scenario for short-life PHBV-based products, using the carbon neutrality approach, as the material remains recycled and hence environmental credits are achieved by substituting recyclates for virgin raw materials. Lastly, PHBV can be environmentally beneficial equal to or even to some extent greater than common bio- and fossil-based plastics produced with well-established technologies. Besides methodological choices, feedstock source and technology specifications (e.g. pure or mixed microbial cultures) were also identified as significant factors contributing to the variations in LCA of (bio)plastics; therefore, transparency in reporting these factors, along with consistency in implementing the methodologies, is crucial for conducting a meaningful comparative LCA.
Collapse
Affiliation(s)
- Trang T Nhu
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Lieselot Boone
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Valérie Guillard
- Department of IATE, University of Montpellier, place Pierre Viala 2, 34060 Montpellier, France
| | - Lucile Chatellard
- Department of IATE, University of Montpellier, place Pierre Viala 2, 34060 Montpellier, France
| | - Maria Reis
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Mariana Matos
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jo Dewulf
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| |
Collapse
|
5
|
Ma R, Li J, Tyagi RD, Zhang X. Carbon dioxide and methane as carbon source for the production of polyhydroxyalkanoates and concomitant carbon fixation. BIORESOURCE TECHNOLOGY 2024; 391:129977. [PMID: 37925086 DOI: 10.1016/j.biortech.2023.129977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
The currently used plastics are non-biodegradable, and cause greenhouse gases (GHGs) emission as they are petroleum-based. Polyhydroxyalkanoates (PHAs) are biopolymers with excellent biodegradability and biocompatibility, which can be used to replace petroleum-based plastics. A variety of microorganisms have been found to synthesize PHAs by using typical GHGs: carbon dioxide and methane as carbon sources. Converting carbon dioxide (CO2) and methane (CH4) to PHAs is an attractive option for carbon capture and biodegradable plastic production. In this review, the microorganisms capable of using CO2 and CH4 to produce PHAs were summarized. The metabolic mechanism, PHAs production process, and the factors influencing the production process are illustrated. The currently used optimization techniques to improve the yield of PHAs are discussed. The challenges and future prospects for developing economically viable PHAs production using GHGs as carbon source are identified. This work provides an insight for achieving carbon sequestration and bioplastics based circular economy.
Collapse
Affiliation(s)
- Rui Ma
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen, Shenzhen Guangdong 518055, PR China
| | - Ji Li
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen, Shenzhen Guangdong 518055, PR China
| | - R D Tyagi
- Chief Scientific Officer, BOSK-Bioproducts, Quebec, Canada
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen, Shenzhen Guangdong 518055, PR China.
| |
Collapse
|
6
|
Tanaka K, Orita I, Fukui T. Production of Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate) from CO 2 via pH-Stat Jar Cultivation of an Engineered Hydrogen-Oxidizing Bacterium Cupriavidus necator. Bioengineering (Basel) 2023; 10:1304. [PMID: 38002428 PMCID: PMC10669266 DOI: 10.3390/bioengineering10111304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The copolyester of 3-hydroxybutyrate (3HB) and 3-hydoxyhexanoate (3HHx), PHBHHx, is a biodegradable plastic characterized by high flexibility, softness, a wide process window, and marine biodegradability. PHBHHx is usually produced from structurally related carbon sources, such as vegetable oils or fatty acids, but not from inexpensive carbon sources such as sugars. In previous studies, we demonstrated that engineered strains of a hydrogen-oxidizing bacterium, Cupriavidus necator, synthesized PHBHHx with a high cellular content not only from sugars but also from CO2 as the sole carbon source in the flask culture. In this study, the highly efficient production of PHBHHx from CO2 was investigated via pH-stat jar cultivation of recombinant C. necator strains while feeding the substrate gas mixture (H2/O2/CO2 = 80:10:10 v/v%) to a complete mineral medium in a recycled-gas, closed-circuit culture system. As a result, the dry cell mass and PHBHHx concentration with the strain MF01/pBPP-ccrMeJAc-emd reached up to 59.62 ± 3.18 g·L-1 and 49.31 ± 3.14 g·L-1, respectively, after 216 h of jar cultivation with limited addition of ammonia and phosphate solutions. The 3HHx composition was close to 10 mol%, which is suitable for practical applications. It is expected that the autotrophic cultivation of the recombinant C. necator can be feasible for the mass production of PHBHHx from CO2.
Collapse
Affiliation(s)
- Kenji Tanaka
- Faculty of Humanity-Oriented Science and Engineering, Kindai University, 11-6 Kayanomori, Iizuka-shi 820-8555, Japan
| | - Izumi Orita
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan; (I.O.); (T.F.)
| | - Toshiaki Fukui
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan; (I.O.); (T.F.)
| |
Collapse
|
7
|
Tang R, Yuan X, Yang J. Problems and corresponding strategies for converting CO 2 into value-added products in Cupriavidus necator H16 cell factories. Biotechnol Adv 2023; 67:108183. [PMID: 37286176 DOI: 10.1016/j.biotechadv.2023.108183] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Elevated CO2 emissions have substantially altered the worldwide climate, while the excessive reliance on fossil fuels has exacerbated the energy crisis. Therefore, the conversion of CO2 into fuel, petroleum-based derivatives, drug precursors, and other value-added products is expected. Cupriavidus necator H16 is the model organism of the "Knallgas" bacterium and is considered to be a microbial cell factory as it can convert CO2 into various value-added products. However, the development and application of C. necator H16 cell factories has several limitations, including low efficiency, high cost, and safety concerns arising from the autotrophic metabolic characteristics of the strains. In this review, we first considered the autotrophic metabolic characteristics of C. necator H16, and then categorized and summarized the resulting problems. We also provided a detailed discussion of some corresponding strategies concerning metabolic engineering, trophic models, and cultivation mode. Finally, we provided several suggestions for improving and combining them. This review might help in the research and application of the conversion of CO2 into value-added products in C. necator H16 cell factories.
Collapse
Affiliation(s)
- Ruohao Tang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong Province, People's Republic of China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong Province, People's Republic of China
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China.
| |
Collapse
|
8
|
Ray S, Jin JO, Choi I, Kim M. Recent trends of biotechnological production of polyhydroxyalkanoates from C1 carbon sources. Front Bioeng Biotechnol 2023; 10:907500. [PMID: 36686222 PMCID: PMC9852868 DOI: 10.3389/fbioe.2022.907500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
Growing concerns over the use of limited fossil fuels and their negative impacts on the ecological niches have facilitated the exploration of alternative routes. The use of conventional plastic material also negatively impacts the environment. One such green alternative is polyhydroxyalkanoates, which are biodegradable, biocompatible, and environmentally friendly. Recently, researchers have focused on the utilization of waste gases particularly those belonging to C1 sources derived directly from industries and anthropogenic activities, such as carbon dioxide, methane, and methanol as the substrate for polyhydroxyalkanoates production. Consequently, several microorganisms have been exploited to utilize waste gases for their growth and biopolymer accumulation. Methylotrophs such as Methylobacterium organophilum produced highest amount of PHA up to 88% using CH4 as the sole carbon source and 52-56% with CH3OH. On the other hand Cupriavidus necator, produced 71-81% of PHA by utilizing CO and CO2 as a substrate. The present review shows the potential of waste gas valorization as a promising solution for the sustainable production of polyhydroxyalkanoates. Key bottlenecks towards the usage of gaseous substrates obstructing their realization on a large scale and the possible technological solutions were also highlighted. Several strategies for PHA production using C1 gases through fermentation and metabolic engineering approaches are discussed. Microbes such as autotrophs, acetogens, and methanotrophs can produce PHA from CO2, CO, and CH4. Therefore, this article presents a vision of C1 gas into bioplastics are prospective strategies with promising potential application, and aspects related to the sustainability of the system.
Collapse
Affiliation(s)
- Subhasree Ray
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea,Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, India,*Correspondence: Myunghee Kim, ; Subhasree Ray,
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Myunghee Kim
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Myunghee Kim, ; Subhasree Ray,
| |
Collapse
|
9
|
Hathi ZJ, Haque MA, Priya A, Qin ZH, Huang S, Lam CH, Ladakis D, Pateraki C, Mettu S, Koutinas A, Du C, Lin CSK. Fermentative bioconversion of food waste into biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) using Cupriavidus necator. ENVIRONMENTAL RESEARCH 2022; 215:114323. [PMID: 36115419 DOI: 10.1016/j.envres.2022.114323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/20/2022] [Accepted: 09/07/2022] [Indexed: 05/27/2023]
Abstract
Dependency on plastic commodities has led to a recurrent increase in their global production every year. Conventionally, plastic products are derived from fossil fuels, leading to severe environmental concerns. The recent coronavirus disease 2019 pandemic has triggered an increase in medical waste. Conversely, it has disrupted the supply chain of personal protective equipment (PPE). Valorisation of food waste was performed to cultivate C. necator for fermentative production of biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The increase in biomass, PHBV yield and molar 3-hydroxy valerate (3HV) content was estimated after feeding volatile fatty acids. The fed-batch fermentation strategy reported in this study produced 15.65 ± 0.14 g/L of biomass with 5.32 g/L of PHBV with 50% molar 3HV content. This is a crucial finding, as molar concentration of 3HV can be modulated to suit the specification of biopolymer (film or fabric). The strategy applied in this study addresses the issue of global food waste burden and subsequently generates biopolymer PHBV, turning waste to wealth.
Collapse
Affiliation(s)
- Zubeen J Hathi
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Md Ariful Haque
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Anshu Priya
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Zi-Hao Qin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Shuquan Huang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Chun Ho Lam
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Dimitris Ladakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Chrysanthi Pateraki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Srinivas Mettu
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Chenyu Du
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong.
| |
Collapse
|
10
|
Microplastic burden in Africa: A review of occurrence, impacts, and sustainability potential of bioplastics. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
11
|
Miyahara Y, Wang CT, Ishii-Hyakutake M, Tsuge T. Continuous Supply of Non-Combustible Gas Mixture for Safe Autotrophic Culture to Produce Polyhydroxyalkanoate by Hydrogen-Oxidizing Bacteria. Bioengineering (Basel) 2022; 9:bioengineering9100586. [PMID: 36290554 PMCID: PMC9598887 DOI: 10.3390/bioengineering9100586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are eco-friendly plastics that are thermoplastic and biodegradable in nature. The hydrogen-oxidizing bacterium Ralstonia eutropha can biosynthesize poly[(R)-3-hydroxybutyrate] [P(3HB)], the most common PHA, from carbon dioxide using hydrogen and oxygen as energy sources. In conventional autotrophic cultivation using R. eutropha, a gas mixture containing 75−80 vol% hydrogen is supplied; however, a gas mixture with such a high hydrogen content has a risk of explosion due to gas leakage. In this study, we aimed to develop an efficient cell culture system with a continuous supply of a non-combustible gas mixture (H2: O2: CO2: N2 = 3.8: 7.3: 13.0: 75.9) for safe autotrophic culture to produce P(3HB) by hydrogen-oxidizing bacteria, with a controlled hydrogen concentration under a lower explosive limit concentration. When the gas mixture was continuously supplied to the jar fermentor, the cell growth of R. eutropha H16 significantly improved compared to that in previous studies using flask cultures. Furthermore, an increased gas flow rate and agitation speed enhanced both cell growth and P(3HB) production. Nitrogen source deficiency promoted P(3HB) production, achieving up to 2.94 g/L P(3HB) and 89 wt% P(3HB) content in the cells after 144 h cultivation. R. eutropha NCIMB 11599, recombinant R. eutropha PHB-4, and Azohydromonas lata grew in a low-hydrogen-content gas mixture. R. eutropha H16 and recombinant R. eutropha PHB-4 expressing PHA synthase from Bacillus cereus YB-4 synthesized P(3HB) with a high weight-average molecular weight of 13.5−16.9 × 105. Thus, this autotrophic culture system is highly beneficial for PHA production from carbon dioxide using hydrogen-oxidizing bacteria as the risk of explosion is eliminated.
Collapse
Affiliation(s)
- Yuki Miyahara
- Correspondence: (Y.M.); (T.T.); Tel.: +81-45-924-5420 (T.T.)
| | | | | | - Takeharu Tsuge
- Correspondence: (Y.M.); (T.T.); Tel.: +81-45-924-5420 (T.T.)
| |
Collapse
|
12
|
Cruz RMS, Krauter V, Krauter S, Agriopoulou S, Weinrich R, Herbes C, Scholten PBV, Uysal-Unalan I, Sogut E, Kopacic S, Lahti J, Rutkaite R, Varzakas T. Bioplastics for Food Packaging: Environmental Impact, Trends and Regulatory Aspects. Foods 2022; 11:3087. [PMID: 36230164 PMCID: PMC9563026 DOI: 10.3390/foods11193087] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
The demand to develop and produce eco-friendly alternatives for food packaging is increasing. The huge negative impact that the disposal of so-called "single-use plastics" has on the environment is propelling the market to search for new solutions, and requires initiatives to drive faster responses from the scientific community, the industry, and governmental bodies for the adoption and implementation of new materials. Bioplastics are an alternative group of materials that are partly or entirely produced from renewable sources. Some bioplastics are biodegradable or even compostable under the right conditions. This review presents the different properties of these materials, mechanisms of biodegradation, and their environmental impact, but also presents a holistic overview of the most important bioplastics available in the market and their potential application for food packaging, consumer perception of the bioplastics, regulatory aspects, and future challenges.
Collapse
Affiliation(s)
- Rui M S Cruz
- Department of Food Engineering, Institute of Engineering, Campus da Penha, Universidade do Algarve, 8005-139 Faro, Portugal
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Faculty of Sciences and Technology, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Victoria Krauter
- Packaging and Resource Management, Department Applied Life Sciences, FH Campus Wien, University of Applied Sciences, 1100 Vienna, Austria
| | - Simon Krauter
- Packaging and Resource Management, Department Applied Life Sciences, FH Campus Wien, University of Applied Sciences, 1100 Vienna, Austria
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of Peloponnese, 24100 Kalamata, Greece
| | - Ramona Weinrich
- Department of Consumer Behaviour in the Bioeconomy, University of Hohenheim, Wollgrasweg 49, 70599 Stuttgart, Germany
| | - Carsten Herbes
- Institute for International Research on Sustainable Management and Renewable Energy, Nuertingen Geislingen University, Neckarsteige 6-10, 72622 Nuertingen, Germany
| | - Philip B V Scholten
- Bloom Biorenewables, Route de l'Ancienne Papeterie 106, 1723 Marly, Switzerland
| | - Ilke Uysal-Unalan
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
- CiFOOD-Center for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
| | - Ece Sogut
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
- Department of Food Engineering, Suleyman Demirel University, 32200 Isparta, Turkey
| | - Samir Kopacic
- Institute for Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria
| | - Johanna Lahti
- Sustainable Products and Materials, VTT Technical Research Centre of Finland, Visiokatu 4, 33720 Tampere, Finland
| | - Ramune Rutkaite
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd 19, 50254 Kaunas, Lithuania
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of Peloponnese, 24100 Kalamata, Greece
| |
Collapse
|
13
|
Lin L, Huang H, Zhang X, Dong L, Chen Y. Hydrogen-oxidizing bacteria and their applications in resource recovery and pollutant removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155559. [PMID: 35483467 DOI: 10.1016/j.scitotenv.2022.155559] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Hydrogen oxidizing bacteria (HOB), a type of chemoautotroph, are a group of bacteria from different genera that share the ability to oxidize H2 and fix CO2 to provide energy and synthesize cellular material. Recently, HOB have received growing attention due to their potential for CO2 capture and waste recovery. This review provides a comprehensive overview of the biological characteristics of HOB and their application in resource recovery and pollutant removal. Firstly, the enzymes, genes and corresponding regulation systems responsible for the key metabolic processes of HOB are discussed in detail. Then, the enrichment and cultivation methods including the coupled water splitting-biosynthetic system cultivation, mixed cultivation and two-stage cultivation strategies for HOB are summarized, which is the critical prerequisite for their application. On the basis, recent advances of HOB application in the recovery of high-value products and the removal of pollutants are presented. Finally, the key points for future investigation are proposed that more attention should be paid to the main limitations in the large-scale industrial application of HOB, including the mass transfer rate of the gases, the safety of the production processes and products, and the commercial value of the products.
Collapse
Affiliation(s)
- Lin Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xin Zhang
- Shanghai Municipal Engineering Design Institute (Group) Co. LTD, 901 Zhongshan North Second Rd, Shanghai 200092, China
| | - Lei Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Municipal Engineering Design Institute (Group) Co. LTD, 901 Zhongshan North Second Rd, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
14
|
Abstract
The facultative chemolithoautotroph Cupriavidus necator H16 is able to grow aerobically either with organic substrates or H2 and CO2 s and it can accumulate large amounts of (up to 90%) poly (3-hydroxybutyrate), a polyhydroxyalkanoate (PHA) biopolymer. The ability of this organism to co-utilize volatile fatty acids (VFAs) and CO2 as sources of carbon under mixotrophic growth conditions was investigated and PHA production was monitored. PHA accumulation was assessed under aerobic conditions, with either individual VFAs or in mixtures, under three different conditions—with CO2 as additional carbon source, without CO2 and with CO2 and H2 as additional sources of carbon and energy. VFAs utilisation rates were slower in the presence of CO2. PHA production was significantly higher when cultures were grown mixotrophically and with H2 as an additional energy source compared to heterotrophic or mixotrophic growth conditions, without H2. Furthermore, a two-step VFA feeding regime was found to be the most effective method for PHA accumulation. It was used for PHA production mixotrophically using CO2, H2 and VFA mixture derived from an anaerobic digestor (AD). The data obtained demonstrated that process parameters need to be carefully monitored to avoid VFA toxicity and low product accumulation.
Collapse
|
15
|
Meng D, Miao C, Liu Y, Wang F, Chen L, Huang Z, Fan X, Gu P, Li Q. Metabolic engineering for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose and propionic acid in recombinant Escherichia coli. BIORESOURCE TECHNOLOGY 2022; 348:126786. [PMID: 35114368 DOI: 10.1016/j.biortech.2022.126786] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
In this study, novel polyhydroxyalkanoate (PHA)-associated genes (phaCp and phaABp) cloned from Propylenella binzhouense L72T were expressed in Escherichiacoli cells for PHA production, and the recombinant strains were used to analyze PHA yields with various substrates. The highest poly (3-hydroxybutyrate-co-3-hydroxy-valerate) (PHBV) yield (1.06 g/L) and cell dry weight (3.31 g/L) in E. coli DH5α/ΔptsG-CpABp were achieved by using glucose and propionicacid as substrates. Structural verification of PHBV produced by E. coli DH5α/ΔptsG-CpABp was performed to evaluate the characteristics of the polymers using Fourier transform infrared spectroscopy and nuclear magnetic resonance analysis. In addition, the X-ray diffraction results showed improved crystallinity of PHBV, and thermogravimetric analysis showed good thermal stability of 298 °C. The above findings indicated that the expression of phaCp and phaABp genes resulted in improved PHBV synthesis activity, and the polymer had better performance at higher processing temperatures.
Collapse
Affiliation(s)
- Dong Meng
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| | - Changfeng Miao
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| | - Yuling Liu
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| | - Fang Wang
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| | - Lu Chen
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| | - Zhaosong Huang
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| | - Xiangyu Fan
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, PR China.
| |
Collapse
|
16
|
Yoon J, Oh MK. Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: A review. BIORESOURCE TECHNOLOGY 2022; 344:126307. [PMID: 34767907 DOI: 10.1016/j.biortech.2021.126307] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Biosynthesis of polyhydroxyalkanoates (PHAs) from C1 gases is highly desirable in solving problems such as climate change and microplastic pollution. PHAs are biopolymers synthesized in microbial cells and can be used as alternatives to petroleum-based plastics because of their biodegradability. Because 50% of the cost of PHA production is due to organic carbon sources and salts, the utilization of costless C1 gases as carbon sources is expected to be a promising approach for PHA production. In this review, strategies for PHA production using C1 gases through fermentation and metabolic engineering are discussed. In particular, autotrophs, acetogens, and methanotrophs are strains that can produce PHA from CO2, CO, and CH4. In addition, integrated bioprocesses for the efficient utilization of C1 gases are introduced. Biorefinery processes from C1 gas into bioplastics are prospective strategies with promising potential and feasibility to alleviate environmental issues.
Collapse
Affiliation(s)
- Jihee Yoon
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
17
|
Alvarez Chavez B, Raghavan V, Tartakovsky B. A comparative analysis of biopolymer production by microbial and bioelectrochemical technologies. RSC Adv 2022; 12:16105-16118. [PMID: 35733669 PMCID: PMC9159792 DOI: 10.1039/d1ra08796g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/03/2022] [Indexed: 12/02/2022] Open
Abstract
Production of biopolymers from renewable carbon sources provides a path towards a circular economy. This review compares several existing and emerging approaches for polyhydroxyalkanoate (PHA) production from soluble organic and gaseous carbon sources and considers technologies based on pure and mixed microbial cultures. While bioplastics are most often produced from soluble sources of organic carbon, the use of carbon dioxide (CO2) as the carbon source for PHA production is emerging as a sustainable approach that combines CO2 sequestration with the production of a value-added product. Techno-economic analysis suggests that the emerging approach of CO2 conversion to carboxylic acids by microbial electrosynthesis followed by microbial PHA production could lead to a novel cost-efficient technology for production of green biopolymers. Biopolymers production from renewable carbon sources.![]()
Collapse
Affiliation(s)
- Brenda Alvarez Chavez
- McGill University, Bioresource Engineering Department, 21111 Lakeshore Rd., Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
- National Research Council of Canada, 6100 Royalmount Ave, Montreal, QC H4P 2R2, Canada
| | - Vijaya Raghavan
- McGill University, Bioresource Engineering Department, 21111 Lakeshore Rd., Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Boris Tartakovsky
- McGill University, Bioresource Engineering Department, 21111 Lakeshore Rd., Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
- National Research Council of Canada, 6100 Royalmount Ave, Montreal, QC H4P 2R2, Canada
| |
Collapse
|
18
|
Ortega F, Versino F, López OV, García MA. Biobased composites from agro-industrial wastes and by-products. EMERGENT MATERIALS 2022; 5:873-921. [PMID: 34849454 PMCID: PMC8614084 DOI: 10.1007/s42247-021-00319-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/14/2021] [Indexed: 05/09/2023]
Abstract
The greater awareness of non-renewable natural resources preservation needs has led to the development of more ecological high-performance polymeric materials with new functionalities. In this regard, biobased composites are considered interesting options, especially those obtained from agro-industrial wastes and by-products. These are low-cost raw materials derived from renewable sources, which are mostly biodegradable and would otherwise typically be discarded. In this review, recent and innovative academic studies on composites obtained from biopolymers, natural fillers and active agents, as well as green-synthesized nanoparticles are presented. An in-depth discussion of biobased composites structures, properties, manufacture, and life-cycle assessment (LCA) is provided along with a wide up-to-date overview of the most recent works in the field with appropriate references. Potential uses of biobased composites from agri-food residues such as active and intelligent food packaging, agricultural inputs, tissue engineering, among others are described, considering that the specific characteristics of these materials should match the proposed application.
Collapse
Affiliation(s)
- Florencia Ortega
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| | - Florencia Versino
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| | - Olivia Valeria López
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Camino La Carrindanga km.7 (8000), Bahía Blanca, Argentina
| | - María Alejandra García
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| |
Collapse
|
19
|
Jo SY, Son J, Sohn YJ, Lim SH, Lee JY, Yoo JI, Park SY, Na JG, Park SJ. A shortcut to carbon-neutral bioplastic production: Recent advances in microbial production of polyhydroxyalkanoates from C1 resources. Int J Biol Macromol 2021; 192:978-998. [PMID: 34656544 DOI: 10.1016/j.ijbiomac.2021.10.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022]
Abstract
Since the 20th century, plastics that are widely being used in general life and industries are causing enormous plastic waste problems since improperly discarded plastics barely degrade and decompose. Thus, the demand for polyhydroxyalkanoates (PHAs), biodegradable polymers with material properties similar to conventional petroleum-based plastics, has been increased so far. The microbial production of PHAs is an environment-friendly solution for the current plastic crisis, however, the carbon sources for the microbial PHA production is a crucial factor to be considered in terms of carbon-neutrality. One‑carbon (C1) resources, such as methane, carbon monoxide, and carbon dioxide, are greenhouse gases and are abundantly found in nature and industry. C1 resources as the carbon sources for PHA production have a completely closed carbon loop with much advances; i) fast carbon circulation with direct bioconversion process and ii) simple fermentation procedure without sterilization as non-preferable nutrients. This review discusses the biosynthesis of PHAs based on C1 resource utilization by wild-type and metabolically engineered microbial host strains via biorefinery processes.
Collapse
Affiliation(s)
- Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Ji Yeon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jee In Yoo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Se Young Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
20
|
Bishoff D, AlSayed A, Eldyasti A. Production of poly-hydroxy-butyrate using nitrogen removing methanotrophic mixed culture bioreactor. J Biosci Bioeng 2021; 132:351-358. [PMID: 34045142 DOI: 10.1016/j.jbiosc.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/06/2021] [Accepted: 04/17/2021] [Indexed: 10/21/2022]
Abstract
Methanotrophic biotechnologies for methane mitigation and nitrogen removal are becoming more apparent. However, the sludge produced during these processes is often underutilized and instead can be applied for resources recovery. Fortunately, methanotrophic bacteria can utilize methane while also producing poly-hydroxy-butyrate (PHB), bioplastics, under nutrients deficient conditions. Bioplastics are increasing in popularity and can be produced from unexploited resources, such as methane and carbon dioxide, within wastewater facilities. This research demonstrates that methanotrophic sludge generated during a methanotrophic-based nitrogen removal process, which has been recently suggested, can be directly utilized for PHB production. It was found that the PHB storage response of the methanotrophic driven mixed culture was greatest when methane and oxygen were supplied in equal volume to volume ratios. In addition, the PHB response due to imposing feast-like conditions along with nitrogen or phosphorus deprivation were assessed. The highest PHB storage achieved was 21 ± 1.31% after one cycle under methane sufficient and nitrogen limited conditions. Whereas, only applying feast-like conditions demonstrated a PHB storage of 15 ± 0.67% while simultaneously removing nitrate. Finally, further optimization and continued feast- and famine-like cycles can lead to a greater PHB storage response by the culture.
Collapse
Affiliation(s)
- Danelle Bishoff
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario M3J 1P3, Canada
| | - Ahmed AlSayed
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario M3J 1P3, Canada
| | - Ahmed Eldyasti
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
21
|
Leong HY, Chang CK, Khoo KS, Chew KW, Chia SR, Lim JW, Chang JS, Show PL. Waste biorefinery towards a sustainable circular bioeconomy: a solution to global issues. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:87. [PMID: 33827663 PMCID: PMC8028083 DOI: 10.1186/s13068-021-01939-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 03/27/2021] [Indexed: 05/05/2023]
Abstract
Global issues such as environmental problems and food security are currently of concern to all of us. Circular bioeconomy is a promising approach towards resolving these global issues. The production of bioenergy and biomaterials can sustain the energy-environment nexus as well as substitute the devoid of petroleum as the production feedstock, thereby contributing to a cleaner and low carbon environment. In addition, assimilation of waste into bioprocesses for the production of useful products and metabolites lead towards a sustainable circular bioeconomy. This review aims to highlight the waste biorefinery as a sustainable bio-based circular economy, and, therefore, promoting a greener environment. Several case studies on the bioprocesses utilising waste for biopolymers and bio-lipids production as well as bioprocesses incorporated with wastewater treatment are well discussed. The strategy of waste biorefinery integrated with circular bioeconomy in the perspectives of unravelling the global issues can help to tackle carbon management and greenhouse gas emissions. A waste biorefinery-circular bioeconomy strategy represents a low carbon economy by reducing greenhouse gases footprint, and holds great prospects for a sustainable and greener world.
Collapse
Affiliation(s)
- Hui Yi Leong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Chih-Kai Chang
- Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung Road, Chungli, Taoyuan, 320 Taiwan
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan Malaysia
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan Malaysia
| | - Shir Reen Chia
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan Malaysia
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan Malaysia
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701 Taiwan
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, 407 Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407 Taiwan
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan Malaysia
| |
Collapse
|
22
|
Xu M, Tremblay PL, Ding R, Xiao J, Wang J, Kang Y, Zhang T. Photo-augmented PHB production from CO 2 or fructose by Cupriavidus necator and shape-optimized CdS nanorods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142050. [PMID: 32898811 DOI: 10.1016/j.scitotenv.2020.142050] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Particulate photocatalysts developed for the solar energy-driven reduction of the greenhouse gas CO2 have a small product range and low specificity. Hybrid photosynthesis expands the number of products with photocatalysts harvesting sunlight and transferring charges to microbes harboring versatile metabolisms for bioproduction. Besides CO2, abiotic photocatalysts have been employed to increase microbial production yields of reduced compounds from organic carbon substrates. Most single-reactor hybrid photosynthesis systems comprise CdS assembled in situ by microbial activity. This approach limits optimization of the morphology, crystal structure, and crystallinity of CdS for higher performance, which is usually done via synthesis methods incompatible with life. Here, shape and activity optimized CdS nanorods were hydrothermally produced and subsequently applied to Cupriavidus necator for the heterotrophic and autotrophic production of the bioplastic polyhydroxybutyrate (PHB). C. necator with CdS NR under light produced 1.5 times more PHB when compared to the same bacterium with suboptimal commercially-available CdS. Illuminated C. necator with CdS NR synthesized 1.41 g PHB from fructose over 120 h and 28 mg PHB from CO2 over 48 h. Interestingly, the beneficial effect of CdS NR was specific to C. necator as the metabolism of other microbes often employed for bioproduction including yeast and bacteria was negatively impacted. These results demonstrate that hybrid photosynthesis is more productive when the photocatalyst characteristics are optimized via a separated synthesis process prior to being coupled with microbes. Furthermore, bioproduction improvement by CdS-based photocatalyst requires specific microbial species highlighting the importance of screening efforts for the development of performant hybrid photosynthesis.
Collapse
Affiliation(s)
- Mengying Xu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Pier-Luc Tremblay
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Ran Ding
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jianxun Xiao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Junting Wang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yu Kang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Tian Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
23
|
Zhang C, Show PL, Ho SH. Progress and perspective on algal plastics - A critical review. BIORESOURCE TECHNOLOGY 2019; 289:121700. [PMID: 31262543 DOI: 10.1016/j.biortech.2019.121700] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 05/13/2023]
Abstract
There is a growing interest in developing bio-based biodegradable plastics to reduce the dependence on depleting fossil fuels and provide a sustainable alternative. Bio-based plastics can usually be produced from lipids, proteins or carbohydrates, which are major components of microalgae. Despite its potential for algal plastics, little information is available on strain selection, culture optimization and bioplastics fabrication mechanism. In this review, we summarized the recent developments in understanding the utilization of seaweed polysaccharides, such as alginate and carrageenan for bio-based plastics. In addition, a conceptual biorefinery framework for algal plastics through promising components (e.g., lipids, carbohydrates and proteins) from microalgae is comprehensively presented. Moreover, the reasons for variations in bioplastics performance and underlying mechanism of various algal biocomposites have been critically discussed. We believe this review can provide valuable information to accelerate the development of innovative green technologies for improving the commercial viability of algal plastics.
Collapse
Affiliation(s)
- Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Pau-Loke Show
- Department of Chemical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Selangor Darul Ehsan, Malaysia
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
24
|
Luo Z, Wu YL, Li Z, Loh XJ. Recent Progress in Polyhydroxyalkanoates-Based Copolymers for Biomedical Applications. Biotechnol J 2019; 14:e1900283. [PMID: 31469496 DOI: 10.1002/biot.201900283] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/20/2019] [Indexed: 12/16/2022]
Abstract
In recent years, naturally biodegradable polyhydroxyalkanoate (PHA) monopolymers have become focus of public attentions due to their good biocompatibility. However, due to its poor mechanical properties, high production costs, and limited functionality, its applications in materials, energy, and biomedical applications are greatly limited. In recent years, researchers have found that PHA copolymers have better thermal properties, mechanical processability, and physicochemical properties relative to their homopolymers. This review summarizes the synthesis of PHA copolymers by the latest biosynthetic and chemical modification methods. The modified PHA copolymer could greatly reduce the production cost with elevated mechanical or physicochemical properties, which can further meet the practical needs of various fields. This review further summarizes the broad applications of modified PHA copolymers in biomedical applications, which might shred lights on their commercial applications.
Collapse
Affiliation(s)
- Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key, Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key, Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zibiao Li
- Institute of Materials Science and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore.,Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore
| |
Collapse
|
25
|
Thakrar FJ, Singh SP. Catalytic, thermodynamic and structural properties of an immobilized and highly thermostable alkaline protease from a haloalkaliphilic actinobacteria, Nocardiopsis alba TATA-5. BIORESOURCE TECHNOLOGY 2019; 278:150-158. [PMID: 30685619 DOI: 10.1016/j.biortech.2019.01.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
A highly thermostable protease from a haloalkaliphilic actinobacteria was immobilized employing 5 different approaches on 24 carriers. On immobilization, the activation energy and deactivation rate constant decreased, which makes the immobilized protease favourable for applications. Similarly, pH and temperature stability was enhanced, while the Vmax and Km changed upon immobilization. The immobilized enzyme had greater stability in various metal ions and detergents. The structural topography of the immobilized enzyme elucidated by the FTIR suggested the function of aliphatic amines, alkenes and esters since amide I and II bands were affected. Noticeable decrease in the Amide A band suggests interaction between the immobilization carriers and -NH groups of the protease molecule. The suitability of the immobilized protease was established by designing a continuous flow enzyme bioreactor, displaying the enzyme half-life of 916.15 min at 60 °C. The enzyme reactor was highly efficient in the treatment of the municipal and dairy wastewater.
Collapse
Affiliation(s)
- Foram J Thakrar
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India.
| |
Collapse
|
26
|
El Abbadi SH, Criddle CS. Engineering the Dark Food Chain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2273-2287. [PMID: 30640466 DOI: 10.1021/acs.est.8b04038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Meeting global food needs in the face of climate change and resource limitation requires innovative approaches to food production. Here, we explore incorporation of new dark food chains into human food systems, drawing inspiration from natural ecosystems, the history of single cell protein, and opportunities for new food production through wastewater treatment, microbial protein production, and aquaculture. The envisioned dark food chains rely upon chemoautotrophy in lieu of photosynthesis, with primary production based upon assimilation of CH4 and CO2 by methane- and hydrogen-oxidizing bacteria. The stoichiometry, kinetics, and thermodynamics of these bacteria are evaluated, and opportunities for recycling of carbon, nitrogen, and water are explored. Because these processes do not require light delivery, high volumetric productivities are possible; because they are exothermic, heat is available for downstream protein processing; because the feedstock gases are cheap, existing pipeline infrastructure could facilitate low-cost energy-efficient delivery in urban environments. Potential life-cycle benefits include: a protein alternative to fishmeal; partial decoupling of animal feed from human food; climate change mitigation due to decreased land use for agriculture; efficient local cycling of carbon and nutrients that offsets the need for energy-intensive fertilizers; and production of high value products, such as the prebiotic polyhydroxybutyrate.
Collapse
Affiliation(s)
- Sahar H El Abbadi
- Department of Civil and Environmental Engineering , Stanford University , Stanford , California 94305-4020 , United States
| | - Craig S Criddle
- Department of Civil and Environmental Engineering , Stanford University , Stanford , California 94305-4020 , United States
- William and Cloy Codiga Resource Recovery Center , Stanford University , Stanford , California 94305-4020 , United States
| |
Collapse
|
27
|
Raza ZA, Tariq MR, Majeed MI, Banat IM. Recent developments in bioreactor scale production of bacterial polyhydroxyalkanoates. Bioprocess Biosyst Eng 2019; 42:901-919. [PMID: 30810810 DOI: 10.1007/s00449-019-02093-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/17/2019] [Indexed: 12/21/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are biological plastics that are sustainable alternative to synthetic ones. Numerous microorganisms have been identified as PHAs producers. They store PHAs as cellular inclusions to use as an energy source backup. They can be produced in shake flasks and in bioreactors under defined fermentation and physiological culture conditions using suitable nutrients. Their production at bioreactor scale depends on various factors such as carbon source, nutrients supply, temperature, dissolved oxygen level, pH, and production modes. Once produced, PHAs find diverse applications in multiple fields of science and technology particularly in the medical sector. The present review covers some recent developments in sustainable bioreactor scale production of PHAs and identifies some areas in which future research in this field might be focused.
Collapse
Affiliation(s)
- Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan.
| | - Muhammad Rizwan Tariq
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan.,Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | | | - Ibrahim M Banat
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK
| |
Collapse
|
28
|
Gong W, Cheng T, Liu Q, Xiao Q, Li J. Surgical repair of abdominal wall defect with biomimetic nano/microfibrous hybrid scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:828-837. [DOI: 10.1016/j.msec.2018.08.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/10/2018] [Accepted: 08/27/2018] [Indexed: 01/10/2023]
|
29
|
Acetic Acid as an Indirect Sink of CO2 for the Synthesis of Polyhydroxyalkanoates (PHA): Comparison with PHA Production Processes Directly Using CO2 as Feedstock. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8091416] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
White biotechnology is promising to transform CO2 emissions into a valuable commodity chemical such as the biopolymer polyhydroxyalkanaotes (PHA). Our calculations indicated that the indirect conversion of acetic acid from CO2 into PHA is an interesting alternative for the direct production of PHA from CO2 in terms of CO2 fixation, H2 consumption, substrate cost, safety and process performance. An alternative cultivation method using acetic acid as an indirect sink of CO2 was therefore developed and a proof-of-concept provided for the synthesis of both the homopolymer poly(3-hydroxybutyrate) (PHB) and the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The aim was to compare key performance parameters with those of existing cultivation methods for direct conversion of CO2 to PHA. Fed-batch cultivations for PHA production were performed using a pH-stat fed-batch feeding strategy in combination with an additional Dissolved Oxygen (DO)-dependent feed. After 118 h of fermentation, 60 g/L cell dry matter (CDM) containing 72% of PHB was obtained, which are the highest result values reported so far. Fed-batch cultivations for PHBV production resulted in 65 g/L CDM and 48 g/L PHBV concentration with a 3HV fraction of 27 mol %. Further research should be oriented towards process optimisation, whole process integration and design, and techno-economic assessment.
Collapse
|
30
|
Das M, Grover A. Fermentation optimization and mathematical modeling of glycerol-based microbial poly(3-hydroxybutyrate) production. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
31
|
Yu J. Fixation of carbon dioxide by a hydrogen-oxidizing bacterium for value-added products. World J Microbiol Biotechnol 2018; 34:89. [PMID: 29886519 DOI: 10.1007/s11274-018-2473-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/04/2018] [Indexed: 01/03/2023]
Abstract
With rapid technology progress and cost reduction, clean hydrogen from water electrolysis driven by renewable powers becomes a potential feedstock for CO2 fixation by hydrogen-oxidizing bacteria. Cupriavidus necator (formally Ralstonia eutropha), a representative member of the lithoautotrophic prokaryotes, is a promising producer of polyhydroxyalkanoates and single cell proteins. This paper reviews the fundamental properties of the hydrogen-oxidizing bacterium, the metabolic activities under limitation of individual gases and nutrients, and the value-added products from CO2, including the products with large potential markets. Gas fermentation and bioreactor safety are discussed for achieving high cell density and high productivity of desired products under chemolithotrophic conditions. The review also updates the recent research activities in metabolic engineering of C. necator to produce novel metabolites from CO2.
Collapse
Affiliation(s)
- Jian Yu
- Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, USA.
| |
Collapse
|
32
|
A Review on Established and Emerging Fermentation Schemes for Microbial Production of Polyhydroxyalkanoate (PHA) Biopolyesters. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4020030] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|