1
|
Deng Y, Fan L, Wang W, Lv R, Liu D. Exogenous microbubbles contribute to valorization of microalgal compounds by ultrasound-assisted extraction. BIORESOURCE TECHNOLOGY 2024; 411:131253. [PMID: 39128641 DOI: 10.1016/j.biortech.2024.131253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
Ultrasound-assisted extraction (UAE) shows great potential in exploiting microalgal compounds. However, upgrading the extraction system lacks concerns. This study proposes a novel sono-reactor featuring a microbubble distributor for increasing bubble abundance and correspondingly improving microalgal compound extraction. Results indicate that protein concentrations increase with ultrasound powers and extraction time while an optimized gas flow rate exists. The optimal parameters by Box-Behnken design are power 646.0 W, nitrogen flow rate 25.0 mL/min, and time 40.0 min, with an optimal protein concentration of 249.1 mg/L - a substantial improvement over gas-free extraction. The strategic increase in bubble abundance enhances microalgal compound extraction efficiency and extraction kinetics. The system innovation will contribute to the advancement of bioresource utilization and sustainability.
Collapse
Affiliation(s)
- Yong Deng
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058 Hangzhou, China
| | - Lihua Fan
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058 Hangzhou, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058 Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Ruiling Lv
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058 Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058 Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| |
Collapse
|
2
|
Yu KL, Ong HC, Zaman HB. Integrated energy informatics technology on microalgae-based wastewater treatment to bioenergy production: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122085. [PMID: 39142099 DOI: 10.1016/j.jenvman.2024.122085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/19/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
The production of renewable biofuel through microalgae and green technology can be a promising solution to meet future energy demands whilst reducing greenhouse gases (GHG) emissions and recovering energy for a carbon-neutral bio-economy and environmental sustainability. Recently, the integration of Energy Informatics (EI) technology as an emerging approach has ensured the feasibility and enhancement of microalgal biotechnology and bioenergy applications. Integrating EI technology such as artificial intelligence (AI), predictive modelling systems and life cycle analysis (LCA) in microalgae field applications can improve cost, efficiency, productivity and sustainability. With the approach of EI technology, data-driven insights and decision-making, resource optimization and a better understanding of the environmental impact of microalgae cultivation could be achieved, making it a crucial step in advancing this field and its applications. This review presents the conventional technologies in the microalgae-based system for wastewater treatment and bioenergy production. Furthermore, the recent integration of EI in microalgal technology from the AI application to the modelling and optimization using predictive control systems has been discussed. The LCA and techno-economic assessment (TEA) in the environmental sustainability and economic point of view are also presented. Future challenges and perspectives in the microalgae-based wastewater treatment to bioenergy production integrated with the EI approach, are also discussed in relation to the development of microalgae as the future energy source.
Collapse
Affiliation(s)
- Kai Ling Yu
- Department of Engineering, School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Tan Sri Leo Moggie Distinguished Chair in Energy Informatics, Institute of Informatics and Computing in Energy (IICE), Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia.
| | - Hwai Chyuan Ong
- Department of Engineering, School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Halimah Badioze Zaman
- Tan Sri Leo Moggie Distinguished Chair in Energy Informatics, Institute of Informatics and Computing in Energy (IICE), Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
3
|
Liow MY, Chan ES, Ng WZ, Song CP. Stabilization of Eversa® Transform 2.0 lipase with sorbitol to enhance the efficiency of ultrasound-assisted biodiesel production. Int J Biol Macromol 2024; 276:133817. [PMID: 39002902 DOI: 10.1016/j.ijbiomac.2024.133817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Ultrasound technology has emerged as a promising tool for enhancing enzymatic biodiesel production, yet the cavitation effect induced can compromise enzyme stability. This study explored the efficiency of polyols in enhancing lipase stability under ultrasound conditions to further improve biodiesel yield. The incorporation of sorbitol resulted in the highest fatty acid methyl ester (FAME) content in the ultrasound-assisted biodiesel production catalyzed by Eversa® Transform 2.0 among the investigated polyols. Furthermore, sorbitol enhanced the stability of the lipase, allowing it to tolerate up to 100 % ultrasound amplitude, compared to 60 % amplitude in its absence. Enzyme activity assays revealed that sorbitol preserved 99 % of the lipase activity, in contrast to 84 % retention observed without sorbitol under an 80 % ultrasound amplitude. Circular dichroism (CD) and fluorescence spectroscopy analyses confirmed that sorbitol enhanced lipase rigidity and preserved its conformational structure under ultrasound exposure. Furthermore, employing a stepwise methanol addition strategy in ultrasound-assisted reactions with sorbitol achieved an 81.2 wt% FAME content in 8 h with only 0.2 wt% enzyme concentration. This promising result highlights the potential of sorbitol as a stabilizing agent in ultrasound-assisted enzymatic biodiesel production, offering a viable approach for enhancing biodiesel yield and enzyme stability in industrial applications.
Collapse
Affiliation(s)
- Min Ying Liow
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Eng-Seng Chan
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Wei Zhe Ng
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Cher Pin Song
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
4
|
Garg S, Behera S, Ruiz HA, Kumar S. A Review on Opportunities and Limitations of Membrane Bioreactor Configuration in Biofuel Production. Appl Biochem Biotechnol 2023; 195:5497-5540. [PMID: 35579743 DOI: 10.1007/s12010-022-03955-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/02/2022] [Indexed: 12/13/2022]
Abstract
Biofuels are a clean and renewable source of energy that has gained more attention in recent years; however, high energy input and processing cost during the production and recovery process restricted its progress. Membrane technology offers a range of energy-saving separation for product recovery and purification in biorefining along with biofuel production processes. Membrane separation techniques in combination with different biological processes increase cell concentration in the bioreactor, reduce product inhibition, decrease chemical consumption, reduce energy requirements, and further increase product concentration and productivity. Certain membrane bioreactors have evolved with the ability to deal with different biological production and separation processes to make them cost-effective, but there are certain limitations. The present review describes the advantages and limitations of membrane bioreactors to produce different biofuels with the ability to simplify upstream and downstream processes in terms of sustainability and economics.
Collapse
Affiliation(s)
- Shruti Garg
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India
- Department of Microbiology, Guru Nanak Dev University, Grand Trunk Road, Amritsar, Punjab, 143040, India
| | - Shuvashish Behera
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India.
- Department of Alcohol Technology and Biofuels, Vasantdada Sugar Institute, Manjari (Bk.), Pune, 412307, India.
| | - Hector A Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280, Saltillo, Coahuila, Mexico
| | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India.
| |
Collapse
|
5
|
Ruiz-Domínguez MC, Robles M, Martín L, Beltrán Á, Gava R, Cuaresma M, Navarro F, Vílchez C. Ultrasound-Based Recovery of Anti-Inflammatory and Antimicrobial Extracts of the Acidophilic Microalga Coccomyxa onubensis. Mar Drugs 2023; 21:471. [PMID: 37755084 PMCID: PMC10532798 DOI: 10.3390/md21090471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
In the present study, the recovery of valuable molecules of proven anti-inflammatory and antimicrobial activity of the acidophilic microalga Coccomyxa onubensis (C. onubensis) were evaluated using green technologies based on ultrasound-assisted extraction (UAE). Using a factorial design (3 × 2) based on response surface methodology and Pareto charts, two types of ultrasonic equipment (bath and probe) were evaluated to recover valuable compounds, including the major terpenoid of C. onubensis, lutein, and the antimicrobial activity of the microalgal extracts obtained under optimal ultrasound conditions (desirability function) was evaluated versus conventional extraction. Significant differences in lutein recovery were observed between ultrasonic bath and ultrasonic probe and conventional extraction. Furthermore, the antimicrobial activity displayed by C. onubensis UAE-based extracts was greater than that obtained in solvent-based extracts, highlighting the effects of the extracts against pathogens such as Enterococcus hirae and Bacillus subtilis, followed by Staphylococcus aureus and Escherichia coli. In addition, gas chromatography-mass spectrometry was performed to detect valuable anti-inflammatory and antimicrobial biomolecules present in the optimal C. onubensis extracts, which revealed that phytol, sterol-like, terpenoid, and even fatty acid structures could also be responsible for the antibacterial activities of the extracts. Moreover, UAE displayed a positive effect on the recovery of valuable molecules, improving biocidal effects. Our study results facilitate the use of green technology as a good tool in algal bioprocess engineering, improving energy consumption and minimizing environmental impacts and process costs, as well as provide a valuable product for applications in the field of biotechnology.
Collapse
Affiliation(s)
- Mari Carmen Ruiz-Domínguez
- Laboratorio de Microencapsulación de Compuestos Bioactivos (LAMICBA), Departamento de Ciencias de los Alimentos y Nutrición, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile
| | - María Robles
- Algal Biotechnology, CIDERTA-RENSMA, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain; (M.R.); (L.M.); (M.C.); (C.V.)
| | - Lidia Martín
- Algal Biotechnology, CIDERTA-RENSMA, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain; (M.R.); (L.M.); (M.C.); (C.V.)
| | - Álvaro Beltrán
- Bioplagen S.L., Av. Castilleja de la Cuesta, 20-22, Bollullos de la Mitación, 41110 Seville, Spain; (Á.B.); (R.G.)
| | - Riccardo Gava
- Bioplagen S.L., Av. Castilleja de la Cuesta, 20-22, Bollullos de la Mitación, 41110 Seville, Spain; (Á.B.); (R.G.)
| | - María Cuaresma
- Algal Biotechnology, CIDERTA-RENSMA, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain; (M.R.); (L.M.); (M.C.); (C.V.)
| | - Francisco Navarro
- Cell Alterations by Exogenous Agents, RENSMA, Department of Integrated Sciences, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain;
| | - Carlos Vílchez
- Algal Biotechnology, CIDERTA-RENSMA, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain; (M.R.); (L.M.); (M.C.); (C.V.)
| |
Collapse
|
6
|
A combined ultrasound + membrane ultrafiltration (USN-UF) for enhancing saccharides separation from Spirulina (Arthrospira platensis). INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
7
|
Wu Q, Xia Y, Xiong X, Duan X, Pang X, Zhang F, Tang S, Su J, Wen S, Mei L, Cannon RD, Ji P, Ou Z. Focused ultrasound-mediated small-molecule delivery to potentiate immune checkpoint blockade in solid tumors. Front Pharmacol 2023; 14:1169608. [PMID: 37180717 PMCID: PMC10173311 DOI: 10.3389/fphar.2023.1169608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
In the last decade, immune checkpoint blockade (ICB) has revolutionized the standard of treatment for solid tumors. Despite success in several immunogenic tumor types evidenced by improved survival, ICB remains largely unresponsive, especially in "cold tumors" with poor lymphocyte infiltration. In addition, side effects such as immune-related adverse events (irAEs) are also obstacles for the clinical translation of ICB. Recent studies have shown that focused ultrasound (FUS), a non-invasive technology proven to be effective and safe for tumor treatment in clinical settings, could boost the therapeutic effect of ICB while alleviating the potential side effects. Most importantly, the application of FUS to ultrasound-sensitive small particles, such as microbubbles (MBs) or nanoparticles (NPs), allows for precise delivery and release of genetic materials, catalysts and chemotherapeutic agents to tumor sites, thus enhancing the anti-tumor effects of ICB while minimizing toxicity. In this review, we provide an updated overview of the progress made in recent years concerning ICB therapy assisted by FUS-controlled small-molecule delivery systems. We highlight the value of different FUS-augmented small-molecules delivery systems to ICB and describe the synergetic effects and underlying mechanisms of these combination strategies. Furthermore, we discuss the limitations of the current strategies and the possible ways that FUS-mediated small-molecule delivery systems could boost novel personalized ICB treatments for solid tumors.
Collapse
Affiliation(s)
- Qiuyu Wu
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Yuanhang Xia
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Xiaohe Xiong
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Xinxing Duan
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xiaoxiao Pang
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Fugui Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Song Tang
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Junlei Su
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Shuqiong Wen
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Li Mei
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Richard D. Cannon
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Ping Ji
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Ping Ji, Zhanpeng Ou,
| | - Zhanpeng Ou
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Ping Ji, Zhanpeng Ou,
| |
Collapse
|
8
|
Ideris F, Zamri MFMA, Shamsuddin AH, Nomanbhay S, Kusumo F, Fattah IMR, Mahlia TMI. Progress on Conventional and Advanced Techniques of In Situ Transesterification of Microalgae Lipids for Biodiesel Production. ENERGIES 2022; 15:7190. [DOI: 10.3390/en15197190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Global warming and the depletion of fossil fuels have spurred many efforts in the quest for finding renewable, alternative sources of fuels, such as biodiesel. Due to its auxiliary functions in areas such as carbon dioxide sequestration and wastewater treatment, the potential of microalgae as a feedstock for biodiesel production has attracted a lot of attention from researchers all over the world. Major improvements have been made from the upstream to the downstream aspects related to microalgae processing. One of the main concerns is the high cost associated with the production of biodiesel from microalgae, which includes drying of the biomass and the subsequent lipid extraction. These two processes can be circumvented by applying direct or in situ transesterification of the wet microalgae biomass, hence substantially reducing the cost. In situ transesterification is considered as a significant improvement to commercially produce biodiesel from microalgae. This review covers the methods used to extract lipids from microalgae and various in situ transesterification methods, focusing on recent developments related to the process. Nevertheless, more studies need to be conducted to further enhance the discussed in situ transesterification methods before implementing them on a commercial scale.
Collapse
|
9
|
Liu Y, Liu X, Cui Y, Yuan W. Ultrasound for microalgal cell disruption and product extraction: A review. ULTRASONICS SONOCHEMISTRY 2022; 87:106054. [PMID: 35688121 PMCID: PMC9175141 DOI: 10.1016/j.ultsonch.2022.106054] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 05/12/2023]
Abstract
Microalgae are a promising feedstock for the production of biofuels, nutraceuticals, pharmaceuticals and cosmetics, due to their superior capability of converting solar energy and CO2 into lipids, proteins, and other valuable bioactive compounds. To facilitate the release of these important biomolecules from microalgae, effective cell disruption is usually necessary, where the use of ultrasound has gained tremendous interests as an alternative to traditional methods. This review not only summarizes the mechanisms of and operation parameters affecting cell disruption, but also takes an insight into measuring techniques, synergistic integration with other disruption methods, and challenges of ultrasonication for microalgal biorefining. Optimal conditions including ultrasonic frequency, intensity, and duration, and liquid viscosity and sonochemical reactor are the key factors for maximizing the disruption and extraction efficiency. A combination of ultrasound with other disruption methods such as ozonation, microwave, homogenization, enzymatic lysis, and solvents facilitates cell disruption and release of target compounds, thus provides powerful solutions to commercial scale-up of ultrasound extraction for microalgal biorefining. It is concluded that ultrasonication is a sustainable "green" process, but more research and work are needed to upscale this process without sacrificing performance or consuming more energy.
Collapse
Affiliation(s)
- Ying Liu
- State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Academy of Environmental Science, Shenzhen 518001, Guangdong, China
| | - Xin Liu
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, Guangxi, China
| | - Yan Cui
- Gansu Innovation Center of Microalgae Technology, Hexi University, Zhangye 734000, Gansu, China
| | - Wenqiao Yuan
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
10
|
Amjith LR, Bavanish B. A review on biomass and wind as renewable energy for sustainable environment. CHEMOSPHERE 2022; 293:133579. [PMID: 35026196 DOI: 10.1016/j.chemosphere.2022.133579] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
As the population is increasing at a rapid pace, we now find ourselves in a position where cities are using a growing amount of renewable energy. Renewable energy is the key to help avert climate change and this approach must be sustainable. At the juncture, this review analyses the potential of wind, biomass and hybrid systems in the field of renewable energy production. Initially, the manuscript addressed the feedstocks and their potential for different biofuels such as bioethanol, biodiesel, biomethane, biohydrogen and biohythane from the biomass. With a focus on long-term energy sustainability, this article investigates performance analysis and sustainability of wind energy systems and biomass-based hybrid configurations with wind and its various design factors, problems, and gaps were examined. According to the findings, biomass-based hybrid energy systems can provide a cost-effective and environmentally beneficial alternative, particularly for off-grid rural electrification. The study provides designers, academicians, and policymakers with vital information on the most recent design restrictions and other factors related to biomass-wind hybrid energy systems.
Collapse
Affiliation(s)
- L R Amjith
- Department of Mechanical Engineering, Noorul Islam Center for Higher Education, Kumaracoil, Tamilnadu, India.
| | - B Bavanish
- Department of Mechanical Engineering, Noorul Islam Center for Higher Education, Kumaracoil, Tamilnadu, India
| |
Collapse
|
11
|
Biodiesel production from microalgae using lipase-based catalysts: Current challenges and prospects. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102616] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Microalgal Biorefinery Concepts’ Developments for Biofuel and Bioproducts: Current Perspective and Bottlenecks. Int J Mol Sci 2022; 23:ijms23052623. [PMID: 35269768 PMCID: PMC8910654 DOI: 10.3390/ijms23052623] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/14/2022] [Accepted: 02/22/2022] [Indexed: 01/04/2023] Open
Abstract
Microalgae have received much interest as a biofuel feedstock. However, the economic feasibility of biofuel production from microalgae does not satisfy capital investors. Apart from the biofuels, it is necessary to produce high-value co-products from microalgae fraction to satisfy the economic aspects of microalgae biorefinery. In addition, microalgae-based wastewater treatment is considered as an alternative for the conventional wastewater treatment in terms of energy consumption, which is suitable for microalgae biorefinery approaches. The energy consumption of a microalgae wastewater treatment system (0.2 kW/h/m3) was reduced 10 times when compared to the conventional wastewater treatment system (to 2 kW/h/m3). Microalgae are rich in various biomolecules such as carbohydrates, proteins, lipids, pigments, vitamins, and antioxidants; all these valuable products can be utilized by nutritional, pharmaceutical, and cosmetic industries. There are several bottlenecks associated with microalgae biorefinery. Hence, it is essential to promote the sustainability of microalgal biorefinery with innovative ideas to produce biofuel with high-value products. This review attempted to bring out the trends and promising solutions to realize microalgal production of multiple products at an industrial scale. New perspectives and current challenges are discussed for the development of algal biorefinery concepts.
Collapse
|
13
|
Kumar N, Banerjee C, Negi S, Shukla P. Microalgae harvesting techniques: updates and recent technological interventions. Crit Rev Biotechnol 2022; 43:342-368. [PMID: 35168457 DOI: 10.1080/07388551.2022.2031089] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Microalgal biomass has garnered attention as a renewable and sustainable resource for producing biodiesel. The harvesting of microalgal biomass is a significant bottleneck being faced by the industries as it is the crucial cost driver in the downstream processing of biomass. Bioharvesting of microalgal biomass mediated by: microbial, animal, and plant-based polymeric flocculants has gained a higher probability of utility in accumulation due to: its higher dewatering potential, less toxicity, and ecofriendly properties. The present review summarizes the key challenges and the technological advancements associated with various such harvesting techniques. The economic and technical aspects of different microalgal harvesting techniques, particularly the cationic polymeric flocculant-based harvesting of microalgal biomass, are also discussed. Furthermore, interactions of flocculants with microalgal biomass and the effects of these interactions on metabolite and lipid extractions are discussed to offer a promising solution for suitability in selecting the most efficient and economical method of microalgal biomass harvesting for cost-effective biodiesel production.
Collapse
Affiliation(s)
- Niwas Kumar
- Algal Bioenergy Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, India
| | - Chiranjib Banerjee
- Algal Bioenergy Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, India.,Department of Botany and Microbiology, Faculty of Life Sciences, Gurukula Kangri (Deemed to be University), Haridwar, India
| | - Sangeeta Negi
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Pratyoosh Shukla
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India.,Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
14
|
Deng Y, Wang W, Zhao S, Yang X, Xu W, Guo M, Xu E, Ding T, Ye X, Liu D. Ultrasound-assisted extraction of lipids as food components: Mechanism, solvent, feedstock, quality evaluation and coupled technologies – A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Ma G, Mu R, Capareda SC, Qi F. Use of ultrasound for aiding lipid extraction and biodiesel production of microalgae harvested by chitosan. ENVIRONMENTAL TECHNOLOGY 2021; 42:4064-4071. [PMID: 32284023 DOI: 10.1080/09593330.2020.1745288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/14/2020] [Indexed: 06/11/2023]
Abstract
In this work, chitosan, a biodegradable flocculant, was investigated to determine its utility in flocculating microalgae, its effect on cell integrity, and its impact on lipid extraction and the conversion to fatty acid methyl ester (FAME). Results showed that chitosan adequately performed flocculation on Chlorella vulgaris microalgae and achieved a high harvesting efficiency of 96.35 ± 1.96% when implemented under the following conditions: chitosan dose = 120 mg/L-1, pH = 5, mixing speed = 150 rpm for 20 min, followed by 10 min of settling time. Moreover, scanning electron microscope (SEM) combined with transmission electron microscope (TEM) demonstrated that chitosan protected the cells' structure from morphological damage. Finally, the highest lipid extraction yield and biodiesel production was obtained from the chitosan-harvested biomass when the microalgae were pretreated with ultrasound.
Collapse
Affiliation(s)
- Guixia Ma
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, People's Republic of China
| | - Ruimin Mu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, People's Republic of China
| | - Sergio C Capareda
- Department of Biological and Agricultural Engineering, Texas A & M University, College Station, TX, USA
| | - Feng Qi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, People's Republic of China
| |
Collapse
|
16
|
|
17
|
Khan MJ, Ahirwar A, Schoefs B, Pugazhendhi A, Varjani S, Rajendran K, Bhatia SK, Saratale GD, Saratale RG, Vinayak V. Insights into diatom microalgal farming for treatment of wastewater and pretreatment of algal cells by ultrasonication for value creation. ENVIRONMENTAL RESEARCH 2021; 201:111550. [PMID: 34224710 DOI: 10.1016/j.envres.2021.111550] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 05/16/2023]
Abstract
Wastewater management and its treatment have revolutionized the industry sector into many innovative techniques. However, the cost of recycling via chemical treatment has major issues especially in economically poor sectors. On the offset, one of the most viable and economical techniques to clean wastewater is by growing microalgae in it. Since wastewater is rich in nitrates, phosphates and other trace elements, the environment is suitable for the growth of microalgae. On the other side, the cost of harvesting microalgae for its secondary metabolites is burgeoning. While simultaneously growing of microalgae in photobioreactors requires regular feeding of the nutrients and maintenance which increases the cost of operation and hence cost of its end products. The growth of microalgae in waste waters makes the process not only economical but they also manufacture more amounts of value added products. However, harvesting of these values added products is still a cumbersome task. On the offset, it has been observed that pretreating the microalgal biomass with ultrasonication allows easy oozing of the secondary metabolites like oil, proteins, carbohydrates and methane at much lower cost than that required for their extraction. Among microalgae diatoms are more robust and have immense crude oil and are rich in various value added products. However, due to their thick silica walls they do not ooze the metabolites until the mechanical force on their walls reaches certain threshold energy. In this review recycling of wastewater using microalgae and its pretreatment via ultrasonication with special reference to diatoms is critically discussed. Perspectives on circular bioeconomy and knowledge gaps for employing microalgae to recycle wastewater have been comprehensively narrated.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, IUML - FR 3473 CNRS, Le Mans, France
| | - Arivalagan Pugazhendhi
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India.
| | - Karthik Rajendran
- Department of Environmental Science, SRM University-AP, Neerukonda, Andhra Pradesh, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, Republic of Korea
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. HarisinghGour Central University, Sagar, MP, 470003, India.
| |
Collapse
|
18
|
Struhs E, Hansen S, Mirkouei A, Ramirez-Corredores MM, Sharma K, Spiers R, Kalivas JH. Ultrasonic-assisted catalytic transfer hydrogenation for upgrading pyrolysis-oil. ULTRASONICS SONOCHEMISTRY 2021; 73:105502. [PMID: 33652291 PMCID: PMC7921008 DOI: 10.1016/j.ultsonch.2021.105502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/15/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Recent interest in biomass-based fuel blendstocks and chemical compounds has stimulated research efforts on conversion and upgrading pathways, which are considered as critical commercialization drivers. Existing pre-/post-conversion pathways are energy intense (e.g., pyrolysis and hydrogenation) and economically unsustainable, thus, more efficient process solutions can result in supporting the renewable fuels and green chemicals industry. This study proposes a process, including biomass conversion and bio-oil upgrading, using mixed fast and slow pyrolysis conversion pathway, as well as sono-catalytic transfer hydrogenation (SCTH) treatment process. The proposed SCTH treatment employs ammonium formate as a hydrogen transfer additive and palladium supported on carbon as the catalyst. Utilizing SCTH, bio-oil molecular bonds were broken and restructured via the phenomena of cavitation, rarefaction, and hydrogenation, with the resulting product composition, investigated using ultimate analysis and spectroscopy. Additionally, an in-line characterization approach is proposed, using near-infrared spectroscopy, calibrated by multivariate analysis and modeling. The results indicate the potentiality of ultrasonic cavitation, catalytic transfer hydrogenation, and SCTH for incorporating hydrogen into the organic phase of bio-oil. It is concluded that the integration of pyrolysis with SCTH can improve bio-oil for enabling the production of fuel blendstocks and chemical compounds from lignocellulosic biomass.
Collapse
Affiliation(s)
- Ethan Struhs
- Department of Mechanical Engineering, University of Idaho, Idaho Falls, ID 83402, USA
| | - Samuel Hansen
- Department of Mechanical Engineering, University of Idaho, Idaho Falls, ID 83402, USA
| | - Amin Mirkouei
- Department of Mechanical Engineering, University of Idaho, Idaho Falls, ID 83402, USA.
| | | | - Kavita Sharma
- Department of Chemistry, Idaho State University, Pocatello, ID 83204, USA
| | - Robert Spiers
- Department of Chemistry, Idaho State University, Pocatello, ID 83204, USA
| | - John H Kalivas
- Department of Chemistry, Idaho State University, Pocatello, ID 83204, USA
| |
Collapse
|
19
|
Aghakhani A, Cetin H, Erkoc P, Tombak GI, Sitti M. Flexural wave-based soft attractor walls for trapping microparticles and cells. LAB ON A CHIP 2021; 21:582-596. [PMID: 33355319 PMCID: PMC7612665 DOI: 10.1039/d0lc00865f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Acoustic manipulation of microparticles and cells, called acoustophoresis, inside microfluidic systems has significant potential in biomedical applications. In particular, using acoustic radiation force to push microscopic objects toward the wall surfaces has an important role in enhancing immunoassays, particle sensors, and recently microrobotics. In this paper, we report a flexural-wave based acoustofluidic system for trapping micron-sized particles and cells at the soft wall boundaries. By exciting a standard microscope glass slide (1 mm thick) at its resonance frequencies <200 kHz, we show the wall-trapping action in sub-millimeter-size rectangular and circular cross-sectional channels. For such low-frequency excitation, the acoustic wavelength can range from 10-150 times the microchannel width, enabling a wide design space for choosing the channel width and position on the substrate. Using the system-level acousto-structural simulations, we confirm the acoustophoretic motion of particles near the walls, which is governed by the competing acoustic radiation and streaming forces. Finally, we investigate the performance of the wall-trapping acoustofluidic setup in attracting the motile cells, such as Chlamydomonas reinhardtii microalgae, toward the soft boundaries. Furthermore, the rotation of microalgae at the sidewalls and trap-escape events under pulsed ultrasound are demonstrated. The flexural-wave driven acoustofluidic system described here provides a biocompatible, versatile, and label-free approach to attract particles and cells toward the soft walls.
Collapse
Affiliation(s)
- Amirreza Aghakhani
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
| | - Hakan Cetin
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany. and Electrical and Electronics Engineering Department, Özyeğin University, 34794 Istanbul, Turkey
| | - Pelin Erkoc
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany. and Faculty of Engineering and Natural Sciences, Bahcesehir University, 34353 Istanbul, Turkey
| | - Guney Isik Tombak
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany. and Electrical and Electronics Engineering Department, Boğaziçi University, 34342 Istanbul, Turkey
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany. and Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland and School of Medicine and School of Engineering, Koç University, 34450 Istanbul, Turkey
| |
Collapse
|
20
|
He C, Mei Y, Zhang Y, Liu L, Li P, Zhang Z, Jing Y, Li G, Jiao Y. Enhanced biodiesel production from diseased swine fat by ultrasound-assisted two-step catalyzed process. BIORESOURCE TECHNOLOGY 2020; 304:123017. [PMID: 32087546 DOI: 10.1016/j.biortech.2020.123017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
In order to enhance the yield of high quality biodiesel form diseased swine fat, the ultrasound-assisted two-step catalyzed process was employed. First, three-dimensional ultrasound-assisted concentrated sulfuric acid pre-esterification experiment was carried out. Then, the transesterification reaction catalyzed by KOH was performed, and four parameters (catalyst concentration, reaction time, methanol/oil molar ratio and reaction temperature) were optimized using response surface methodology. The results showed that the optimal transesterification reaction conditions were catalyst concentration of 1.11 wt%, reaction temperature of 62.3 °C, methanol/oil molar ratio of 7.42:1, and reaction time of 116.14 min. The most significant factor affecting biodiesel purity was identified as catalyst concentration. Under the optimal conditions, the maximum biodiesel purity reached to 98% with the reaction time of 176.14 min, shortened by 63.3% compared with previous works. Furthermore, most of the biodiesel properties agreed the quality requirements established by Official Regulations of GB/25199-2017 of China.
Collapse
Affiliation(s)
- Chao He
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of China's Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Yahe Mei
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of China's Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Yun Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of China's Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Liang Liu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of China's Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Panpan Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of China's Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of China's Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanyan Jing
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of China's Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Gang Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of China's Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Youzhou Jiao
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of China's Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
21
|
Khoo KS, Chew KW, Yew GY, Leong WH, Chai YH, Show PL, Chen WH. Recent advances in downstream processing of microalgae lipid recovery for biofuel production. BIORESOURCE TECHNOLOGY 2020; 304:122996. [PMID: 32115347 DOI: 10.1016/j.biortech.2020.122996] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 05/11/2023]
Abstract
The world energy system faces two major challenges: the requirement for more energy and less carbon. It is important to address biofuels production as an alternative to the usage of fossil fuel by utilizing microalgae as the potential feedstock. Yet, the commercialization of microalgae remains contentious caused by factors relating to the life cycle assessment and feasibility of microalgae-based biofuels. This present review starts with an introduction to the benefits of microalgae, followed by intensive elaboration on microalgae cultivation parameters. Subsequently, the fundamental principle along with the advantages and disadvantages of various pretreatment techniques of microalgae were reviewed. In addition, the conventional and recent advances in lipid extraction techniques from microalgae were comprehensively evaluated. Comparative analysis regard to the gaps from previous studies was discussed point-by-point in each section. The effort presented in this review will provide an insight for future researches dealing with microalgae-biofuel production on downstream processing.
Collapse
Affiliation(s)
- Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Kit Wayne Chew
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Guo Yong Yew
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Wai Hong Leong
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Yee Ho Chai
- Biomass Processing Laboratory, HICOE - Center for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
22
|
Boonyubol S, Kodama S, Sekiguchi H. Effect of Alumina Particles on Simultaneous Lipid Extraction and Biodiesel Production from Microalgae under Ultrasonic Irradiation. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2020. [DOI: 10.1252/jcej.19we231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sasipa Boonyubol
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology
| | - Satoshi Kodama
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology
| | - Hidetoshi Sekiguchi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology
| |
Collapse
|
23
|
Ye S, Gao L, Zhao J, An M, Wu H, Li M. Simultaneous wastewater treatment and lipid production by Scenedesmus sp. HXY2. BIORESOURCE TECHNOLOGY 2020; 302:122903. [PMID: 32018084 DOI: 10.1016/j.biortech.2020.122903] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Screening for highly efficient microalgae is an important technique for improving treatment efficiency. In this study, eight species of microalgae (five Scenedesmus and three Desmodesmus) were isolated from water and soil in the Hexi Corridor region, China, and identified by 18S rRNA gene sequence analysis. Scenedesmus sp. HXY2 grew well under high total organic carbon and ammonia conditions and had the highest nutrient removal efficiency (>95%). On day 12, the biomass of Scenedesmus sp. HXY2 was 7.2 × 106 cells mL-1. The lipid content and productivity of this species were 15.56% and 5.67 mg L-1 day-1, respectively. The proportion of unsaturated fatty acids (60.07%) indicated that the lipids of Scenedesmus sp. HXY2 were suitable for biodiesel production. Scenedesmus sp. HXY2 showed great potential for growth in wastewater with high ammonia and organic contents to simultaneously purify wastewater and produce lipids.
Collapse
Affiliation(s)
- Sisi Ye
- College of Resources and Environment, Northwest A & F University, Yangling 712100, PR China
| | - Li Gao
- SouthEast Water, 101 Wells Street, Frankston, VIC 3199, Australia
| | - Jing Zhao
- College of Resources and Environment, Northwest A & F University, Yangling 712100, PR China
| | - Mei An
- College of Resources and Environment, Northwest A & F University, Yangling 712100, PR China
| | - Haiming Wu
- College of Resources and Environment, Northwest A & F University, Yangling 712100, PR China
| | - Ming Li
- College of Resources and Environment, Northwest A & F University, Yangling 712100, PR China; Scientific Laboratory of Heyang Agricultural Environment and Farmland Cultivation, Ministry of Agriculture and Rural Affairs, Heyang 715300, PR China.
| |
Collapse
|
24
|
Effects of Nitrogen Forms and Supply Mode on Lipid Production of Microalga Scenedesmus obliquus. ENERGIES 2020. [DOI: 10.3390/en13030697] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Optimization of the microalgae culture conditions could significantly reduce the production costs of microalgae-derived biodiesel. In the current study, a new process of adding different forms using the multiple small-dose method was employed. The effects of different forms of nitrogen (NaNO3, NH4Cl, and CH4N2O) and their concentrations (0.1, 0.5, 1, and 2 mg L−1) on the growth and lipid production of Scenedesmus obliquus were studied. Algae density and lipid production increased with increasing nitrogen concentration for all different forms of nitrogen except NH4Cl. The Scenedesmus obliquus growth was promoted by adding NaNO3 and CH4N2O, but was inhibited by adding NH4Cl. Adding 2 mg N L−1 of CH4N2O daily yielded the highest cell density (1.7 × 107 cells mL−1) and lipid production (242.4 mg L−1). These conditions can thus maintain the biomass of Scenedesmus obliquus, increase its lipid accumulation, and decrease the costs of biodiesel production.
Collapse
|
25
|
Jaroensuk J, Intasian P, Wattanasuepsin W, Akeratchatapan N, Kesornpun C, Kittipanukul N, Chaiyen P. Enzymatic reactions and pathway engineering for the production of renewable hydrocarbons. J Biotechnol 2020; 309:1-19. [DOI: 10.1016/j.jbiotec.2019.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 01/23/2023]
|
26
|
Sivaramakrishnan R, Incharoensakdi A. Plant hormone induced enrichment of Chlorella sp. omega-3 fatty acids. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:7. [PMID: 31969931 PMCID: PMC6966795 DOI: 10.1186/s13068-019-1647-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/29/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Omega-3 fatty acids have various health benefits in combating against neurological problems, cancers, cardiac problems and hypertriglyceridemia. The main dietary omega-3 fatty acids are obtained from marine fish. Due to the pollution of marine environment, recently microalgae are considered as the promising source for the omega-3 fatty acid production. However, the demand and high production cost associated with microalgal biomass make it necessary to implement novel strategies in improving the biomass and omega-3 fatty acids from microalgae. RESULTS Four plant hormones zeatin, indole acetic acid (IAA), gibberellic acid (GBA) and abscisic acid (ABA) were investigated for their effect on the production of biomass and lipid in isolated Chlorella sp. The cells showed an increase of the biomass and lipid content after treatments with the plant hormones where the highest stimulatory effect was observed in ABA-treated cells. On the other hand, IAA showed the highest stimulatory effect on the omega-3 fatty acids content, eicosapentaenoic acid (EPA) (23.25%) and docosahexaenoic acid (DHA) (26.06%). On the other hand, cells treated with ABA had highest lipid content suitable for the biodiesel applications. The determination of ROS markers, antioxidant enzymes, and fatty acid biosynthesis genes after plant hormones treatment helped elucidate the mechanism underlying the improvement in biomass, lipid content and omega-3 fatty acids. All four plant hormones upregulated the fatty acid biosynthesis genes, whereas IAA particularly increased omega-3-fatty acids as a result of the upregulation of omega-3 fatty acid desaturase. CONCLUSIONS The contents of omega-3 fatty acids, the clinically important compounds, were considerably improved in IAA-treated cells. The highest lipid content obtained from ABA-treated biomass can be used for biodiesel application according to its biodiesel properties. The EPA and DHA enriched ethyl esters are an approved form of omega-3 fatty acids by US Food and Drug Administration (FDA) which can be utilized as the therapeutic treatment for the severe hypertriglyceridemia.
Collapse
Affiliation(s)
- Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, 10300 Thailand
| |
Collapse
|
27
|
Allami HA, Tabasizadeh M, Rohani A, Nayebzadeh H, Farzad A. Effect of ultrasonic irradiation on the properties and performance of biodiesel produced from date seed oil used in the diesel engine. ULTRASONICS SONOCHEMISTRY 2020; 60:104672. [PMID: 31539733 DOI: 10.1016/j.ultsonch.2019.104672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/20/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
In the present study, the effect of ultrasound irradiation on the transesterification parameters, biodiesel properties, and its combustion profiles in the diesel engine was investigated. Moreover, date seed oil (DSO) was firstly utilized in the ultrasound-assisted transesterification reaction. DSO was extracted from Zahidi type date (Phoenix dactylifera) and was esterified to reduce its Free Fatty Acid (FFA) content. Biodiesel yield was optimized in both heating methods, so that the yield of 96.4% (containing 93.5% ester) at 60 °C, with 6 M ratio of methanol/oil, 1 wt% of catalyst (NaOH) and at 90 min of reaction time was reported. The ultrasound irradiation did not influence the reaction conditions except reaction time, reduced to 5 min (96.9% yield and 91.9% ester). The ultrasonic irradiation also influenced on the physicochemical properties of DSO biodiesel and improved its combustion in the diesel engine. The analysis results related to the engine and gas emission confirmed that the ultrasound-assisted produced biodiesel has lower density and viscosity, and higher oxygen content facilitating injection of fuel in the engine chamber and its combustion, respectively. Although, B40 (biodiesel blend consisting of 40% biodiesel and 60% net diesel fuel) as a blend of both fuels presented higher CO2 and lower CO and HC in the emissions, the DSO biodiesel produced by ultrasound irradiation presented better specifications (caused about 2-fold improvement in emissions than that of conventional method). The findings of the study confirmed the positive effect of the ultrasound irradiation on the properties of the produced biodiesel along with its combustion properties in the diesel engine, consequently reducing air pollution problems.
Collapse
Affiliation(s)
- Hassanian Abdolkarim Allami
- Department of Mechanical Biosystems, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O.Box 9177948974, Mashhad, Iran
| | - Mohammad Tabasizadeh
- Department of Mechanical Biosystems, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O.Box 9177948974, Mashhad, Iran.
| | - Abbas Rohani
- Department of Mechanical Biosystems, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O.Box 9177948974, Mashhad, Iran
| | - Hamed Nayebzadeh
- Esfarayen University of Technology, Esfarayen, North Khorasan, Iran.
| | - Abdolali Farzad
- Department of Mechanical Biosystems, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O.Box 9177948974, Mashhad, Iran
| |
Collapse
|
28
|
Irfan M, Bai Y, Zhou L, Kazmi M, Yuan S, Maurice Mbadinga S, Yang SZ, Liu JF, Sand W, Gu JD, Mu BZ. Direct microbial transformation of carbon dioxide to value-added chemicals: A comprehensive analysis and application potentials. BIORESOURCE TECHNOLOGY 2019; 288:121401. [PMID: 31151767 DOI: 10.1016/j.biortech.2019.121401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Carbon dioxide storage in petroleum and other geological reservoirs is an economical option for long-term separation of this gas from the atmosphere. Other options include applications through conversion to valuable chemicals. Microalgae and plants perform direct fixation of carbon dioxide to biomass, which is then used as raw material for further microbial transformation (MT). The approach by microbial transformation can achieve reduction of carbon dioxide and production of biofuels. This review addresses the research and technological processes related to direct MT of carbon dioxide, factors affecting their efficiency in operation and the review of economic feasibility. Additionally, some commercial plants making utilization of CO2 around the globe are also summarized along with different value-added chemicals (methane, acetate, fatty acids and alcohols) as reported in literature. Further information is also provided for a better understanding of direct CO2 MT and its future prospects leading to a sustainable and clean environment.
Collapse
Affiliation(s)
- Muhammad Irfan
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology, KSK Campus, Lahore 54890, Pakistan
| | - Yang Bai
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mohsin Kazmi
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Department of Chemical, Polymer and Composite Materials Engineering, University of Engineering and Technology, KSK Campus, Lahore 54890, Pakistan
| | - Shan Yuan
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Serge Maurice Mbadinga
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Feng Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Ji-Dong Gu
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; Engineering Research Center of MEOR, East China University of Science and Technology, Ministry of Education, Shanghai 200237, China.
| |
Collapse
|
29
|
Abomohra AEF, Shang H, El-Sheekh M, Eladel H, Ebaid R, Wang S, Wang Q. Night illumination using monochromatic light-emitting diodes for enhanced microalgal growth and biodiesel production. BIORESOURCE TECHNOLOGY 2019; 288:121514. [PMID: 31129520 DOI: 10.1016/j.biortech.2019.121514] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
The present study investigated the effect of monochromatic light-emitting diodes (LEDs) on the growth and biodiesel yield of the green microalga Scenedesmus obliquus. Different LEDs were applied individually or in combination during the night period. Among different individual treatments, red and blue illumination showed the highest biomass and lipid productivity due to stimulation of pigmentation and photosystem II, respectively. Microalgal growth, lipid production and biodiesel recovery significantly increased under combined blue-red illumination. In addition, saturated and monounsaturated fatty acids proportions increased in favor of polyunsaturated ones. Moreover, blue-red LEDs enhanced the net biodiesel energy output over the control. The total increase in net energy output represented 5.1, 3.8 and 10.8 MJ using red, blue and blue-red light, respectively. In conclusion, application of blue-red LEDs during the night period is an economical technology for microalgae cultivation, which might have a potential impact on the future of commercial biodiesel production from microalgae.
Collapse
Affiliation(s)
- Abd El-Fatah Abomohra
- School of Energy and Power Engineering, Jiangsu University, 212013 Jiangsu, China; Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Hao Shang
- School of Energy and Power Engineering, Jiangsu University, 212013 Jiangsu, China
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Hamed Eladel
- Botany Department, Faculty of Science, Benha University, 13518 Benha, Egypt
| | - Reham Ebaid
- School of the Environment and Safety Engineering, Jiangsu University, 212013 Jiangsu, China
| | - Shuang Wang
- School of Energy and Power Engineering, Jiangsu University, 212013 Jiangsu, China.
| | - Qian Wang
- School of Energy and Power Engineering, Jiangsu University, 212013 Jiangsu, China
| |
Collapse
|
30
|
Kwon D, Oh JI, Lam SS, Moon DH, Kwon EE. Orange peel valorization by pyrolysis under the carbon dioxide environment. BIORESOURCE TECHNOLOGY 2019; 285:121356. [PMID: 31005642 DOI: 10.1016/j.biortech.2019.121356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
To valorize biomass waste, pyrolysis of orange peel was mainly investigated as a case study. In an effort to establish a more sustainable thermolytic platform for orange peel, this study particularly employed CO2 as reactive gas medium. Accordingly, this study laid great emphasis on elucidating the mechanistic role of CO2 in pyrolysis of orange peel. The thermo-gravimetric analysis (TGA) confirmed that no occurrence of the heterogeneous reactions between the solid sample and CO2. However, the gaseous effluents from pyrolysis of orange peel experimentally proved that CO2 effectively suppressed dehydrogenation of volatile matters (VMs) evolved from the thermolysis of orange peel by random bond scissions. Moreover, CO2 reacted VMs, thereby resulting in the formation of CO. Note that the formation of CO was being initiated at temperatures ≥550 °C. The two identified roles of CO2 led to the compositional modification of pyrolytic oil by means of lowering aromaticity.
Collapse
Affiliation(s)
- Dohee Kwon
- Department of Environment and Energy, Sejong University, Seoul 05005, Republic of Korea
| | - Jeong-Ik Oh
- Department of Environment and Energy, Sejong University, Seoul 05005, Republic of Korea
| | - Su Shiung Lam
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Pyrolysis Technology Research Group, School of Ocean Engineering, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Deok Hyun Moon
- Department of Environmental Engineering, Chosun University, Gwangju 61452, Republic of Korea
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05005, Republic of Korea.
| |
Collapse
|
31
|
Sivaramakrishnan R, Incharoensakdi A. Low power ultrasound treatment for the enhanced production of microalgae biomass and lipid content. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Vinoth Arul Raj J, Bharathiraja B, Vijayakumar B, Arokiyaraj S, Iyyappan J, Praveen Kumar R. Biodiesel production from microalgae Nannochloropsis oculata using heterogeneous Poly Ethylene Glycol (PEG) encapsulated ZnOMn 2+ nanocatalyst. BIORESOURCE TECHNOLOGY 2019; 282:348-352. [PMID: 30878886 DOI: 10.1016/j.biortech.2019.03.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
In this present work nanocomposite composed of Mn-ZnO capped with Poly Ethylene Glycol (PEG) was utilized as heterogeneous catalyst for the transesterification of oil extracted from Nannochloropsis oculata into biodiesel using methanol as an acyl acceptor. The synthesized Mn-ZnO novel nanocomposite capped with Poly Ethylene Glycol (PEG) was characterized by using SEM and XRD. Lipid contents from the microalgae were extracted by sonication and biphasic solvent method. The process parameters involved for heterogeneous catalysis of N. oculata to biodiesel were optimized and found to be oil to methanol molar ratio of 1:15 (mol:mol), catalyst loading 3.5% (w/w) and reaction temperature of 60 °C for 4 h of reaction time by Response Surface Method. The reusability studies showed that the nano-catalyst can be reused efficiently for 4 cycles. The yield of biodiesel obtained from N. oculata species using Mn-ZnO nanocomposite capped with PEG was 87.5%.
Collapse
Affiliation(s)
- J Vinoth Arul Raj
- Department of Biotechnology, Arunai Engineering College, Thiruvannaamalai 606603, India
| | - B Bharathiraja
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
| | - B Vijayakumar
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
| | - S Arokiyaraj
- Department of Food Sciences and Biotechnology, Sejong University, Republic of Korea
| | - J Iyyappan
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
| | - R Praveen Kumar
- Department of Biotechnology, Arunai Engineering College, Thiruvannaamalai 606603, India.
| |
Collapse
|
33
|
Li Y, Qiu Y, Zhang X, Zhu M, Tan W. Strain screening and optimization of biohydrogen production by Enterobacter aerogenes EB-06 from glycerol fermentation. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0250-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
34
|
Experimental study on emissions of algal biodiesel and its blends on a diesel engine. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Cheng DL, Ngo HH, Guo WS, Chang SW, Nguyen DD, Kumar SM. Microalgae biomass from swine wastewater and its conversion to bioenergy. BIORESOURCE TECHNOLOGY 2019; 275:109-122. [PMID: 30579101 DOI: 10.1016/j.biortech.2018.12.019] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/02/2018] [Accepted: 12/06/2018] [Indexed: 05/21/2023]
Abstract
Ever-increasing swine wastewater (SW) has become a serious environmental concern. High levels of nutrients and toxic contaminants in SW significantly impact on the ecosystem and public health. On the other hand, swine wastewater is considered as valuable water and nutrient source for microalgae cultivation. The potential for converting the nutrients from SW into valuable biomass and then generating bioenergy from it has drawn increasing attention. For this reason, this review comprehensively discussed the biomass production, SW treatment efficiencies, and bioenergy generation potentials through cultivating microalgae in SW. Microalgae species grow well in SW with large amounts of biomass being produced, despite the impact of various parameters (e.g., nutrients and toxicants levels, cultivation conditions, and bacteria in SW). Pollutants in SW can effectively be removed by harvesting microalgae from SW, and the harvested microalgae biomass elicits high potential for conversion to valuable bioenergy.
Collapse
Affiliation(s)
- D L Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - H H Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia.
| | - W S Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea
| | - S W Chang
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea
| | - D D Nguyen
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - S M Kumar
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamilnadu 600 036, India
| |
Collapse
|
36
|
Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines. ENERGIES 2019. [DOI: 10.3390/en12050809] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present investigation provides an overview of the current technology related to the green diesel, from the classification and chemistry of the available biomass feedstocks to the possible production technologies and up to the final fuel properties and their effect in modern compression ignition internal combustion engines. Various biomass feedstocks are reviewed paying attention to their specific impact on the production of green diesel. Then, the most prominent production technologies are presented such as the hydro-processing of triglycerides, the upgrading of sugars and starches into C15–C18 saturated hydrocarbons, the upgrading of bio-oil derived by the pyrolysis of lignocellulosic materials and the “Biomass-to-Liquid” (BTL) technology which combines the production of syngas (H2 and CO) from the gasification of biomass with the production of synthetic green diesel through the Fischer-Tropsch process. For each of these technologies the involved chemistry is discussed and the necessary operation conditions for the maximum production yield and the best possible fuel properties are reviewed. Also, the relevant research for appropriate catalysts and catalyst supports is briefly presented. The fuel properties of green diesel are then discussed in comparison to the European and US Standards, to petroleum diesel and Fatty Acid Methyl Esters (FAME) and, finally their effect on the compression ignition engines are analyzed. The analysis concludes that green diesel is an excellent fuel for combustion engines with remarkable properties and significantly lower emissions.
Collapse
|
37
|
Sivaramakrishnan R, Suresh S, Incharoensakdi A. Chlamydomonas sp. as dynamic biorefinery feedstock for the production of methyl ester and ɛ-polylysine. BIORESOURCE TECHNOLOGY 2019; 272:281-287. [PMID: 30366287 DOI: 10.1016/j.biortech.2018.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
An integrated production of methyl ester and ɛ-polylysine from Chlamydomonas sp. was studied using biorefinery approach. The harvesting efficiency of Chlamydomonas sp. was increased up to 92% by treatment with a flocculant FeCl3 at 100 mg/L for 30 min. The DMC (dimethyl carbonate) mediated enzyme catalyzed in-situ transesterification of Chlamydomonas sp. yielded the maximum methyl ester of 92% under optimized conditions. The valued-added product ɛ-polylysine was produced from hydrolysate obtained from the spent biomass of Chlamydomonas sp. using Streptomyces sp. The key components of sugar and MgSO4 used for ɛ-polysine production were optimized whereby the maximum ɛ-polylysine production was achieved at 50 g/L sugar and 0.3 g/L MgSO4. The ɛ-polylysine production was further enhanced by supplementation of important amino acids (lysine and aspartate) and TCA cycle intermediates (citric acid and α-ketoglutaric acid). The maximum ɛ-polylysine production of 2.24 g/L was found with 4 mM citric acid supplementation after 110 h.
Collapse
Affiliation(s)
- Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Subramaniyam Suresh
- Department of Chemistry, Ramapuram Campus, SRM Institute of Science and Technology, Chennai, India
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
38
|
Sivaramakrishnan R, Incharoensakdi A. Enhancement of lipid production in Synechocystis sp. PCC 6803 overexpressing glycerol kinase under oxidative stress with glycerol supplementation. BIORESOURCE TECHNOLOGY 2018; 267:532-540. [PMID: 30048929 DOI: 10.1016/j.biortech.2018.07.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 05/03/2023]
Abstract
In this study, the effect of glycerol kinase overexpression in Synechocystis sp. PCC 6803 on lipid content was investigated. The glycerol kinase overexpressing Synechocystis cells (OE) had a higher lipid content than the wild type. The OE treated with phenol up to 1 mM showed a slight increase in the cell biomass whereas the total lipid production increased considerably (0.39 ± 0.012 g/L) as compared to that of the wild type (0.26 ± 0.01 g/L). The supplementation of 12 g/L glycerol to BG11 medium increased the lipid content of phenol treated OE from 22 to 35% with the increase of lipid production from 0.39 ± 0.012 to 0.69 ± 0.035 g/L. The RT-PCR analysis revealed that the expression of glpK was upregulated from 1.3 to 2.4 and from 1.89 to 3.64-fold after phenol treatment and glycerol supplementation respectively.
Collapse
Affiliation(s)
- Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
39
|
Ma Y, Gao Z, Wang Q, Liu Y. Biodiesels from microbial oils: Opportunity and challenges. BIORESOURCE TECHNOLOGY 2018; 263:631-641. [PMID: 29759818 DOI: 10.1016/j.biortech.2018.05.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/06/2018] [Accepted: 05/07/2018] [Indexed: 05/26/2023]
Abstract
Although biodiesel has been extensively explored as an important renewable energy source, the raw materials-associated cost poses a serious challenge on its large-scale commercial production. The first and second generations of biodiesel are mainly produced from usable raw materials, e.g. edible oils, crops etc. Such a situation inevitably imposes higher demands on land and water usage, which in turn compromise future food and water supply. Obviously, there is an urgent need to explore alternative feedstock, e.g. microbial oils which can be produced by many types of microorganisms including microalgae, fungi and bacteria with the advantages of small footprint, high lipid content and efficient uptake of carbon dioxide. Therefore, this review offers a comprehensive picture of microbial oil-based technology for biodiesel production. The perspectives and directions forward are also outlined for future biodiesel production and commercialization.
Collapse
Affiliation(s)
- Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Zhen Gao
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Qunhui Wang
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|