1
|
Li C, Bao R, Sun Y, Quan J, Angelidaki I, Yuan Z. Microbial dynamics and CO consumption enhancement via co-digestion with carbohydrate-rich synthetic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178887. [PMID: 39983491 DOI: 10.1016/j.scitotenv.2025.178887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Due to the toxicity and low mass transfer of CO, its efficient conversion is crucial for syngas biomethanation. In the present study, anaerobic co-digestion of CO and carbohydrate-rich synthetic wastewater was conducted to facilitate the CO conversion performance, followed by microbial analysis with and without methanogenic activity inhibition (namely, digestion and acidification systems). The results indicated that glucose addition in co-digestion system dramatically enhanced CO consumption. The maximum consumption rate (μ-max) of CO increased by about 65 % with adding glucose. However, CO presented partial inhibition on methanogenic activity without declining methane yield. Microbial analysis showed that microbial diversity increased in co-digestion systems. Hydrogenotrophic methanogens from Methanobrevibacter became dominant in all individual and co-digested systems. Methanogenic activity inhibited community proved the bacteria mainly mediated CO conversion, and glucose addition promoted the growth of acetogenic bacteria from Firmicutes, relating to the enhancement in CO consumption. Species from Synergistota worked as the main syntrophic oxidizers, along with Defluviitoga, Syntrophomonas, and Syntrophaceticus, assisting methane production by hydrogenotrophic methanogens. The outcomes in the present study supply an efficient strategy for synergetic treatment of syngas (CO-rich gas) and organic waste/wastewater for energy recovery.
Collapse
Affiliation(s)
- Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Lishui Institute of Ecology and Environment, Nanjing University, Nanjing 211200, China
| | - Ruihan Bao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yan Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jiawei Quan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Zengwei Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Lishui Institute of Ecology and Environment, Nanjing University, Nanjing 211200, China.
| |
Collapse
|
2
|
Sang Y, Hao Q, Zhang Y, Wang O, Zheng S, Liu F. Simultaneous removal of methane and high nitrite from the wastewater by Methylomonas sp. with soluble methane monooxygenase. BIORESOURCE TECHNOLOGY 2025; 418:131972. [PMID: 39667626 DOI: 10.1016/j.biortech.2024.131972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
Aerobic methanotrophs play a crucial role in controlling methane emission in wastewater treatment. However, the high nitrite produced during ammonium oxidation, nitrate assimilation, and denitrification hinders methane oxidation and nitrogen removal. In this study, Methylomonas sp. HYX-M1, possessing two methane monooxygenase and multiple nitrite reductase genes, demonstrated efficient methane oxidation, coupled with nitrite removal abilities up to 6 mM. Strain HYX-M1 presented methane oxidation rate of 0.05 mmol/d and nitrite removal rate of 0.53 mM/d under low-oxygen conditions. Assimilation and denitrification mainly accounted for 94.6-96.06 % and 3.10-5.03 % of nitrite removal. Methane monooxygenase genes, pmoA and mmoX expressed in different nitrite concentrations. Meanwhile, the nirB and nirD of strain HYX-M1 upregulated by 2.7- and 8.5-fold in 6 mM, respectively. The sod and ahpC genes upregulated, contributing to the survival of strain HYX-M1 in high nitrite. These findings provide a new strategy for the application of aerobic methanotrophs in regulating methane emission of wastewater with high nitrite.
Collapse
Affiliation(s)
- Yuxuan Sang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Shandong 264003, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qinqin Hao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Yuechao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Oumei Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Shiling Zheng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Shandong 264003, PR China
| | - Fanghua Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Shandong 264003, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China.
| |
Collapse
|
3
|
Li Y, Xiao S, Zhang Q, Wang N, Yang Q, Hao J. Development and standardization of spectrophotometric assay for quantification of thermal hydrolysis-origin melanoidins and its implication in antioxidant activity evaluation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135021. [PMID: 38944987 DOI: 10.1016/j.jhazmat.2024.135021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/22/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
Melanoidins are brown recalcitrant polymers originating from the thermal hydrolysis pretreatment (THP) of organic solid waste (OSW). Owing to their various formation pathways and complex structures, there is currently no reliable method to quantify melanoidins. In this study, a spectrophotometric method was developed to determine melanoidins concentration in different OSW. Three typical model Maillard reaction systems (glucose-glycine, glucose/fructose-20 amino acids, and dextran-bovine serum albumin) were used to acquire the characteristic peaks and establish standard curves. The results showed that a standard curve using glucose/fructose-20 amino acids model melanoidins at 280 nm was the optimal quantification method, because it had the best correlation with the physicochemical indicators of melanoidins and semi-quantification results calculated by excitation-emission matrix fluorescence. In addition, the applicability of the proposed method was evaluated using multiple real melanoidins samples extracted from thermally pretreated OSW under different THP conditions and food-derived melanoidins as well, demonstrating its validity and advantages. This study is the first to provide a simple, effective, and accurate method for quantifying THP-origin melanoidins from different sources. Remarkably, as a specific and important application scenario, the proposed quantification method was employed to investigate the concentration dependence of melanoidins antioxidation in thermally pretreated OSW.
Collapse
Affiliation(s)
- Yingying Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Siwei Xiao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qian Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Nan Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qing Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jiuxiao Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, School of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
4
|
Fan Y, Yan D, Chen X, Ran X, Cao W, Li H, Wan J. Novel insights into the co-metabolism of pyridine with different carbon substrates: Performance, metabolism pathway and microbial community. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133396. [PMID: 38176261 DOI: 10.1016/j.jhazmat.2023.133396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
Pyridine is a widely employed nitrogen-containing heterocyclic organic, and the discharge of pyridine wastewater poses substantial environmental challenges due to its recalcitrance and toxicity. Co-metabolic degradation emerged as a promising solution. In this study, readily degradable glucose and the structurally analogous phenol were used as co-metabolic substrates respectively, and the corresponding mechanisms were thoroughly explored. To treat 400 mg/L pyridine, all reactors achieved remarkably high removal efficiencies, surpassing 98.5%. And the co-metabolism reactors had much better pyridine-N removal performance. Batch experiments revealed that glucose supplementation bolstered nitrogen assimilation, thereby promoting the breakdown of pyridine, and resulting in the highest pyridine removal rate and pyridine-N removal efficiency. The high abundance of Saccharibacteria (15.54%) and the enrichment of GLU and glnA substantiated this finding. On the contrary, phenol delayed pyridine oxidation, potentially due to its higher affinity for phenol hydroxylase. Nevertheless, phenol proved valuable as a carbon source for denitrification, augmenting the elimination of pyridine-N. This was underscored by the abundant Thauera (30.77%) and Parcubacteria (7.21%) and the enriched denitrification enzymes (narH, narG, norB, norC, and nosZ, etc.). This study demonstrated that co-metabolic degradation can bolster the simultaneous conversion of pyridine and pyridine-N, and shed light on the underling mechanism.
Collapse
Affiliation(s)
- Yanyan Fan
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Dengke Yan
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Xiaolei Chen
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoni Ran
- Research Center of Wastewater Low-Carbon Treatment and Resource Utilization, Huanghuai Laboratory, Zhengzhou 450046, China
| | - Wang Cao
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Haisong Li
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Research Center of Wastewater Low-Carbon Treatment and Resource Utilization, Huanghuai Laboratory, Zhengzhou 450046, China.
| | - Junfeng Wan
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Khan AH, López-Maldonado EA, Khan NA, Villarreal-Gómez LJ, Munshi FM, Alsabhan AH, Perveen K. Current solid waste management strategies and energy recovery in developing countries - State of art review. CHEMOSPHERE 2022; 291:133088. [PMID: 34856242 DOI: 10.1016/j.chemosphere.2021.133088] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/02/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Solid waste generation has rapidly increased due to the worldwide population, urbanization, and industrialization. Solid waste management (SWM) is a significant challenge for a society that arises local issues with global consequences. Thus, solid waste management strategies to recycle waste products are promising practices that positively impact sustainable goals. Several developed countries possess excellent solid waste management strategies to recycle waste products. Developing countries face many challenges, such as municipal solid waste (MSW) sorting and handling due to high population density and economic instability. This mismanagement could further expedite harmful environmental and socioeconomic concerns. This review discusses the current solid waste management and energy recovery production in developing countries; with statistics, this review provides a comprehensive revision on energy recovery technologies such as the thermochemical and biochemical conversion of waste with economic considerations. Furthermore, the paper discusses the challenges of SWM in developing countries, including several immediate actions and future policy recommendations for improving the current status of SWM via harnessing technology. This review has the potential of helping municipalities, government authorities, researchers, and stakeholders working on MSW management to make effective decisions for improved SWM for achieving sustainable development.
Collapse
Affiliation(s)
- Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, P.O. Box. 706, Jazan 45142, Saudi Arabia; School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Pulau, Pinang, Malaysia.
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, CP, 22390, Tijuana, Baja California, Mexico
| | - Nadeem A Khan
- Civil Engineering Department, Jamia Millia Islamia, New Delhi, India.
| | - Luis Jesús Villarreal-Gómez
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, CP, 22390, Tijuana, Baja California, Mexico; Facultad de Ciencias de La Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd Universitario 1000, Unidad Valle de Las Palmas, 22260, Tijuana, Baja California, Mexico
| | - Faris M Munshi
- Department of Civil Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | - Abdullah H Alsabhan
- Department of Civil Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | - Kahkashan Perveen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
6
|
Verdel N, Rijavec T, Rybkin I, Erzin A, Velišček Ž, Pintar A, Lapanje A. Isolation, Identification, and Selection of Bacteria With Proof-of-Concept for Bioaugmentation of Whitewater From Wood-Free Paper Mills. Front Microbiol 2021; 12:758702. [PMID: 34671337 PMCID: PMC8521037 DOI: 10.3389/fmicb.2021.758702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
In the wood-free paper industry, whitewater is usually a mixture of additives for paper production. We are currently lacking an efficient, cost-effective purification technology for their removal. In closed whitewater cycles the additives accumulate, causing adverse production problems, such as the formation of slime and pitch. The aim of our study was to find an effective bio-based strategy for whitewater treatment using a selection of indigenous bacterial isolates. We first obtained a large collection of bacterial isolates and then tested them individually by simple plate and spectrophotometric methods for their ability to degrade the papermaking additives, i.e., carbohydrates, resin acids, alkyl ketene dimers, polyvinyl alcohol, latex, and azo and fluorescent dyes. We examined correlation between carbon source use, genera, and inoculum source of isolates using two multivariate methods: principal component analysis and FreeViz projection. Of the 318 bacterial isolates, we selected a consortium of four strains (Xanthomonadales bacterium sp. CST37-CF, Sphingomonas sp. BLA14-CF, Cellulosimicrobium sp. AKD4-BF and Aeromonas sp. RES19-BTP) that degrade the entire spectrum of tested additives by means of dissolved organic carbon measurements. A proof-of-concept study on a pilot scale was then performed by immobilizing the artificial consortium of the four strains and inserting them into a 33-liter, tubular flow-through reactor with a retention time of < 15 h. The consortium caused an 88% reduction in the COD of the whitewater, even after 21 days.
Collapse
Affiliation(s)
- Nada Verdel
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Tomaž Rijavec
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Iaroslav Rybkin
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anja Erzin
- Faculty of Chemistry and Chemical Technology, Graduate School, University of Ljubljana, Ljubljana, Slovenia
| | | | - Albin Pintar
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Aleš Lapanje
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
7
|
Dan NH, Le Luu T. High organic removal of landfill leachate using a continuous flow sequencing batch biofilm reactor (CF-SBBR) with different biocarriers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147680. [PMID: 34004532 DOI: 10.1016/j.scitotenv.2021.147680] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Landfill leachate contains many pollutants that have a negative effect on the environment when improperly discharged. Thus the treatment of landfill leachate is a crucial issue, especially in the bigger cities in developing countries. In this study, landfill leachate is treated using a continuous flow sequencing biofilm batch reactor (CF-SBBR) with different biocarriers (non-carrier (NC), kaldness K1 (K1), mutag biochip 30™ (MB), and sponge polyurethane (SP)). The results show that the best COD, TOC, and NH4+-N removal efficiencies were 79.6 ± 0.8%, 78.1 ± 1.9% and 77.5 ± 3.9% in the MB biocarriers tank with an aeration/mixing ratio of 1.3, a cycle time of 9 h and an organic loading rate (OLR) of 1.74 kgCOD/m3.d. The TN removal efficiencies was decreased when there was an increase in the biocarrier's surface area (NC > K1 > MB > SP). At the highest it was 46.1 ± 6.4%, where the aeration/mixing ratio was 1.3, the cycle time was 9 h, and the OLR was 1.52 kgCOD/m3.d. The higher the surface area of the biocarriers, the greater the anti-shock organic loading capacity of the biocarriers due to the formation of biofilm layers. The microbial communities in the CF-SBBR tanks were abundant with common phylum bacteria as in a conventional activated sludge system. Anammox candidatus bacteria was found to total 0.5%. This study concluded that CF-SBBR is an efficient method to treat landfill leachate.
Collapse
Affiliation(s)
- Nguyen Hong Dan
- Institute for Environment and Resources, Vietnam National University of Ho Chi Minh City, Viet Nam
| | - Tran Le Luu
- Master Program in Water Technology, Reuse, and Management, Vietnamese German University, 2-Le Lai Street, Hoa Phu Ward, Thu Dau Mot City, Binh Duong Province 820000, Viet Nam.
| |
Collapse
|
8
|
Biofilm characterization in removal of total chemical oxygen demand and nitrate from wastewater using draft tube spouted bed reactor. Biotechnol Lett 2021; 43:2001-2009. [PMID: 34480246 DOI: 10.1007/s10529-021-03181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/28/2021] [Indexed: 12/07/2022]
Abstract
The present paper investigates the effect of dilution rate on the removal of total chemical oxygen demand and nitrate in the draft tube spouted bed reactor and morphological characteristics of biofilms formed by microorganisms of mixed culture on granular activated carbon (GAC). The nitrate and total chemical oxygen demand (COD) decreased from 97 to 81% and 95% to 87% respectively with increase in dilution rate from 0.6/h to 1.5/h showing that residence time in the reactor governs the nitrate and total COD reduction efficiency. Lower dilution rates favor higher production of biomass and extracellular polymeric substances (EPS). It was observed that the nitrate and total COD reduction rate increased with time along with simultaneous increase in EPS production. Thus, the performance of a reactor in terms of dynamic and steady-state biofilm characteristics associated with nitrate and organic reduction is a strong function of dilution rate. Hence these findings indicate that a draft tube spouted bed reactor is capable of simultaneously reducing total organics and nitrogen in industrial/municipal wastewater, as this reactor possesses two distinct regions aerobic and anoxic conditions which can prevail in different parts of a reactor.
Collapse
|
9
|
Liu D, Yang Y, Ai J, Li Y, Xing Y, Li J. Research on microbial structures, functions and metabolic pathways in an advanced denitrification system coupled with aerobic methane oxidation based on metagenomics. BIORESOURCE TECHNOLOGY 2021; 332:125047. [PMID: 33839509 DOI: 10.1016/j.biortech.2021.125047] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Methanotrophs can oxidize methane as the sole carbon and energy, and the resulting intermediate products can be simultaneously utilized by coexistent denitrifying bacteria to remove the nitrogen, which named Aerobic Methane Oxidation Coupled to Denitrification (AME-D). In this paper, an AME-D system was built in an improved denitrification bio-filter, to analyze the nitrogen removal efficiency and mechanism. The maximum TN removal rate reached 95.05%. As shown in Raman spectroscopy, in the effluent wave crests generated by the symmetric expansion and contraction of NO3- disappeared, and the distortion of olefin CH2 and C-OH stretching of alcohols appeared. Metagenomics revealed Methylotenera and Methylobacter were the dominated methanotrophs. There was a completed methane and nitrogen metabolism pathway with the synergism of nxrAB, narGHI, nasAB, pmo-amoABC and mmo genes. Dissimilatory reduction pathway was the primary nitrate removal pathway. Moreover, Bradyrhizobium could participate in methane and nitrogen metabolism simultaneously.
Collapse
Affiliation(s)
- Dengping Liu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China
| | - Yanan Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China; Sinopec Great Wall Energy and Chemical (Guizhou) Co., LTD, Zhijin, Guizhou 552100, China
| | - Jia Ai
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China
| | - Yancheng Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Yi Xing
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China; School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Jiang Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou 550025, China
| |
Collapse
|
10
|
Methane utilizing plant growth-promoting microbial diversity analysis of flooded paddy ecosystem of India. World J Microbiol Biotechnol 2021; 37:56. [PMID: 33619649 DOI: 10.1007/s11274-021-03018-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/01/2021] [Indexed: 01/10/2023]
Abstract
Methane utilizing bacteria (MUB) are known to inhabit the flooded paddy ecosystem where they play an important role in regulating net methane (CH4) emission. We hypothesize that efficient MUB having plant growth-promoting (PGP) attributes can be used for developing novel bio-inoculant for flooded paddy ecosystem which might not only reduce methane emission but also assist in improving the plant growth parameters. Hence, soil and plant samples were collected from the phyllosphere, rhizosphere, and non-rhizosphere of five rice-growing regions of India at the tillering stage and investigated for efficient methane-oxidizing and PGP bacteria. Based on the monooxygenase activity and percent methane utilization on NMS medium with methane as the sole C source, 123 isolates were identified and grouped phylogenetically into 13 bacteria and 2 yeast genera. Among different regions, a significantly higher number of isolates were obtained from lowland flooded paddy ecosystems of Aduthurai (33.33%) followed by Ernakulum (20.33%) and Brahmaputra valley (19.51%) as compared to upland irrigated regions of Gaya (17.07%) and Varanasi (8.94%). Among sub-samples, a significantly higher number of isolates were found inhabiting the phyllosphere (58.54%) followed by non-rhizosphere (25.20%) and rhizosphere (15.45%). Significantly higher utilization of methane and PGP attributes were observed in 30 isolates belonging to genera Hyphomicrobium, Burkholderia, Methylobacterium, Paenibacillus, Pseudomonas, Rahnella, and Meyerozyma. M. oryzae MNL7 showed significantly better growth with 74.33% of CH4 utilization at the rate of 302.9 ± 5.58 and exhibited half-maximal growth rate, Ks of 1.92 ± 0.092 mg CH4 L-1. Besides the ability to utilize CH4, P. polymyxa MaAL70 possessed PGP attributes such as solubilization of P, K, and Zn, fixation of atmospheric N and production of indole acetic acid (IAA). Both these promising isolates can be explored in the future for developing novel biofertilizers for flooded paddies.
Collapse
|
11
|
Jaiswal S, Kumar Gupta G, Panchal K, Mandeep, Shukla P. Synthetic Organic Compounds From Paper Industry Wastes: Integrated Biotechnological Interventions. Front Bioeng Biotechnol 2021; 8:592939. [PMID: 33490048 PMCID: PMC7820897 DOI: 10.3389/fbioe.2020.592939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
Synthetic organic compounds (SOCs) are reported as xenobiotics compounds contaminating the environment from various sources including waste from the pulp and paper industries: Since the demand and production of paper is growing increasingly, the release of paper and pulp industrial waste consisting of SOCs is also increasing the SOCs' pollution in natural reservoirs to create environmental pollution. In pulp and paper industries, the SOCs viz. phenol compounds, furans, dioxins, benzene compounds etc. are produced during bleaching phase of pulp treatment and they are principal components of industrial discharge. This review gives an overview of various biotechnological interventions for paper mill waste effluent management and elimination strategies. Further, the review also gives the insight overview of various ways to restrict SOCs release in natural reservoirs, its limitations and integrated approaches for SOCs bioremediation using engineered microbial approaches. Furthermore, it gives a brief overview of the sustainable remediation of SOCs via genetically modified biological agents, including bioengineering system innovation at industry level before waste discharge.
Collapse
Affiliation(s)
- Shweta Jaiswal
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Guddu Kumar Gupta
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Kusum Panchal
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Mandeep
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
12
|
Yan X, Zheng S, Yang J, Ma J, Han Y, Feng J, Su X, Sun J. Effects of hydrodynamic shear stress on sludge properties, N 2O generation, and microbial community structure during activated sludge process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 274:111215. [PMID: 32814212 DOI: 10.1016/j.jenvman.2020.111215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/06/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Sludge properties are critical to the treatment performance and potentially correlate with nitrous oxide (N2O) generation during activated sludge processes. The hydrodynamic shear stress induced by aeration has a significant influence on sludge properties and is inevitable for wastewater treatment plants (WWTPs). In this study, the effects of aerobic induced hydrodynamic shear stress on sludge properties, N2O generation, and microbial community structure were investigated using three parallel sequencing batch reactors (SBRs) with identical dissolved oxygen (DO) concentrations. Results showed that with a shear stress increase from 1.5 × 10-2 N/m2 to 5.0 × 10-2 N/m2, the COD and NH4+-N removal rates were enhanced from 89.4% to 94.0% and from 93.9% to 98.0%, respectively, while the TN removal rate decreased from 66.0% to 56.5%. Settleability of the activated sludge flocs (ASFs) also increased with the enhancement of shear stress, due to variation in sludge properties including particle size, regularity, compactibility, and EPS (extracellular polymeric substances) composition. The increase in shear stress promoted oxygen diffusion within the ASFs and mitigated NO2--N accumulation, leading to a decrease in the N2O-N conversion rate from (4.8 ± 0.3)% to (2.2 ± 0.6)% (based on TN removal). Microbial analysis results showed that the functional bacteria involved in the biological nitrogen removal was closely related with shear stress. The increase in shear stress favored the enrichment of nitrite oxidizing bacteria (NOB) while suppressed the accumulation of ammonia-oxidizing bacteria (AOB) and denitrifying bacteria (DNB).
Collapse
Affiliation(s)
- Xu Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China.
| | - Shikan Zheng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Jie Yang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Jiahui Ma
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Yunping Han
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jinglan Feng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Xianfa Su
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Jianhui Sun
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| |
Collapse
|
13
|
Peng S, Deng S, Li D, Xie B, Yang X, Lai C, Sun S, Yao H. Iron-carbon galvanic cells strengthened anaerobic/anoxic/oxic process (Fe/C-A2O) for high-nitrogen/phosphorus and low-carbon sewage treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137657. [PMID: 32199356 DOI: 10.1016/j.scitotenv.2020.137657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
The treatment of sewage with high-nitrogen/-phosphorus and low-carbon remains a challenge. A novel iron-carbon galvanic cells strengthened anaerobic/anoxic/oxic process (Fe/C-A2O) was developed for high-nitrogen/-phosphorus and low-carbon sewage treatment. The cost-effective iron-scraps (ISs) was recycled as Fe(0)-source under the mediation of Fe/C galvanic cell reaction to develop effective Fe(0)-oxidizing autotrophic-denitrification and -dephosphorization. Utilizing practical high-nitrogen/-phosphorus and low-carbon sewage as target wastewater, the performance, impact factors, contribution of Fe/C galvanic cell reactions, microbial characteristics, strengthening mechanisms, and application potential of Fe/C-A2O process were investigated. The Fe/C-A2O process achieved high TN and TP removal efficiencies of 92.0 ± 1.3% and 97.2 ± 0.9% with removal loads of 0.176 ± 0.002 kg TN/(m3·d) and 0.017 ± 0.002 kg TP/(m3·d), respectively. Optimal HRT of 12 h, DO of 4.0-4.5 mg/L, and reflux-ratio of 4:1 were obtained, and no sludge-reflux was required. Autotrophic-denitrification and -dephosphorization supported by the Fe/C galvanic cell reactions contributed 63.1% and 75.3% of TN and TP removal, respectively. Microbial characterization revealed the dominance of autotrophic denitrifiers (e.g., Thiobacillus), AOB (e.g., Nitrosomonas), NOB (e.g., Nitrospira), and heterotrophic denitrifiers (e.g., Zoogloea). The mechanism analysis demonstrated that Fe/C galvanic cells strengthened nitrogen removal by raising Fe2+/H2-supported autotrophic denitrification; and strengthened dephosphorization by introducing Fe3+-based PO43--precipitation and enhancing the denitrifying phosphate-accumulation by denitrifying phosphate-accumulating organisms (DPAOs). Based on the efficiency and cost evaluation, the ISs-based Fe/C-A2O process showed significant application potential as an upgrade strategy for traditional A2O process in advanced high-nitrogen/phosphorus and low-carbon sewage treatment.
Collapse
Affiliation(s)
- Shuai Peng
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Shihai Deng
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China; Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576 Singapore, Singapore.
| | - Desheng Li
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Binghan Xie
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576 Singapore, Singapore; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China
| | - Xue Yang
- Process & Engineering Center, National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, PR China
| | - Cai Lai
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Shaobin Sun
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Hong Yao
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| |
Collapse
|
14
|
Tang Z, Lin Z, Wang Y, Zhao P, Kuang F, Zhou J. Coupling of thermophilic biofilm-based systems and ozonation for enhanced organics removal from high-temperature pulping wastewater: Performance, microbial communities, and pollutant transformations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136802. [PMID: 31982769 DOI: 10.1016/j.scitotenv.2020.136802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/11/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
This study focused on the establishment of thermophilic biofilm-based systems (TBSs) coupled with ozonation for treatment of high-temperature pulping wastewater. The effects of the inoculum, sludge growth mode, and temperature were investigated. These factors played roles in the organics removal performance and microbial communities of pulping wastewater treatment systems. At 50 °C, the TBS inoculated with optimal inoculum achieved 59.12% and 37.96% reductions in COD and chromaticity, which were superior to the reductions achieved by other systems. In this TBS, thermophilic lignocellulolytic microorganisms (Chloroflexus, Meiothermus, norank_f_Caldilineaceae, and Roseiflexus) and carbohydrate-fermenting bacteria (norank_f_Anaerolineaceae) were predominant. Their relative abundances were 25.55% and 10.42%, respectively. For enhanced removal of COD and chromaticity, an integrated system consisting of a primary TBS, ozonation, and a secondary TBS was proposed. The total COD and chromaticity removal efficiencies increased to 90.48% and 87.89%, respectively. BOD5/COD increased from 0.20 to 0.40, and shifts of lignin-like and humic acid-like substances were observed during ozonation with the primary TBS effluent.
Collapse
Affiliation(s)
- Zhiyang Tang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yingmu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Pengcheng Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Faguo Kuang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
15
|
Ahmadi E, Yousefzadeh S, Mokammel A, Miri M, Ansari M, Arfaeinia H, Badi MY, Ghaffari HR, Rezaei S, Mahvi AH. Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2020; 121:109674. [DOI: 10.1016/j.rser.2019.109674] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
16
|
Patel SKS, Kalia VC, Joo JB, Kang YC, Lee JK. Biotransformation of methane into methanol by methanotrophs immobilized on coconut coir. BIORESOURCE TECHNOLOGY 2020; 297:122433. [PMID: 31761623 DOI: 10.1016/j.biortech.2019.122433] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to establish a unique approach for the production of methanol from methane (CH4) in the presence of paraffin oil mediated by methanotrophs immobilized on coconut coir (CC). Immobilization of different methanotrophs through covalent method increased the immobilization yield and relative efficiency for methanol production to 48.6% and 96.8%, respectively. In the presence of paraffin oil, methanol production was 1.6-fold higher by Methylocystis bryophila than by control. Compared to free cells, whole cells immobilized on CC showed higher stability for methanol production. Under repeated batch conditions, cumulative methanol production by immobilized cells and free cells, after eight cycles of reuse, was 52.9 and 30.9 mmol/L, respectively. This study effectively demonstrated the beneficial influence of lignocellulosic biowaste CC as support for immobilization of methanotrophs and paraffin oil on bioconversion of CH4 to methanol.
Collapse
Affiliation(s)
- Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ji Bong Joo
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
17
|
Huang Y, Wang Y, Liu S, Huang W, He L, Zhou J. Enhanced hydrolysis-acidification of high-solids and low-organic-content sludge by biological thermal-alkaline synergism. BIORESOURCE TECHNOLOGY 2019; 294:122234. [PMID: 31610488 DOI: 10.1016/j.biortech.2019.122234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
In this study, a biological thermal-alkaline synergistic system was successfully established to enhance the hydrolysis-acidification efficiency of high-solids and low-organic-content sludge (HS-LOC-S). The results indicated that the highest hydrolysis rate was obtained at pH of 12 (52.62%) leading to the highest production of soluble chemical oxygen demand (SCOD) and soluble protein (SP). The highest acidification rate was observed at pH of 10 (32.15%), leading to the highest production of volatile fatty acids (VFAs). At pH of 10, average sludge size reduced by 24.60%, and the proportion of biodegradable dissolved organic matter (DOM) produced by synergistic system increased by 15.82%, when compared with those of raw sludge. Moreover, results of 16S rRNA clearly validated that the relative abundance of hydrolytic and acidogenic microbes (e.g. Tepidimicrobium, Coprothermobacter) abundantly enriched at pH of 10 (49.88%) was greatly higher than others, which was the main reason for its maximum VFAs accumulation.
Collapse
Affiliation(s)
- Yangyang Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yingmu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Shihu Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Wei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
18
|
Wang X, Shen J, Kang J, Zhao X, Chen Z. Mechanism of oxytetracycline removal by aerobic granular sludge in SBR. WATER RESEARCH 2019; 161:308-318. [PMID: 31203036 DOI: 10.1016/j.watres.2019.06.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
In this study, oxytetracycline (OTC) as a target pollutant in swine wastewater was removed by aerobic granular sludge (AGS). The removal rate of 300 μg/L OTC in aerobic granular sludge sequencing batch reactor (AGSBR) increased to 88.00% in 33 days and maintained stable. The chemical oxygen demand (COD), ammonium nitrogen (NH4+-N) and total phosphorus (TP) in wastewater were also efficiently removed. The removal of OTC mainly depended on the adsorption and biodegradation of AGS, and the biodegradation was increased obviously after AGS adaptation to OTC. The degradation products of OTC were analyzed by mass spectrometry. The analysis of metagenome sequencing revealed that the enzymes, such as glycosyl transferases (GTs), polysaccharide lyases (PLs) and auxiliary activities (AAs), may play an important role in the removal of OTC. The Lefse analysis showed that the Flavobacteriia, Flavobacteriales, Cryomorphaceae and Fluviicola were four kinds of microbes with significant difference in OTC feed reactor, which are considered to be drug-resistant bacteria in AGSBR. Furthermore, the dynamics of microbial community changed significantly at three levels, including the enrichment of drug-resistant microorganisms and the microorganisms that gradually reduced or even disappeared under the pressure of OTC.
Collapse
Affiliation(s)
- Xiaochun Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xia Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
19
|
Treatment of paper mill wastewater using a composite inorganic coagulant prepared from steel mill waste pickling liquor. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.07.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Patel SKS, Kumar V, Mardina P, Li J, Lestari R, Kalia VC, Lee JK. Methanol production from simulated biogas mixtures by co-immobilized Methylomonas methanica and Methylocella tundrae. BIORESOURCE TECHNOLOGY 2018; 263:25-32. [PMID: 29729538 DOI: 10.1016/j.biortech.2018.04.096] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
In the present study, co-cultures of the methanotrophs Methylocella tundrae, Methyloferula stellata, and Methylomonas methanica were evaluated for improving methanol production with their application. Among the different combinations, the co-culture of M. tundrae and M. methanica increased methanol production to 4.87 mM using methane (CH4) as feed. When simulated biogas mixtures were used as feed, the maximum methanol production was improved to 8.66, 8.45, and 9.65 mM by free and encapsulated co-cultures in 2% alginate and silica-gel, respectively. Under repeated batch conditions, free and immobilized co-cultures using alginate and silica-gel resulted in high cumulative production, up to 24.43, 35.95, and 47.35 mM, using simulated biohythane (CH4 and hydrogen), respectively. This is the first report of methanol production from defined free and immobilized co-cultures using simulated biogas mixtures as feed.
Collapse
Affiliation(s)
- Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Virendra Kumar
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Primata Mardina
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jinglin Li
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Rowina Lestari
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Vipin C Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|