1
|
Zhao J, Zong Z, Zhang X, Luo C, Li Z. Bamboo: A neglected candidate for polyhydroxyalkanoate production-A review. Int J Biol Macromol 2025; 316:144303. [PMID: 40409616 DOI: 10.1016/j.ijbiomac.2025.144303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 05/06/2025] [Accepted: 05/15/2025] [Indexed: 05/25/2025]
Abstract
In light of growing concerns about climate change, energy crises, and waste management due to the excessive reliance on fossil resources, there is an increasing emphasis on sustainability and the circular economy. Polyhydroxyalkanoates (PHAs), microbial polyesters synthesized from various feedstocks, offer a promising alternative to conventional plastics due to their comparable physicochemical characteristics, biological degradability, and biocompatibility. Lignocellulosic biomass, known for its abundance, renewability, and affordability, represents a particularly suitable carbon source for commercial PHA production. This review provides a comprehensive overview of the bioconversion of lignocellulosic feedstocks into PHAs, encompassing pretreatment, hydrolysis, and fermentation strategies. It highlights biosynthetic pathways from cellulose and hemicellulose via reducing sugars and volatile fatty acids fermentation, and also evaluates the feasibility of utilizing lignin as a substrate for PHA biosynthesis. Additionally, the review underscores the advantages of bamboo-a rapid-growing, renewable plant with high biomass yield, rich lignocellulosic composition, and strong carbon sequestration capacity-as a promising yet underexplored feedstock for industrial-scale PHA production.
Collapse
Affiliation(s)
- Jiayue Zhao
- International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration on Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Zhijie Zong
- International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration on Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Xinyu Zhang
- International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration on Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Chaobing Luo
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 838099, China.
| | - Zhiqiang Li
- International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration on Bamboo & Rattan Science and Technology, Beijing 100102, China.
| |
Collapse
|
2
|
Xu T, Li H, Zhang S, Xue Q, Hewage R, Wang J, Guo F, Zhao D, Ai G, Kahramon D, Xiang H, Han J. Production of polyhydroxybutyrate from wheat straw hydrolysate using a low-salt requiring and alkaliphilic Halomonas nigrificans X339 under non-sterile open condition. BIORESOURCE TECHNOLOGY 2025; 424:132276. [PMID: 39986623 DOI: 10.1016/j.biortech.2025.132276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Utilizing agricultural waste is a sustainable approach to reduce the production cost of bio-based products. Here, we report a novel haloalkaliphilic strain, Halomonas nigrificans X339, which exhibits an exceptional ability to utilize various low-cost carbon sources. Compared to other halophiles, X339 could be cultivated at an optimal salinity as low as 2 % (w/v). X339 accumulated extraordinarily large granules of polyhydroxybutyrate (PHB). In open batch fermentation, X339 produced 5.11 g/L of PHB from wheat straw hydrolysate (WSH) at 3 % salinity and pH 9, with a PHB/carbon source conversion rate of 0.30 g/g. This represents the highest PHB yield reported from straw hydrolysates in shake-flask fermentation by halophiles. Additionally, whole genome of X339 was sequenced to identify candidate genes related to carbon source utilization. Our findings will benefit researchers in developing a suitable chassis for Next Generation Industrial Biotechnology, and offer a sustainable and eco-friendly solution for bio-based products.
Collapse
Affiliation(s)
- Tong Xu
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| | - Hao Li
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, Shandong Normal University, Jinan 250014, People's Republic of China.
| | - Shengjie Zhang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| | - Qiong Xue
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| | - Richard Hewage
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; International College, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Jinhong Wang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Feng Guo
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, Yunnan University, Kunming 650504, People's Republic of China.
| | - Dahe Zhao
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| | - Guomin Ai
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| | - Davranov Kahramon
- Institute of Microbiology of the Academy of Sciences of the Republic of Uzbekistan, Tashkent 100128, Republic of Uzbekistan.
| | - Hua Xiang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Jing Han
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
3
|
Muigano MN, Mauti GO, Anami SE, Onguso JM. Advances and challenges in polyhydroxyalkanoates (PHA) production using Halomonas species: A review. Int J Biol Macromol 2025; 309:142850. [PMID: 40188920 DOI: 10.1016/j.ijbiomac.2025.142850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/24/2025] [Accepted: 04/03/2025] [Indexed: 05/10/2025]
Abstract
Plastic waste pollution is one of the major threats to sustainable development. Biodegradable polymers and biopolymers such as polyhydroxyalkanoates (PHAs) offer suitable alternatives for replacing synthetic plastics. PHAs are produced by diverse bacteria species and archaea as storage compounds for utilization as carbon and energy sources. Halomonas species have emerged as attractive microbial cell factories for biosynthesis of PHAs due to their metabolic versality, ability to valorize diverse feedstock materials, and tolerance to high salinity and pH that allows fermentation in contamination-resistant conditions. In recent years, there has been great attention to the use of Halomonas species in PHA biosynthesis and genetic engineering efforts for enhanced production. This article provides a discussion of the current state of knowledge on production of polyhydroxyalkanoates by Halomonas species. It includes an overview of PHA biosynthesis mechanisms, fermentation strategies, production with cheap substrates, exploitation of open and unsterile conditions, co-production of PHAs and other products, and advances genetic engineering efforts.
Collapse
Affiliation(s)
- Martin N Muigano
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya.
| | | | - Sylvester E Anami
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Justus M Onguso
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| |
Collapse
|
4
|
Kalia VC, Singh RV, Gong C, Lee JK. Toward Sustainable Polyhydroxyalkanoates: A Next-Gen Biotechnology Approach. Polymers (Basel) 2025; 17:853. [PMID: 40219244 PMCID: PMC11991626 DOI: 10.3390/polym17070853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable biopolymers synthesized by microorganisms and serve as sustainable alternatives to petroleum-based plastics. While traditional PHA production relies on refined carbon sources and pure cultures, high costs and scalability challenges limit commercial viability. Extremophiles, particularly halophiles, have emerged as promising candidates for cost-effective, large-scale production of PHAs. Their ability to thrive in extreme environments reduces contamination risks, minimizes the need for sterilization, and lowers operational costs. Advancements in metabolic engineering, synthetic biology, and CRISPR-based genome editing have enhanced PHA yields by optimizing metabolic flux and cell morphology. Additionally, utilizing alternative feedstocks such as biowaste, syngas, methane, and CO₂ improves economic feasibility. Next-generation industrial biotechnology integrates extremophilic microbes with AI-driven fermentation and eco-friendly downstream processing to enhance scalability. Industrial-scale production of PHAs using Halomonas spp. and other extremophiles demonstrates significant progress toward commercialization, paving the way for sustainable biopolymer applications in reducing plastic pollution.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (V.C.K.); (R.V.S.)
| | - Rahul Vikram Singh
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (V.C.K.); (R.V.S.)
| | - Chunjie Gong
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China;
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (V.C.K.); (R.V.S.)
| |
Collapse
|
5
|
Kalia VC, Patel SKS, Krishnamurthi P, Singh RV, Lee JK. Exploiting latent microbial potentials for producing polyhydroxyalkanoates: A holistic approach. ENVIRONMENTAL RESEARCH 2025; 269:120895. [PMID: 39832546 DOI: 10.1016/j.envres.2025.120895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Plastics are versatile, however, nonbiodegradable polymers that are primarily derived from fossil fuels and pose notable environmental challenges. However, biopolymers, such as polyhydroxyalkanoates (PHAs), poly(lactic acid), starch, and cellulose have emerged as sustainable alternatives to conventional plastics. Among these, PHAs stand out as strong contenders as they are completely bio-based and biodegradable and are synthesized by microbes as an energy reserve under stress conditions. Despite their limitations, including low mechanical strength, susceptibility to degradation, a restricted scope of application, and high production costs, biopolymers have promising potential. This review explores strategies for enhancing PHA production to address these challenges, emphasizing the need for sustainable PHA production. These strategies include selecting robust microbial strains and feedstock combinations, optimizing cell biomass and biopolymer yields, genetically engineering biosynthetic pathways, and improving downstream processing techniques. Additives such as plasticizers, thermal stabilizers, and antioxidants are crucial for modifying PHA characteristics, and its processing for achieving the desired balance between processability and end-use performance. By overcoming these complications, biopolymers have become more viable, versatile, and eco-friendly alternatives to conventional plastics, offering hope for a more sustainable future.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, 246174, Uttarakhand, India
| | | | - Rahul Vikram Singh
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
6
|
Li D, Wang F, Zheng X, Zheng Y, Pan X, Li J, Ma X, Yin F, Wang Q. Lignocellulosic biomass as promising substrate for polyhydroxyalkanoate production: Advances and perspectives. Biotechnol Adv 2025; 79:108512. [PMID: 39742901 DOI: 10.1016/j.biotechadv.2024.108512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
The depletion of fossil resources, coupled with global warming and adverse environmental impact of traditional petroleum-based plastics, have necessitated the discovery of renewable resources and innovative biodegradable materials. Lignocellulosic biomass (LB) emerges as a highly promising, sustainable and eco-friendly approach for accumulating polyhydroxyalkanoate (PHA), as it completely bypasses the problem of "competition for food". This sustainable and economically efficient feedstock has the potential to lower PHA production costs and facilitate its competitive commercialization, and support the principles of circular bioeconomy. LB predominantly comprises cellulose, hemicellulose, and lignin, which can be converted into high-quality substrates for PHA production by various means. Future efforts should focus on maximizing the value derived from LB. This review highlights the momentous and valuable research breakthroughs in recent years, showcasing the biosynthesis of PHA using low-cost LB as a potential feedstock. The metabolic mechanism and pathways of PHA synthesis by microbes, as well as the key enzymes involved, are summarized, offering insights into improving microbial production capacity and fermentation metabolic engineering. Life cycle assessment and techno-economic analysis for sustainable and economical PHA production are introduced. Technological hurdles such as LB pretreatment, and performance limitations are highlighted for their impact on enhancing the sustainable production and application of PHA. Meanwhile, the development direction of co-substrate fermentation of LB and with other carbon sources, integrated processes development, and co-production strategies were also proposed to reduce the cost of PHA and effectively valorize wastes.
Collapse
Affiliation(s)
- Dongna Li
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Fei Wang
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xuening Zheng
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yingying Zheng
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xiaosen Pan
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Jianing Li
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree/State Key Laboratory Breeding Base of Cultivation & Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, PR China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Fen Yin
- Engineering College, Qinghai Institute of Technology, Xining 810016, PR China.
| | - Qiang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
7
|
Hou J, Cheng L, Zhang S, Zhang X, Zheng X, Zhang Q. Production of polyhydroxyalkanoate from new isolated bacteria of Acidovorax diaphorobacter ZCH-15 using orange peel and its underlying metabolic mechanisms. BIORESOURCE TECHNOLOGY 2025; 418:131949. [PMID: 39643061 DOI: 10.1016/j.biortech.2024.131949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/18/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Polyhydroxyalkanoate (PHA) is considered a sustainable alternative to traditional petroleum-based plastics due to its biodegradability and biocompatibility. In this study, Acidovorax diaphorobacter ZCH-15, an efficient PHA-producing strain, was isolated from activated sludge. Using food waste-derived orange peel as a substrate, the strain initially achieved a PHA concentration of 0.39 g/L. Under optimal fermentation conditions (30℃, pH 8, 2 % inoculum concentration, and 30 g/L carbon source), the PHA concentration increased by 138 % to reach a maximum of 0.93 g/L. Proton nuclear magnetic resonance spectroscopy and gas chromatography analyses identified the PHA composition as poly(3-hydroxybutyrate-co-3-hydroxyvalerate), which exhibited high crystallinity and structural stability. Metabolomic analysis indicated that the tricarboxylic acid cycle and pentose phosphate pathway were involved in producing succinyl-CoA, a precursor required for PHA synthesis. This study demonstrates the potential for cost-effective industrial PHA production while enabling the high-value utilization of food waste.
Collapse
Affiliation(s)
- Jinju Hou
- Institute of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Lei Cheng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Shudong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaotong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xilong Zheng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai 200062, China.
| |
Collapse
|
8
|
Ben Abdallah M, Saadaoui I, Al-Ghouti MA, Zouari N, Hahladakis JN, Chamkha M, Sayadi S. Advances in polyhydroxyalkanoate (PHA) production from renewable waste materials using halophilic microorganisms: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178452. [PMID: 39824097 DOI: 10.1016/j.scitotenv.2025.178452] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polymers that can replace conventional plastics in different sectors. However, PHA commercialization is hampered due to their high production cost resulting from the use of high purity substrates, their low conversion into PHAs by using conventional microbial chassis and the high downstream processing cost. Taking these challenges into account, researchers are focusing on the use of waste by-products as alternative low-cost feedstocks for fast-growing and contamination-resistant halophilic microorganisms (Bacteria, Archaea…). This is of great importance since these extremophiles can use low-cost substrates, produce high PHA content of copolymers or different PHA monomer compositions. They can present high potential for reducing the costs of PHA fermentation and recovery processes, making their use in commercial applications easier. However, little is known about the potential of halophiles in advancing the PHA production from renewable waste materials at lab-scale and their successful implementation at industrial-scale. This review presents actual advances in PHA production by halophilic pure/engineered species (e.g. Haloferax mediterranei, Halomonas spp.) and mixed microbial consortia (MMC) using organic waste streams. The development of optimal PHA production process involves robust genetic engineering strategies, advanced fermentation processes using mixed microbial consortia versus pure/engineered strains as well as algal biomass as feedstocks.
Collapse
Affiliation(s)
- Manel Ben Abdallah
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar; Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia.
| | - Imen Saadaoui
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | - Mohammad A Al-Ghouti
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Nabil Zouari
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, P.O. Box 2713, Qatar
| | - John N Hahladakis
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
9
|
Arcila-Echavarría DC, Lu-Chau TA, Gómez-Vanegas NA. Polyhydroxybutyrate Synthesis by the Halophilic Bacterium, Halomonas boliviensis, in Oil Palm Empty Fruit Bunch Hydrolysate. Biopolymers 2025; 116:e23644. [PMID: 39643594 DOI: 10.1002/bip.23644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/04/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Polyhydroxyalkanoates are biodegradable, natural polyesters with the potential to replace petroleum-based plastics. However, high production costs limit their competitiveness. This study assessed the ability of Halomonas boliviensis, a halophilic bacterium, to synthesize polyhydroxybutyrate (PHB) from an agricultural residue, oil palm empty fruit bunch (OPEFB), in highly saline solutions that minimize contamination risk. OPEFB, containing glucose, xylose, and arabinose, offers a cost-effective alternative to pure sugar substrates and aids in waste management. PHB production from OPEFB was compared with fermentations using these sugars. H. boliviensis successfully synthesized PHB from all substrates, achieving the highest PHB content from glucose (54.63%), followed by xylose (40.18%), OPEFB (33.59%), and arabinose (33.52%). Glucose in the OPEFB hydrolysate was entirely depleted after 72 h, while xylose showed minimal consumption. This research highlights the potential of using low-cost carbon sources like OPEFB for PHB production. Future research should focus on optimizing the fermentation process to increase PHB yields, making it a more viable alternative to traditional plastics.
Collapse
Affiliation(s)
| | - Thelmo Alejandro Lu-Chau
- Department of Chemical Engineering, CRETUS Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | |
Collapse
|
10
|
Dey P, Haldar D, Sharma C, Chopra J, Chakrabortty S, Dilip KJ. Innovations in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and nanocomposites for sustainable food packaging via biochemical biorefinery platforms: A comprehensive review. Int J Biol Macromol 2024; 283:137574. [PMID: 39542313 DOI: 10.1016/j.ijbiomac.2024.137574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The substantial build-up of non-biodegradable plastic waste from packaging sector not only poses severe environmental threats but also hastens the depletion of natural petroleum-based resources. Presently, poly (3-hydroxybutyrate-co-3-hydroxy valerate) (PHBV), received enormous attention as ideal alternatives for such traditional petroleum-derived plastics based on their biocompatibility and superior mechanical properties. However, high cost of such copolymer, due to expensive nature of feedstock, inefficient microbial processes and unfavorable downstream processing strategies restricts its large-scale commercial feasibility in the packaging sector. This review explores merits and challenges associated with using potent agricultural and industrial waste biomasses as sustainable feedstocks alongside improved fermentation and downstream processing strategies for the biopolymer in terms of biorefinery concept. Despite PHBV's attractive properties, its inherent shortcomings like weak thermal stability, poor mechanical properties, processability difficulty, substantial hydrophobicity and comparatively higher water vapor permeability (WVP) demand the development of its composites based on the application. Based on this fact, the review assessed properties and potential applications of PHBV-based composite materials having natural raw materials, nanomaterials and synthetic biodegradable polymers. Besides, the review also enlightens sustainability, future prospects, and challenges associated with PHBV-based composites in the field of food packaging while considering insights about economic evaluation and life cycle assessment.
Collapse
Affiliation(s)
- Pinaki Dey
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India
| | - Chhavi Sharma
- Department of Biotechnology, University Centre for Research and Development (UCRD), Chandigarh University, Mohali 140413, India
| | - Jayita Chopra
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani K.K. Birla Goa Campus, 403726, India
| | - Sankha Chakrabortty
- School of Chemical Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India
| | | |
Collapse
|
11
|
Wang J, Huang J, Liu S. The production, recovery, and valorization of polyhydroxybutyrate (PHB) based on circular bioeconomy. Biotechnol Adv 2024; 72:108340. [PMID: 38537879 DOI: 10.1016/j.biotechadv.2024.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 03/01/2024] [Indexed: 04/17/2024]
Abstract
As an energy-storage substance of microorganisms, polyhydroxybutyrate (PHB) is a promising alternative to petrochemical polymers. Under appropriate fermentation conditions, PHB-producing strains with metabolic diversity can efficiently synthesize PHB using various carbon sources. Carbon-rich wastes may serve as alternatives to pure sugar substrates to reduce the cost of PHB production. Genetic engineering strategies can further improve the efficiency of substrate assimilation and PHB synthesis. In the downstream link, PHB recycling strategies based on green chemistry concepts can replace PHB extraction using chlorinated solvents to enhance the economics of PHB production and reduce the potential risks of environmental pollution and health damage. To avoid carbon loss caused by biodegradation in the traditional sense, various strategies have been developed to degrade PHB waste into monomers. These monomers can serve as platform chemicals to synthesize other functional compounds or as substrates for PHB reproduction. The sustainable potential and cycling value of PHB are thus reflected. This review summarized the recent progress of strains, substrates, and fermentation approaches for microbial PHB production. Analyses of available strategies for sustainable PHB recycling were also included. Furthermore, it discussed feasible pathways for PHB waste valorization. These contents may provide insights for constructing PHB-based comprehensive biorefinery systems.
Collapse
Affiliation(s)
- Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States.
| |
Collapse
|
12
|
Deantas-Jahn C, Mendoza SN, Licona-Cassani C, Orellana C, Saa PA. Metabolic modeling of Halomonas campaniensis improves polyhydroxybutyrate production under nitrogen limitation. Appl Microbiol Biotechnol 2024; 108:310. [PMID: 38662130 PMCID: PMC11045607 DOI: 10.1007/s00253-024-13111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/25/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
Poly-hydroxybutyrate (PHB) is an environmentally friendly alternative for conventional fossil fuel-based plastics that is produced by various microorganisms. Large-scale PHB production is challenging due to the comparatively higher biomanufacturing costs. A PHB overproducer is the haloalkaliphilic bacterium Halomonas campaniensis, which has low nutritional requirements and can grow in cultures with high salt concentrations, rendering it resistant to contamination. Despite its virtues, the metabolic capabilities of H. campaniensis as well as the limitations hindering higher PHB production remain poorly studied. To address this limitation, we present HaloGEM, the first high-quality genome-scale metabolic network reconstruction, which encompasses 888 genes, 1528 reactions (1257 gene-associated), and 1274 metabolites. HaloGEM not only displays excellent agreement with previous growth data and experiments from this study, but it also revealed nitrogen as a limiting nutrient when growing aerobically under high salt concentrations using glucose as carbon source. Among different nitrogen source mixtures for optimal growth, HaloGEM predicted glutamate and arginine as a promising mixture producing increases of 54.2% and 153.4% in the biomass yield and PHB titer, respectively. Furthermore, the model was used to predict genetic interventions for increasing PHB yield, which were consistent with the rationale of previously reported strategies. Overall, the presented reconstruction advances our understanding of the metabolic capabilities of H. campaniensis for rationally engineering this next-generation industrial biotechnology platform. KEY POINTS: A comprehensive genome-scale metabolic reconstruction of H. campaniensis was developed. Experiments and simulations predict N limitation in minimal media under aerobiosis. In silico media design increased experimental biomass yield and PHB titer.
Collapse
Affiliation(s)
- Carolina Deantas-Jahn
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastián N Mendoza
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
- Systems Biology Lab, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Cuauhtemoc Licona-Cassani
- Núcleo de Innovación de Sistemas Biológicos (NISB), FEMSA Biotechnology Center, Tecnológico de Monterrey, Monterrey, Mexico
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Mexico
| | - Camila Orellana
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro A Saa
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Instituto de Ingeniería Matemática y Computacional, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
13
|
Ali Z, Abdullah M, Yasin MT, Amanat K, Ahmad K, Ahmed I, Qaisrani MM, Khan J. Organic waste-to-bioplastics: Conversion with eco-friendly technologies and approaches for sustainable environment. ENVIRONMENTAL RESEARCH 2024; 244:117949. [PMID: 38109961 DOI: 10.1016/j.envres.2023.117949] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/24/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Petrochemical-based synthetic plastics poses a threat to humans, wildlife, marine life and the environment. Given the magnitude of eventual depletion of petrochemical sources and global environmental pollution caused by the manufacturing of synthetic plastics such as polyethylene (PET) and polypropylene (PP), it is essential to develop and adopt biopolymers as an environment friendly and cost-effective alternative to synthetic plastics. Research into bioplastics has been gaining traction as a way to create a more sustainable and eco-friendlier environment with a reduced environmental impact. Biodegradable bioplastics can have the same characteristics as traditional plastics while also offering additional benefits due to their low carbon footprint. Therefore, using organic waste from biological origin for bioplastic production not only reduces our reliance on edible feedstock but can also effectively assist with solid waste management. This review aims at providing an in-depth overview on recent developments in bioplastic-producing microorganisms, production procedures from various organic wastes using either pure or mixed microbial cultures (MMCs), microalgae, and chemical extraction methods. Low production yield and production costs are still the major bottlenecks to their deployment at industrial and commercial scale. However, their production and commercialization pose a significant challenge despite such potential. The major constraints are their production in small quantity, poor mechanical strength, lack of facilities and costly feed for industrial-scale production. This review further explores several methods for producing bioplastics with the aim of encouraging researchers and investors to explore ways to utilize these renewable resources in order to commercialize degradable bioplastics. Challenges, future prospects and Life cycle assessment of bioplastics are also highlighted. Utilizing a variety of bioplastics obtained from renewable and cost-effective sources (e.g., organic waste, agro-industrial waste, or microalgae) and determining the pertinent end-of-life option (e.g., composting or anaerobic digestion) may lead towards the right direction that assures the sustainable production of bioplastics.
Collapse
Affiliation(s)
- Zain Ali
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Muhammad Abdullah
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Muhammad Talha Yasin
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Kinza Amanat
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, P.R. China.
| | - Ishfaq Ahmed
- Haide College, Ocean University of China, Laoshan Campus, Qingdao, Shandong Province, 266100, PR China
| | - Muther Mansoor Qaisrani
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Jallat Khan
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan; Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), 64200, Rahim Yar Khan, Pakistan.
| |
Collapse
|
14
|
Możejko‐Ciesielska J, Moraczewski K, Czaplicki S. Halomonas alkaliantarctica as a platform for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from biodiesel-derived glycerol. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13225. [PMID: 38146695 PMCID: PMC10866086 DOI: 10.1111/1758-2229.13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 12/27/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable polyesters produced by a wide range of microorganisms, including extremophiles. These unique microorganisms have gained interest in PHA production due to their ability to utilise low-cost carbon sources under extreme conditions. In this study, Halomonas alkaliantarctica was examined with regards to its potential to produce PHAs using crude glycerol from biodiesel industry as the only carbon source. We found that cell dry mass concentration was not dependent on the applying substrate concentration. Furthermore, our data confirmed that the analysed halophile was capable of metabolising crude glycerol into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer within 24 h of the cultivation without addition of any precursors. Moreover, crude glycerol concentration affects the repeat units content in the purified PHAs copolymers and their thermal properties. Nevertheless, a differential scanning calorimetric and thermogravimetric analysis showed that the analysed biopolyesters have properties suitable for various applications. Overall, this study described a promising approach for the valorisation of crude glycerol as a future strategy of industrial waste management to produce high value microbial biopolymers.
Collapse
Affiliation(s)
- Justyna Możejko‐Ciesielska
- Department of Microbiology and Mycology, Faculty of Biology and BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | | | - Sylwester Czaplicki
- Department of Plant Food Chemistry and ProcessingUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| |
Collapse
|
15
|
Mozejko-Ciesielska J, Moraczewski K, Czaplicki S, Singh V. Production and characterization of polyhydroxyalkanoates by Halomonas alkaliantarctica utilizing dairy waste as feedstock. Sci Rep 2023; 13:22289. [PMID: 38097607 PMCID: PMC10721877 DOI: 10.1038/s41598-023-47489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Currently, the global demand for polyhydroxyalkanoates (PHAs) is significantly increasing. PHAs are produced by several bacteria that are an alternative source of synthetic polymers derived from petrochemical refineries. This study established a simple and more feasible process of PHA production by Halomonas alkaliantarctica using dairy waste as the only carbon source. The data confirmed that the analyzed halophile could metabolize cheese whey (CW) and cheese whey mother liquor (CWML) into biopolyesters. The highest yield of PHAs was 0.42 g/L in the cultivation supplemented with CWML. Furthermore, it was proved that PHA structure depended on the type of by-product from cheese manufacturing, its concentration, and the culture time. The results revealed that H. alkaliantarctica could produce P(3HB-co-3HV) copolymer in the cultivations with CW at 48 h and 72 h without adding of any precursors. Based on the data obtained from physicochemical and thermal analyses, the extracted copolymer was reported to have properties suitable for various applications. Overall, this study described a promising approach for valorizing of dairy waste as a future strategy of industrial waste management to produce high value microbial biopolymers.
Collapse
Affiliation(s)
- Justyna Mozejko-Ciesielska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10719, Olsztyn, Poland.
| | - Krzysztof Moraczewski
- Institute of Materials Engineering, Kazimierz Wielki University, 85064, Bydgoszcz, Poland
| | - Sylwester Czaplicki
- Department of Plant Food Chemistry and Processing, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Pl. Cieszyński 1, 10726, Olsztyn, Poland
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, India
| |
Collapse
|
16
|
Senila L, Gál E, Kovacs E, Cadar O, Dan M, Senila M, Roman C. Poly(3-hydroxybutyrate) Production from Lignocellulosic Wastes Using Bacillus megaterium ATCC 14581. Polymers (Basel) 2023; 15:4488. [PMID: 38231921 PMCID: PMC10708134 DOI: 10.3390/polym15234488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
This study aimed to analyze the production of poly(3-hydroxybutyrate) (PHB) from lignocellulosic biomass through a series of steps, including microwave irradiation, ammonia delignification, enzymatic hydrolysis, and fermentation, using the Bacillus megaterium ATCC 14581 strain. The lignocellulosic biomass was first pretreated using microwave irradiation at different temperatures (180, 200, and 220 °C) for 10, 20, and 30 min. The optimal pretreatment conditions were determined using the central composite design (CCD) and the response surface methodology (RSM). In the second step, the pretreated biomass was subjected to ammonia delignification, followed by enzymatic hydrolysis. The yield obtained for the pretreated and enzymatically hydrolyzed biomass was lower (70.2%) compared to the pretreated, delignified, and enzymatically hydrolyzed biomass (91.4%). These hydrolysates were used as carbon substrates for the synthesis of PHB using Bacillus megaterium ATCC 14581 in batch cultures. Various analytical methods were employed, namely nuclear magnetic resonance (1H-NMR and13C-NMR), electrospray ionization mass spectrometry (EI-MS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA), to identify and characterize the extracted PHB. The XRD analysis confirmed the partially crystalline nature of PHB.
Collapse
Affiliation(s)
- Lacrimioara Senila
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.K.); (O.C.); (M.S.); (C.R.)
| | - Emese Gál
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania;
| | - Eniko Kovacs
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.K.); (O.C.); (M.S.); (C.R.)
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 3–5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Oana Cadar
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.K.); (O.C.); (M.S.); (C.R.)
| | - Monica Dan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67–103 Donath Street, 400293 Cluj-Napoca, Romania;
| | - Marin Senila
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.K.); (O.C.); (M.S.); (C.R.)
| | - Cecilia Roman
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.K.); (O.C.); (M.S.); (C.R.)
| |
Collapse
|
17
|
Możejko-Ciesielska J, Ray S, Sankhyan S. Recent Challenges and Trends of Polyhydroxyalkanoate Production by Extremophilic Bacteria Using Renewable Feedstocks. Polymers (Basel) 2023; 15:4385. [PMID: 38006109 PMCID: PMC10674690 DOI: 10.3390/polym15224385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable polymers with immense potential in addressing the global plastic pollution crisis and advancing sustainable bioplastics production. Among the various microbes known for PHA production, extremophilic bacteria possess unique capabilities to thrive under extreme conditions, making them attractive candidates for PHA synthesis. Furthermore, the utilization of renewable feedstocks for PHA production aligns with the growing demand for sustainable bioplastic alternatives. A diverse range of extremophilic bacteria, especially halophiles and thermophiles, has provided cost-competitive platforms for producing customized PHA polymers. Extremophilic bacteria offer unique advantages over mesophiles due to their contamination resistance, high cell density growth, and unique culture conditions. The current status of Halomonas spp. as a chassis further allows exploration of metabolic engineering approaches to overcome the challenges associated with current industrial biotechnology. This article especially focuses on extremophilic bacteria and explores recent advances in utilizing renewable feedstocks such as lignocellulosic biomass, agro-industrial residues, and waste streams for PHA production. The integration of biorefinery concepts and circular economy principles in PHA manufacturing is also examined. This review is an attempt to provide an understanding of renewable substrates as feedstocks and emerging trends in PHA production by extremophilic bacteria. It underscores the pivotal role of extremophiles and sustainable feedstock sources in advancing the feasibility and eco-friendliness of PHAs as a promising biopolymer alternative.
Collapse
Affiliation(s)
- Justyna Możejko-Ciesielska
- Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10719 Olsztyn, Poland
| | - Subhasree Ray
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida 201310, India;
| | - Shivangi Sankhyan
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida 201310, India;
| |
Collapse
|
18
|
Khamplod T, Wongsirichot P, Winterburn J. Production of polyhydroxyalkanoates from hydrolysed rapeseed meal by Haloferax mediterranei. BIORESOURCE TECHNOLOGY 2023; 386:129541. [PMID: 37499923 DOI: 10.1016/j.biortech.2023.129541] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Rapeseed meal (RSM) hydrolysate is a potential low-cost feedstock for the production of polyhydroxyalkanoates (PHAs) by the archaea, Haloferax mediterranei. Acidic and enzymatic hydrolysis were carried out to compare effectiveness. Enzymatic hydrolysis is more effective than acidic hydrolysis for fermentation substrate leading to increased PHA productivity. H. mediterranei didn't grow or produce PHA when acid hydrolysed RSM medium was present in proportions greater than 25% (vol.), potentially due to the effect of inhibitors such as furfural, hydroxymethylfurfural (HMF), etc. However, H. mediterranei was able to grow and produce PHA when using enzymatically hydrolysed RSM medium. The maximum PHA concentration of 0.512 g/L was found at 75% (vol.) in enzymatic RSM hydrolysate medium. The biopolymer obtained had improved thermal and mechanical properties compared to PHB homopolymer. RSM's potential as a low-cost alternative feedstock for improved PHA production under non-sterile conditions was successfully demonstrated, and its usage should be further explored.
Collapse
Affiliation(s)
- Thammarit Khamplod
- Department of Chemical Engineering, School of Engineering, Faculty of Science and Engineering, Engineering Building A, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.
| | - Phavit Wongsirichot
- Department of Chemical Engineering, School of Engineering, Faculty of Science and Engineering, Engineering Building A, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.
| | - James Winterburn
- Department of Chemical Engineering, School of Engineering, Faculty of Science and Engineering, Engineering Building A, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
19
|
Leandro T, Oliveira MC, da Fonseca MMR, Cesário MT. Co-Production of Poly(3-hydroxybutyrate) and Gluconic Acid from Glucose by Halomonas elongata. Bioengineering (Basel) 2023; 10:643. [PMID: 37370574 DOI: 10.3390/bioengineering10060643] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Polyhydroxyalkanoates (PHA) are biopolyesters regarded as an attractive alternative to petroleum-derived plastics. Nitrogen limitation and phosphate limitation in glucose cultivations were evaluated for poly(3-hydroxybutyrate) (P(3HB)) production by Halomonas elongata 1H9T, a moderate halophilic strain. Co-production of P(3HB) and gluconic acid was observed in fed-batch glucose cultivations under nitrogen limiting conditions. A maximum P(3HB) accumulation of 53.0% (w/w) and a maximum co-production of 133 g/L of gluconic acid were attained. Fed-batch glucose cultivation under phosphate limiting conditions resulted in a P(3HB) accumulation of only 33.3% (w/w) and no gluconic acid production. As gluconic acid is a valuable organic acid with extensive applications in several industries, this work presents an interesting approach for the future development of an industrial process aiming at the co-production of an intracellular biopolymer, P(3HB), and a value-added extracellular product, gluconic acid.
Collapse
Affiliation(s)
- Tânia Leandro
- IBB-Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - M Conceição Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - M Manuela R da Fonseca
- IBB-Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - M Teresa Cesário
- IBB-Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
20
|
Mehariya S, Plöhn M, Jablonski P, Stagge S, Jönsson LJ, Funk C. Biopolymer production from biomass produced by Nordic microalgae grown in wastewater. BIORESOURCE TECHNOLOGY 2023; 376:128901. [PMID: 36931449 DOI: 10.1016/j.biortech.2023.128901] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Biomass from four different Nordic microalgal species, grown in BG-11 medium or synthetic wastewater (SWW), was explored as inexpensive carbohydrate-rich feedstock for polyhydroxybutyrate (PHB) production via microbial fermentation. Thermochemical pre-treatment (acid treatment followed by autoclavation) with 2% hydrochloric acid or 1% sulphuric acid (v/v) was used to maximize sugar yield prior to fermentation. Pre-treatment resulted in ∼5-fold higher sugar yield compared to the control. The sugar-rich hydrolysate was used as carbon source for the PHB-producing extremophilic bacterium Halomonas halophila. Maximal PHB production was achieved with hydrolysate of Chlorococcum sp. (MC-1) grown on BG-11 medium (0.27 ± 0.05 g PHB/ g DW), followed by hydrolysate derived from Desmodesmus sp. (RUC-2) grown on SWW (0.24 ± 0.05 g PHB/ g DW). Nordic microalgal biomass grown on wastewater therefore can be used as cheap feedstock for sustainable bioplastic production. This research highlights the potential of Nordic microalgae to develop a biobased economy.
Collapse
Affiliation(s)
| | - Martin Plöhn
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Piotr Jablonski
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Stefan Stagge
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Leif J Jönsson
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Christiane Funk
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden.
| |
Collapse
|
21
|
Lee JY, Kim MH, Kim JS, Yun BR, Kim DY, Chung CW. Biotransformation of d-Xylose-Rich Rice Husk Hydrolysate by a Rice Paddy Soil Bacterium, Priestia sp. Strain JY310, to Low Molecular Weight Poly(3-hydroxybutyrate). Biomolecules 2023; 13:biom13010131. [PMID: 36671516 PMCID: PMC9855389 DOI: 10.3390/biom13010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/10/2023] Open
Abstract
Poly(3-hydroxybutyrate) (PHB) is a versatile thermoplastic with superior biodegradability and biocompatibility that is intracellularly accumulated by numerous bacterial and archaeal species. Priestia sp. strain JY310 that was able to efficiently biotransform reducing sugars in d-xylose-rich rice husk hydrolysate (reducing sugarRHH) to PHB was isolated from the soil of a rice paddy. Reducing sugarRHH including 12.5% d-glucose, 75.3% d-xylose, and 12.2% d-arabinose was simply prepared using thermochemical hydrolysis of 3% H2SO4-treated rice husk for 15 min at 121 °C. When cultured with 20 g/L reducing sugarRHH under optimized culture conditions in a batch bioreactor, Priestia sp. strain JY310 could produce PHB homopolymer up to 50.4% of cell dry weight (6.2 g/L). The melting temperature, heat of fusion, and thermal decomposition temperature of PHB were determined to be 167.9 °C, 92.1 J/g, and 268.1 °C, respectively. The number average and weight average molecular weights of PHB with a broad polydispersity index value (4.73) were estimated to be approximately 16.2 and 76.8 kg/mol, respectively. The findings of the present study suggest that Priestia sp. strain JY310 can be exploited as a good candidate for the low-cost production of low molecular weight PHB with improved biodegradability and reduced brittleness from inexpensive agricultural waste hydrolysates.
Collapse
Affiliation(s)
- Jae-Yeong Lee
- Department of Biological Sciences, Andong National University, Andong 36729, Republic of Korea; (J.-Y.L.); (M.-H.K.); (J.-S.K.)
| | - Min-Hwan Kim
- Department of Biological Sciences, Andong National University, Andong 36729, Republic of Korea; (J.-Y.L.); (M.-H.K.); (J.-S.K.)
| | - Jong-Sik Kim
- Department of Biological Sciences, Andong National University, Andong 36729, Republic of Korea; (J.-Y.L.); (M.-H.K.); (J.-S.K.)
| | - Bo-Ram Yun
- Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea;
| | - Do Young Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB), Daejeon 34141, Republic of Korea
- Correspondence: (D.Y.K.); (C.-W.C.)
| | - Chung-Wook Chung
- Department of Biological Sciences, Andong National University, Andong 36729, Republic of Korea; (J.-Y.L.); (M.-H.K.); (J.-S.K.)
- Correspondence: (D.Y.K.); (C.-W.C.)
| |
Collapse
|
22
|
Khamplod T, Winterburn JB, Cartmell SH. Electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds - a step towards ligament repair applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:895-910. [PMID: 36570876 PMCID: PMC9769142 DOI: 10.1080/14686996.2022.2149034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
The incidence of anterior cruciate ligament (ACL) ruptures is approximately 50 per 100,000 people. ACL rupture repair methods that offer better biomechanics have the potential to reduce long term osteoarthritis. To improve ACL regeneration biomechanically similar, biocompatible and biodegradable tissue scaffolds are required. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), with high 3-hydroxyvalerate (3HV) content, based scaffold materials have been developed, with the advantages of traditional tissue engineering scaffolds combined with attractive mechanical properties, e.g., elasticity and biodegradability. PHBV with 3HV fractions of 0 to 100 mol% were produced in a controlled manner allowing specific compositions to be targeted, giving control over material properties. In conjunction electrospinning conditions were altered, to manipulate the degree of fibre alignment, with increasing collector rotating speed used to obtain random and aligned PHBV fibres. The PHBV based materials produced were characterised, with mechanical properties, thermal properties and surface morphology being studied. An electrospun PHBV fibre mat with 50 mol% 3HV content shows a significant increase in elasticity compared to those with lower 3HV content and could be fabricated into aligned fibres. Biocompatibility testing with L929 fibroblasts demonstrates good cell viability, with the aligned fibre network promoting fibroblast alignment in the axial fibre direction, desirable for ACL repair applications. Dynamic load testing shows that the 50 mol% 3HV PHBV material produced can withstand cyclic loading with reasonable resilience. Electrospun PHBV can be produced with low batch variability and tailored, application specific properties, giving these biomaterials promise in tissue scaffold applications where aligned fibre networks are desired, such as ACL regeneration. .
Collapse
Affiliation(s)
- Thammarit Khamplod
- Department of Chemical Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
- Henry Royce Institute, The University of Manchester, Manchester, UK
| | - James B. Winterburn
- Department of Chemical Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Sarah H. Cartmell
- Henry Royce Institute, The University of Manchester, Manchester, UK
- Department of Materials Science, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| |
Collapse
|
23
|
Jung HJ, Kim SH, Cho DH, Kim BC, Bhatia SK, Lee J, Jeon JM, Yoon JJ, Yang YH. Finding of Novel Galactose Utilizing Halomonas sp. YK44 for Polyhydroxybutyrate (PHB) Production. Polymers (Basel) 2022; 14:polym14245407. [PMID: 36559775 PMCID: PMC9782037 DOI: 10.3390/polym14245407] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/26/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Polyhydroxybutyrate (PHB) is a biodegradable bioplastic with potential applications as an alternative to petroleum-based plastics. However, efficient PHB production remains difficult. The main cost of PHB production is attributed to carbon sources; hence, finding inexpensive sources is important. Galactose is a possible substrate for polyhydroxyalkanoate production as it is abundant in marine environments. Marine bacteria that produce PHB from galactose could be an effective resource that can be used for efficient PHB production. In this study, to identify a galactose utilizing PHB producer, we examined 16 Halomonas strains. We demonstrated that Halomonas cerina (Halomonas sp. YK44) has the highest growth and PHB production using a culture media containing 2% galactose, final 4% NaCl, and 0.1% yeast extract. These culture conditions yielded 8.98 g/L PHB (78.1% PHB content (w/w)). When galactose-containing red algae (Eucheuma spinosum) hydrolysates were used as a carbon source, 5.2 g/L PHB was produced with 1.425% galactose after treatment with activated carbon. Since high salt conditions can be used to avoid sterilization, we examined whether Halomonas sp. YK44 could produce PHB in non-sterilized conditions. Culture media in these conditions yielded 72.41% PHB content. Thus, Halomonas sp. YK44 is robust against contamination, allowing for long-term culture and economical PHB production.
Collapse
Affiliation(s)
- Hee Ju Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Do Hyun Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Byung Chan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Republic of Korea
| | - Jongbok Lee
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Republic of Korea
- Correspondence: ; Tel.: +82-2-450-2-3936
| |
Collapse
|
24
|
Biswas J, Jana SK, Mandal S. Biotechnological impacts of Halomonas: a promising cell factory for industrially relevant biomolecules. Biotechnol Genet Eng Rev 2022:1-30. [PMID: 36253947 DOI: 10.1080/02648725.2022.2131961] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/27/2022] [Indexed: 11/02/2022]
Abstract
Extremophiles are the most fascinating life forms for their special adaptations and ability to offer unique extremozymes or bioactive molecules. Halophiles, the natural inhabitants of hypersaline environments, are one among them. Halomonas are the common genus of halophilic bacteria. To support growth in unusual environments, Halomonas produces various hydrolytic enzymes, compatible solutes, biopolymers like extracellular polysaccharides (EPS) and polyhydroxy alkaloates (PHA), antibiotics, biosurfactants, pigments, etc. Many of such molecules are being produced in large-scale bioreactors for commercial use. However, the prospect of the remaining bioactive molecules with industrial relevance is far from their application. Furthermore, the genetic engineering of the respective gene clusters could open up a new path to bio-prospect these molecules by overproducing their products through heterologous expression. The present survey on Halomonas highlights their ecological diversity, application potential of the their various industrially relevant biomolecules and impact of these biomolecules on respective fields.
Collapse
Affiliation(s)
- Jhuma Biswas
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, Kolkata, India
| | - Santosh Kumar Jana
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, Kolkata, India
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, Kolkata, India
| |
Collapse
|
25
|
Bondar M, Pedro F, Oliveira MC, da Fonseca MMR, Cesário MT. Red algae industrial residues as a sustainable carbon platform for the co-production of poly-3-hydroxybutyrate and gluconic acid by Halomonas boliviensis. Front Bioeng Biotechnol 2022; 10:934432. [PMID: 36299289 PMCID: PMC9588912 DOI: 10.3389/fbioe.2022.934432] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Polyhydroxyalkanoate (PHA) production using halophilic bacteria has been revisited because less severe operational conditions with respect to sterility can be applied, also alleviating production costs. Halomonas boliviensis was selected because it is a moderate halophile able to grow and attain high poly-3-hydroxybutyrate (P3HB) contents under 5–45 g/L NaCl concentrations, conditions that discourage microbial contamination. Industrial residues of the red alga Gelidium corneum after agar extraction were used as sugar platform to reduce costs associated with the carbon source. These residues still comprise a high carbohydrate content (30–40% w/w) of mainly cellulose, and their hydrolysates can be used as substrates for the bioproduction of value-added products. Preliminary assays using glucose were carried out to determine the best conditions for growth and P3HB production by H. boliviensis in bioreactor fed-batch cultivations. Two strategies were addressed, namely nitrogen or phosphorus limitation, to promote polymer accumulation. Similar P3HB cell contents of 50% (gpolymer/gCDW) and yields YP3HB/glucose of 0.11–0.15 g polymer/g glucose were attained under both conditions. However, higher specific productivities were reached under P-limitation, and thus, this strategy was adopted in the subsequent study. Two organic acids, resulting from glucose metabolism, were identified to be gluconic and 2-oxoglutaric acid. Reducing the oxygen concentration in the cultivation medium to 5% sat was found to minimize organic acid production and enhance the yield of polymer on sugar to 0.20 gP3HB/gglucose. Finally, fed-batch cultivations using G. corneum hydrolysates as the only C-source achieved an overall volumetric productivity of 0.47 g/(L.h), 40% polymer accumulation, and negligible gluconic acid production.
Collapse
Affiliation(s)
- Maryna Bondar
- iBB- Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa Pedro
- iBB- Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - M. Conceição Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - M. Manuela R. da Fonseca
- iBB- Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - M. Teresa Cesário
- iBB- Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- *Correspondence: M. Teresa Cesário,
| |
Collapse
|
26
|
Lee SM, Cho DH, Jung HJ, Kim B, Kim SH, Bhatia SK, Gurav R, Jeon JM, Yoon JJ, Kim W, Choi KY, Yang YH. Finding of novel polyhydroxybutyrate producer Loktanella sp. SM43 capable of balanced utilization of glucose and xylose from lignocellulosic biomass. Int J Biol Macromol 2022; 208:809-818. [PMID: 35364206 DOI: 10.1016/j.ijbiomac.2022.03.155] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 11/05/2022]
Abstract
Polyhydroxybutyrate (PHB) is a potential substitute for plastics derived from fossil fuels, owing to its biodegradable and biocompatible properties. Lignocellulosic biomass could be used to reduce PHB production costs; however, the co-utilization of sugars, such as glucose and xylose, without catabolite repression is a difficult problem to be solved. Here, we selected a novel Loktanella sp. SM43 from a marine environment and optimized the conditions for PHB production. Loktanella sp. SM43 showed high PHB production (66.5% content) from glucose. When glucose and xylose were used together, this strain showed high utilization of both substrates compared to other high PHB-producers such as Halomonas sp. and Cupriavidus necator, which showed glucose preference. Loktanella sp. SM43 showed high growth and PHB production with lignocellulosic hydrolysates. When pine tree hydrolysates were used, PHB production was the highest at 3.66 ± 0.01 g/L, followed by Miscanthus (3.46 ± 0.09 g/L) and barley straw hydrolysate (3.36 ± 0.36 g/L). Overall, these results reveal the potential of Loktanella sp. SM43 to produce PHB using various lignocellulosic hydrolysates as feedstock and the first systematic study for PHB production with Loktanella sp. The approach of screening novel strains is a strategy to overcome co-utilization of sugars without genetic engineering.
Collapse
Affiliation(s)
- Sun Mi Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Republic of Korea
| | - Do-Hyun Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, Republic of Korea
| | - Hee Ju Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Republic of Korea
| | - Byungchan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Republic of Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Republic of Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Republic of Korea
| | - Wooseong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Republic of Korea.
| |
Collapse
|
27
|
Hammami K, Souissi Y, Souii A, Ouertani A, El-Hidri D, Jabberi M, Chouchane H, Mosbah A, Masmoudi AS, Cherif A, Neifar M. Extremophilic Bacterium Halomonas desertis G11 as a Cell Factory for Poly-3-Hydroxybutyrate-co-3-Hydroxyvalerate Copolymer's Production. Front Bioeng Biotechnol 2022; 10:878843. [PMID: 35677302 PMCID: PMC9168272 DOI: 10.3389/fbioe.2022.878843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial polyhydroxyalkanoates (PHA) are biodegradable and biocompatible bio-based polyesters, which are used in various applications including packaging, medical and coating materials. In this study, an extremophilic hydrocarbonoclastic bacterium, previously isolated from saline sediment in the Tunisian desert, has been investigated for PHA production. The accumulation of intracellular PHA granules in Halomonas desertis G11 was detected by Nile blue A staining of the colonies. To achieve maximum PHA yield by the strain G11, the culture conditions were optimized through response surface methodology (RSM) employing a Box-Behnken Design (BBD) with three independent variables, namely, substrate concentration (1-5%), inoculum size (1-5%) and incubation time (5-15 days). Under optimized conditions, G11 strain produced 1.5 g/L (68% of DCW) of PHA using glycerol as a substrate. Application of NMR (1H and 13C) and FTIR spectroscopies showed that H. desertis accumulated PHA is a poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV). The genome analysis revealed the presence of typical structural genes involved in PHBV metabolism including phaA, phaB, phaC, phaP, phaZ, and phaR, coding for acetyl-CoA acetyltransferase, acetoacetyl-CoA reductase, class I polyhydroxyalkanoates synthases, phasin, polyhydroxyalkanoates depolymerase and polyhydroxyalkanoates synthesis repressor, respectively. Glycerol can be metabolized to 1) acetyl-CoA through the glycolysis pathway and subsequently converted to the 3HB monomer, and 2) to propionyl-CoA via the threonine biosynthetic pathway and subsequently converted to the 3HV monomer. In silico analysis of PhaC1 from H. desertis G11 indicated that this enzyme belongs to Class I PHA synthase family with a "lipase box"-like sequence (SYCVG). All these characteristics make the extremophilic bacterium H. desertis G11 a promising cell factory for the conversion of bio-renewable glycerol to high-value PHBV.
Collapse
Affiliation(s)
- Khouloud Hammami
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Yasmine Souissi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
- Department of Engineering, German University of Technology in Oman, Muscat, Oman
| | - Amal Souii
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Awatef Ouertani
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Darine El-Hidri
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Marwa Jabberi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Habib Chouchane
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Amor Mosbah
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ahmed Slaheddine Masmoudi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ameur Cherif
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Mohamed Neifar
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
- APVA-LR16ES20, National School of Engineers of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| |
Collapse
|
28
|
Polyhydroxyalkanoate (PHA) Biopolyesters - Emerging and Major Products of Industrial Biotechnology. THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract
Background: Industrial Biotechnology (“White Biotechnology”) is the large-scale production of materials and chemicals using renewable raw materials along with biocatalysts like enzymes derived from microorganisms or by using microorganisms themselves (“whole cell biocatalysis”). While the production of ethanol has existed for several millennia and can be considered a product of Industrial Biotechnology, the application of complex and engineered biocatalysts to produce industrial scale products with acceptable economics is only a few decades old. Bioethanol as fuel, lactic acid as food and PolyHydroxyAlkanoates (PHA) as a processible material are some examples of products derived from Industrial Biotechnology.
Purpose and Scope: Industrial Biotechnology is the sector of biotechnology that holds the most promise in reducing our dependence on fossil fuels and mitigating environmental degradation caused by pollution, since all products that are made today from fossil carbon feedstocks could be manufactured using Industrial Biotechnology – renewable carbon feedstocks and biocatalysts. To match the economics of fossil-based bulk products, Industrial Biotechnology-based processes must be sufficiently robust. This aspect continues to evolve with increased technological capabilities to engineer biocatalysts (including microorganisms) and the decreasing relative price difference between renewable and fossil carbon feedstocks. While there have been major successes in manufacturing products from Industrial Biotechnology, challenges exist, although its promise is real. Here, PHA biopolymers are a class of product that is fulfilling this promise.
Summary and Conclusion: The authors illustrate the benefits and challenges of Industrial Biotechnology, the circularity and sustainability of such processes, its role in reducing supply chain issues, and alleviating societal problems like poverty and hunger. With increasing awareness among the general public and policy makers of the dangers posed by climate change, pollution and persistent societal issues, Industrial Biotechnology holds the promise of solving these major problems and is poised for a transformative upswing in the manufacture of bulk chemicals and materials from renewable feedstocks and biocatalysts.
Collapse
|
29
|
Novackova I, Kourilova X, Mrazova K, Sedlacek P, Kalina M, Krzyzanek V, Koller M, Obruca S. Combination of Hypotonic Lysis and Application of Detergent for Isolation of Polyhydroxyalkanoates from Extremophiles. Polymers (Basel) 2022; 14:polym14091761. [PMID: 35566928 PMCID: PMC9104112 DOI: 10.3390/polym14091761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/22/2022] Open
Abstract
Production of polyhydroxyalkanoates (PHA), microbial biopolyesters, employing extremophilic microorganisms is a very promising concept relying on robustness of such organisms against microbial contamination, which provides numerous economic and technological benefits. In this work, we took advantage of the natural susceptibility of halophilic and thermophilic PHA producers to hypotonic lysis and we developed a simple and robust approach enabling effective isolation of PHA materials from microbial cells. The method is based on the exposition of microbial cells to hypotonic conditions induced by the diluted solution of sodium dodecyl sulfate (SDS) at elevated temperatures. Such conditions lead to disruption of the cells and release of PHA granules. Moreover, SDS, apart from its cell-disruptive function, also solubilizes hydrophobic components, which would otherwise contaminate PHA materials. The purity of obtained materials, as well as the yields of recovery, reach high values (values of purity higher than 99 wt.%, yields close to 1). Furthermore, we also focused on the removal of SDS from wastewater. The simple, inexpensive, and safe technique is based on the precipitation of SDS in the presence of KCl. The precipitate can be simply removed by decantation or centrifugation. Moreover, there is also the possibility to regenerate the SDS, which would substantially improve the economic feasibility of the process.
Collapse
Affiliation(s)
- Ivana Novackova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.N.); (X.K.); (P.S.); (M.K.)
| | - Xenie Kourilova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.N.); (X.K.); (P.S.); (M.K.)
| | - Katerina Mrazova
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic; (K.M.); (V.K.)
| | - Petr Sedlacek
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.N.); (X.K.); (P.S.); (M.K.)
| | - Michal Kalina
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.N.); (X.K.); (P.S.); (M.K.)
| | - Vladislav Krzyzanek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic; (K.M.); (V.K.)
| | - Martin Koller
- Research Management and Service, c/o Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/IV, 8010 Graz, Austria;
- ARENA—Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 8010 Graz, Austria
| | - Stanislav Obruca
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.N.); (X.K.); (P.S.); (M.K.)
- Correspondence: ; Tel.: +420-541-149-354
| |
Collapse
|
30
|
High Solid and Low Cellulase Enzymatic Hydrolysis of Cardoon Stems Pretreated by Acidified Γ-Valerolactone/Water Solution. ENERGIES 2022. [DOI: 10.3390/en15072600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lignocellulosic biomass is a nonedible matrix that can be efficiently exploited as feedstock in an integrated biorefinery after a proper pretreatment. An organosolv pretreatment using an acidified γ-valerolactone (GVL)/water solution was proposed to improve the cellulose enrichment and enzymatic saccharification of cardoon (Cynara cardunculus L.) stems. At the optimal pretreatment condition (140 °C, 0.6 GVL/water, and 2.24% H2SO4), xylan was efficiently removed from the cardoon, and up to 50% of its content was recovered in the aqueous fraction, while 86% of the cellulose was retained in the solid fraction. The resulting cardoon pulp showed a cellulose content of 91.5% and an enzymatic digestibility of 100%. An overall glucose production of 37.17 g/100 g raw material (90% theoretical maximum) was obtained using high solid loading (20% w/w) and a high enzyme dosage (60 FPU/g cellulose). At a low enzyme dosage, glucose concentrations of 169 g/L and 210 g/L were achieved using 10 FPU/g cellulose and 20 FPU/g cellulose, respectively. Therefore, an organosolv pretreatment can be an effective process for producing cellulose-enriched pulp with enhanced enzymatic digestibility from cardoon stems, providing a promising option for green lignocellulosic biorefineries that aim to produce high concentrations of glucose with low cellulase addition.
Collapse
|
31
|
Polyhydroxyalkanoate bio-production and its rise as biomaterial of the future. J Biotechnol 2022; 348:10-25. [PMID: 35298952 DOI: 10.1016/j.jbiotec.2022.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/20/2022] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
The first observation of a polyhydroxyalkanoate (PHA) aggregate was in 1888 by Beijenrinck. Despite polyhydroxybutyrate (PHB) being the first type of PHA discovered, it was not extracted and characterized until 1925 by Maurice Lemoigne in France, even before the concept of "macromolecules" was known. After more than 30 years, in 1958, Wilkinson and co-workers rediscovered PHB and its metabolic role in the cells as storage compound. PHB started to be appealing to the industry in the 1980s, when a few companies started to commercialize microbially produced PHAs. During the 1990 s, the focus was on reducing production costs to make PHA production economically feasible, for instance by genetically modified microorganisms and even plants. Since then, many advances have been made: diverse wastes as feedstock, different production processes, and tailored design of biopolymers. This paper summarizes the scientific and technological development of PHAs from their discovery in 1888 until their latest applications and current commercial uses. Future perspectives have been devised too based on the current bottlenecks.
Collapse
|
32
|
Zhu Y, Ai M, Jia X. Optimization of a Two-Species Microbial Consortium for Improved Mcl-PHA Production From Glucose-Xylose Mixtures. Front Bioeng Biotechnol 2022; 9:794331. [PMID: 35083203 PMCID: PMC8784772 DOI: 10.3389/fbioe.2021.794331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) have attracted much attention as a good substitute for petroleum-based plastics, especially mcl-PHA due to their superior physical and mechanical properties with broader applications. Artificial microbial consortia can solve the problems of low metabolic capacity of single engineered strains and low conversion efficiency of natural consortia while expanding the scope of substrate utilization. Therefore, the use of artificial microbial consortia is considered a promising method for the production of mcl-PHA. In this work, we designed and constructed a microbial consortium composed of engineered Escherichia coli MG1655 and Pseudomonas putida KT2440 based on the "nutrition supply-detoxification" concept, which improved mcl-PHA production from glucose-xylose mixtures. An engineered E. coli that preferentially uses xylose was engineered with an enhanced ability to secrete acetic acid and free fatty acids (FFAs), producing 6.44 g/L acetic acid and 2.51 g/L FFAs with 20 g/L xylose as substrate. The mcl-PHA producing strain of P. putida in the microbial consortium has been engineered to enhance its ability to convert acetic acid and FFAs into mcl-PHA, producing 0.75 g/L mcl-PHA with mixed substrates consisting of glucose, acetic acid, and octanoate, while also reducing the growth inhibition of E. coli by acetic acid. The further developed artificial microbial consortium finally produced 1.32 g/L of mcl-PHA from 20 g/L of a glucose-xylose mixture (1:1) after substrate competition control and process optimization. The substrate utilization and product synthesis functions were successfully divided into the two strains in the constructed artificial microbial consortium, and a mutually beneficial symbiosis of "nutrition supply-detoxification" with a relatively high mcl-PHA titer was achieved, enabling the efficient accumulation of mcl-PHA. The consortium developed in this study is a potential platform for mcl-PHA production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Yinzhuang Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Mingmei Ai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| |
Collapse
|
33
|
Obruča S, Dvořák P, Sedláček P, Koller M, Sedlář K, Pernicová I, Šafránek D. Polyhydroxyalkanoates synthesis by halophiles and thermophiles: towards sustainable production of microbial bioplastics. Biotechnol Adv 2022; 58:107906. [DOI: 10.1016/j.biotechadv.2022.107906] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023]
|
34
|
Wang J, Liu S, Huang J, Qu Z. A review on polyhydroxyalkanoate production from agricultural waste Biomass: Development, Advances, circular Approach, and challenges. BIORESOURCE TECHNOLOGY 2021; 342:126008. [PMID: 34592618 DOI: 10.1016/j.biortech.2021.126008] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Polyhydroxyalkanoates are biopolymers produced by microbial fermentation. They have excellent biodegradability and biocompatibility, which are regarded as promising substitutes for traditional plastics in various production and application fields. This review details the research progress in PHA production from lignocellulosic crop residues, lipid-type agricultural wastes, and other agro-industrial wastes such as molasses and whey. The effective use of agricultural waste can further reduce the cost of PHA production while avoiding competition between industrial production and food. The latest information on fermentation parameter optimization, fermentation strategies, kinetic studies, and circular approach has also been discussed. This review aims to analyze the crucial process of the PHA production from agricultural wastes to provide support and reference for further scale-up and industrial production.
Collapse
Affiliation(s)
- Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse NY13210, United States
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse NY13210, United States.
| | - Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse NY13210, United States; The Center for Biotechnology & Interdisciplinary Studies (CBIS) at Rensselaer Polytechnic Institute, Troy NY12180, United States
| | - Zixuan Qu
- School of Engineering, Tufts University, Medford, MA 02155, United States
| |
Collapse
|
35
|
Production of Polyhydroxyalkanoates in Unsterilized Hyper-Saline Medium by Halophiles Using Waste Silkworm Excrement as Carbon Source. Molecules 2021; 26:molecules26237122. [PMID: 34885704 PMCID: PMC8659123 DOI: 10.3390/molecules26237122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 12/03/2022] Open
Abstract
The chlorophyll ethanol-extracted silkworm excrement was hardly biologically reused or fermented by most microorganisms. However, partial extremely environmental halophiles were reported to be able to utilize a variety of inexpensive carbon sources to accumulate polyhydroxyalkanoates. In this study, by using the nile red staining and gas chromatography assays, two endogenous haloarchaea strains: Haloarcula hispanica A85 and Natrinema altunense A112 of silkworm excrement were shown to accumulate poly(3-hydroxybutyrate) up to 0.23 g/L and 0.08 g/L, respectively, when using the silkworm excrement as the sole carbon source. The PHA production of two haloarchaea showed no significant decreases in the silkworm excrement medium without being sterilized compared to that of the sterilized medium. Meanwhile, the CFU experiments revealed that there were more than 60% target PHAs producing haloarchaea cells at the time of the highest PHAs production, and the addition of 0.5% glucose into the open fermentation medium can largely increase both the ratio of target haloarchaea cells (to nearly 100%) and the production of PHAs. In conclusion, our study demonstrated the feasibility of using endogenous haloarchaea to utilize waste silkworm excrement, effectively. The introduce of halophiles could provide a potential way for open fermentation to further lower the cost of the production of PHAs.
Collapse
|
36
|
Biotechnological Conversion of Grape Pomace to Poly(3-hydroxybutyrate) by Moderately Thermophilic Bacterium Tepidimonas taiwanensis. Bioengineering (Basel) 2021; 8:bioengineering8100141. [PMID: 34677214 PMCID: PMC8533406 DOI: 10.3390/bioengineering8100141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are microbial polyesters that have recently come to the forefront of interest due to their biodegradability and production from renewable sources. A potential increase in competitiveness of PHA production process comes with a combination of the use of thermophilic bacteria with the mutual use of waste substrates. In this work, the thermophilic bacterium Tepidimonas taiwanensis LMG 22826 was identified as a promising PHA producer. The ability to produce PHA in T. taiwanensis was studied both on genotype and phenotype levels. The gene encoding the Class I PHA synthase, a crucial enzyme in PHA synthesis, was detected both by genome database search and by PCR. The microbial culture of T. taiwanensis was capable of efficient utilization of glucose and fructose. When cultivated on glucose as the only carbon source at 50 °C, the PHA titers reached up to 3.55 g/L, and PHA content in cell dry mass was 65%. The preference of fructose and glucose opens the possibility to employ T. taiwanensis for PHA production on various food wastes rich in these abundant sugars. In this work, PHA production on grape pomace extracts was successfully tested.
Collapse
|
37
|
Dubey S, Mishra S. Efficient Production of Polyhydroxyalkanoate Through Halophilic Bacteria Utilizing Algal Biodiesel Waste Residue. Front Bioeng Biotechnol 2021; 9:624859. [PMID: 34604181 PMCID: PMC8481892 DOI: 10.3389/fbioe.2021.624859] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
The objective of the current work was to investigate the potential of halophilic bacterial isolates for efficient utilization of crude glycerol from algal biodiesel waste into polyhydroxyalkanoates (PHAs) a green plastic. Screening of the isolates was directly done in algal biodiesel waste residue containing solid agar plates supplemented with Nile red. Crude glycerol is a biodiesel waste whose bioconversion into value-added products provides an alternative for efficient management with dual benefit. For the scale-up studies of PHAs, Halomonas spp. especially H. daqingensis was observed as a potential candidate growing well in 3% Algal biodiesel waste residue (ABWR), 5% NaCl supplementation at 35°C within 48 h of incubation. Maximum Cell dry weight (CDW) of 0.362 ± 0.001 g and 0.236 ± 0.003 g PHA was obtained with H. daqingensis when grown in the fermentor with 0.5 vvm air flow rate and 200 rpm containing 3% ABWR supplemented with 5% NaCl at 35°C incubation temperature for 48 h. ABWR can serve as a sole substrate for PHA production at an industrial scale serving two approaches: getting rid of the biodiesel industrial waste containing high amount of glycerol besides using waste replacing commercial substrate thereby reducing the cost of the product.
Collapse
Affiliation(s)
- Sonam Dubey
- Applied Phycology and Biotechnology division, CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
| | - Sandhya Mishra
- Applied Phycology and Biotechnology division, CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
| |
Collapse
|
38
|
Sea-Ice Bacteria Halomonas sp. Strain 363 and Paracoccus sp. Strain 392 Produce Multiple Types of Poly-3-Hydroxyalkaonoic Acid (PHA) Storage Polymers at Low Temperature. Appl Environ Microbiol 2021; 87:e0092921. [PMID: 34160268 PMCID: PMC8357295 DOI: 10.1128/aem.00929-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poly-3-hydroxyalkanoic acids (PHAs) are bacterial storage polymers commonly used in bioplastic production. Halophilic bacteria are industrially interesting organisms, as their salinity tolerance and psychrophilic nature lowers sterility requirements and subsequent production costs. We investigated PHA synthesis in two bacterial strains, Halomonas sp. 363 and Paracoccus sp. 392, isolated from Southern Ocean sea ice and elucidated the related PHA biopolymer accumulation and composition with various approaches, such as transcriptomics, microscopy, and chromatography. We show that both bacterial strains produce PHAs at 4°C when the availability of nitrogen and/or oxygen limited growth. The genome of Halomonas sp. 363 carries three phaC synthase genes and transcribes genes along three PHA pathways (I to III), whereas Paracoccus sp. 392 carries only one phaC gene and transcribes genes along one pathway (I). Thus, Halomonas sp. 363 has a versatile repertoire of phaC genes and pathways enabling production of both short- and medium-chain-length PHA products. IMPORTANCE Plastic pollution is one of the most topical threats to the health of the oceans and seas. One recognized way to alleviate the problem is to use degradable bioplastic materials in high-risk applications. PHA is a promising bioplastic material as it is nontoxic and fully produced and degraded by bacteria. Sea ice is an interesting environment for prospecting novel PHA-producing organisms, since traits advantageous to lower production costs, such as tolerance for high salinities and low temperatures, are common. We show that two sea-ice bacteria, Halomonas sp. 363 and Paracoccus sp. 392, are able to produce various types of PHA from inexpensive carbon sources. Halomonas sp. 363 is an especially interesting PHA-producing organism, since it has three different synthesis pathways to produce both short- and medium-chain-length PHAs.
Collapse
|
39
|
Microbial cell factories for the production of polyhydroxyalkanoates. Essays Biochem 2021; 65:337-353. [PMID: 34132340 DOI: 10.1042/ebc20200142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
Pollution caused by persistent petro-plastics is the most pressing problem currently, with 8 million tons of plastic waste dumped annually in the oceans. Plastic waste management is not systematized in many countries, because it is laborious and expensive with secondary pollution hazards. Bioplastics, synthesized by microorganisms, are viable alternatives to petrochemical-based thermoplastics due to their biodegradable nature. Polyhydroxyalkanoates (PHAs) are a structurally and functionally diverse group of storage polymers synthesized by many microorganisms, including bacteria and Archaea. Some of the most important PHA accumulating bacteria include Cupriavidus necator, Burkholderia sacchari, Pseudomonas sp., Bacillus sp., recombinant Escherichia coli, and certain halophilic extremophiles. PHAs are synthesized by specialized PHA polymerases with assorted monomers derived from the cellular metabolite pool. In the natural cycle of cellular growth, PHAs are depolymerized by the native host for carbon and energy. The presence of these microbial PHA depolymerases in natural niches is responsible for the degradation of bioplastics. Polyhydroxybutyrate (PHB) is the most common PHA with desirable thermoplastic-like properties. PHAs have widespread applications in various industries including biomedicine, fine chemicals production, drug delivery, packaging, and agriculture. This review provides the updated knowledge on the metabolic pathways for PHAs synthesis in bacteria, and the major microbial hosts for PHAs production. Yeasts are presented as a potential candidate for industrial PHAs production, with their high amenability to genetic engineering and the availability of industrial-scale technology. The major bottlenecks in the commercialization of PHAs as an alternative for plastics and future perspectives are also critically discussed.
Collapse
|
40
|
What Is New in the Field of Industrial Wastes Conversion into Polyhydroxyalkanoates by Bacteria? Polymers (Basel) 2021; 13:polym13111731. [PMID: 34073198 PMCID: PMC8199472 DOI: 10.3390/polym13111731] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/05/2023] Open
Abstract
The rising global consumption and industrialization has resulted in increased food processing demand. Food industry generates a tremendous amount of waste which causes serious environmental issues. These problems have forced us to create strategies that will help to reduce the volume of waste and the contamination to the environment. Waste from food industries has great potential as substrates for value-added bioproducts. Among them, polyhydroxyalkanaotes (PHAs) have received considerable attention in recent years due to their comparable characteristics to common plastics. These biodegradable polyesters are produced by microorganisms during fermentation processes utilizing various carbon sources. Scale-up of PHA production is limited due to the cost of the carbon source metabolized by the microorganisms. Therefore, there is a growing need for the development of novel microbial processes using inexpensive carbon sources. Such substrates could be waste generated by the food industry and food service. The use of industrial waste streams for PHAs biosynthesis could transform PHA production into cheaper and more environmentally friendly bioprocess. This review collates in detail recent developments in the biosynthesis of various types of PHAs produced using waste derived from agrofood industries. Challenges associated with this production bioprocess were described, and new ways to overcome them were proposed.
Collapse
|
41
|
Kourilova X, Novackova I, Koller M, Obruca S. Evaluation of mesophilic Burkholderia sacchari, thermophilic Schlegelella thermodepolymerans and halophilic Halomonas halophila for polyhydroxyalkanoates production on model media mimicking lignocellulose hydrolysates. BIORESOURCE TECHNOLOGY 2021; 325:124704. [PMID: 33493750 DOI: 10.1016/j.biortech.2021.124704] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
In this work, the mesophilic bacterium Burkholderia sacchari, the halophilic bacterium Halomonas halophila, and the thermophilic bacterium Schlegelella thermodepolymerans were evaluated with regards to their suitability for polyhydroxyalkanoates (PHA) production from model media mimicking lignocellulose hydrolysates. B. sacchari was capable of utilizing all the tested "model hydrolysates", yielding comparable PHA titers and turning out as very robust against lignocellulose-derived microbial inhibitors. On the contrary, H. halophila reached substantially higher PHA titers on hexoses-rich media, while S. thermodepolymerans preferred media rich in pentoses. Both extremophiles were more sensitive to microbial inhibitors than B. sacchari. Nevertheless, considering substantially higher PHA productivity of both extremophiles even in the presence of microbial inhibitors and also other positive factors associated with utilization of extremophiles, such as the reduced risk of microbial contamination, both H. halophila and S. thermodepolymerans are auspicious candidates for sustainable PHA production from abundantly available, inexpensive lignocelluloses.
Collapse
Affiliation(s)
- Xenie Kourilova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Ivana Novackova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Martin Koller
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/VI, 8010 Graz, Austria; ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 11 8010 Graz, Austria
| | - Stanislav Obruca
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| |
Collapse
|
42
|
Obruca S, Sedlacek P, Koller M. The underexplored role of diverse stress factors in microbial biopolymer synthesis. BIORESOURCE TECHNOLOGY 2021; 326:124767. [PMID: 33540213 DOI: 10.1016/j.biortech.2021.124767] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Polyhydroxyalkanoates (PHA) are microbial polyesters which, apart from their primary storage role, enhance the stress robustness of PHA accumulating cells against various stressors. PHA also represent interesting alternatives to petrochemical polymers, which can be produced from renewable resources employing approaches of microbial biotechnology. During biotechnological processes, bacterial cells are exposed to various stressor factors such as fluctuations in temperature, osmolarity, pH-value, elevated pressure or the presence of microbial inhibitors. This review summarizes how PHA helps microbial cells to cope with biotechnological process-relevant stressors and, vice versa, how various stress conditions can affect PHA production processes. The review suggests a fundamentally new strategy for PHA production: the fine-tuned exposure to selected stressors, which might be used to boost PHA production and even to tailor their structure.
Collapse
Affiliation(s)
- Stanislav Obruca
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| | - Petr Sedlacek
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Martin Koller
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/VI, 8010 Graz, Austria; ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 11 8010 Graz, Austria
| |
Collapse
|
43
|
Bhatia SK, Otari SV, Jeon JM, Gurav R, Choi YK, Bhatia RK, Pugazhendhi A, Kumar V, Rajesh Banu J, Yoon JJ, Choi KY, Yang YH. Biowaste-to-bioplastic (polyhydroxyalkanoates): Conversion technologies, strategies, challenges, and perspective. BIORESOURCE TECHNOLOGY 2021; 326:124733. [PMID: 33494006 DOI: 10.1016/j.biortech.2021.124733] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 05/06/2023]
Abstract
Biowaste management is a challenging job as it is high in nutrient content and its disposal in open may cause a serious environmental and health risk. Traditional technologies such as landfill, bio-composting, and incineration are used for biowaste management. To gain revenue from biowaste researchers around the world focusing on the integration of biowaste management with other commercial products such as volatile fatty acids (VFA), biohydrogen, and bioplastic (polyhydroxyalkanoates (PHA)), etc. PHA production from various biowastes such as lignocellulosic biomass, municipal waste, waste cooking oils, biodiesel industry waste, and syngas has been reported successfully. Various nutrient factors i.e., carbon and nitrogen source concentration and availability of dissolved oxygen are crucial factors for PHA production. This review is an attempt to summarize the recent advancements in PHA production from various biowaste, its downstream processing, and other challenges that need to overcome making bioplastic an alternate for synthetic plastic.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Sachin V Otari
- Department of Biotechnology, Shivaji University, Vidyanagar Kolhapur 416004, Maharashtra, India
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Chungnam 331-825, Republic of Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yong-Keun Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Chungnam 331-825, Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
44
|
Ai M, Zhu Y, Jia X. Recent advances in constructing artificial microbial consortia for the production of medium-chain-length polyhydroxyalkanoates. World J Microbiol Biotechnol 2021; 37:2. [PMID: 33392870 DOI: 10.1007/s11274-020-02986-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/20/2020] [Indexed: 11/29/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are a class of high-molecular-weight polyesters made from hydroxy fatty acid monomers. PHAs produced by microorganisms have diverse structures, variable physical properties, and good biodegradability. They exhibit similar physical properties to petroleum-based plastics but are much more environmentally friendly. Medium-chain-length polyhydroxyalkanoates (mcl-PHAs), in particular, have attracted much interest because of their low crystallinity, low glass transition temperature, low tensile strength, high elongation at break, and customizable structure. Nevertheless, high production costs have hindered their practical application. The use of genetically modified organisms can reduce production costs by expanding the scope of substrate utilization, improving the conversion efficiency of substrate to product, and increasing the yield of mcl-PHAs. The yield of mcl-PHAs produced by a pure culture of an engineered microorganism was not high enough because of the limitations of the metabolic capacity of a single microorganism. The construction of artificial microbial consortia and the optimization of microbial co-cultivation have been studied. This type of approach avoids the addition of precursor substances and helps synthesize mcl-PHAs more efficiently. In this paper, we reviewed the design and construction principles and optimized control strategies for artificial microbial consortia that produce mcl-PHAs. We described the metabolic advantages of co-cultivating artificial microbial consortia using low-value substrates and discussed future perspectives on the production of mcl-PHAs using artificial microbial consortia.
Collapse
Affiliation(s)
- Mingmei Ai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yinzhuang Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China.
| |
Collapse
|
45
|
Grape winery waste as a promising feedstock for the production of polyhydroxyalkanoates and other value-added products. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Kourilova X, Pernicova I, Sedlar K, Musilova J, Sedlacek P, Kalina M, Koller M, Obruca S. Production of polyhydroxyalkanoates (PHA) by a thermophilic strain of Schlegelella thermodepolymerans from xylose rich substrates. BIORESOURCE TECHNOLOGY 2020; 315:123885. [PMID: 32721829 DOI: 10.1016/j.biortech.2020.123885] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
The aim of this work was to investigate the thermophilic bacterium Schelegelella thermodepolymerans DSM 15344 in terms of its polyhydroxyalkanoates (PHA) biosynthesis capacity. The bacterium is capable of converting various sugars into PHA with the optimal growth temperature of 55 °C; therefore, the process of PHA biosynthesis could be robust against contamination. Surprisingly, the highest yield was gained on xylose. Results suggested that S. thermodepolymerans possess unique xylose metabolism since xylose is utilized preferentially with the highest consumption rate as compared to other sugars. In the genome of S. thermodepolymerans DSM 15344, a unique putative xyl operon consisting of genes responsible for xylose utilization and also for its transport was identified, which is a unique feature among PHA producers. The bacterium is capable of biosynthesis of copolymers containing 3-hydroxybutyrate and also 3-hydroxyvalerate subunits. Hence, S.thermodepolymerans seems to be promising candidate for PHA production from xylose rich substrates.
Collapse
Affiliation(s)
- Xenie Kourilova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Iva Pernicova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Karel Sedlar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 10, 616 00 Brno, Czech Republic
| | - Jana Musilova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 10, 616 00 Brno, Czech Republic
| | - Petr Sedlacek
- Department of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Michal Kalina
- Department of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Martin Koller
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/VI, 8010 Graz, Austria; ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 11 8010 Graz, Austria
| | - Stanislav Obruca
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| |
Collapse
|
47
|
Hwangbo M, Chu KH. Recent advances in production and extraction of bacterial lipids for biofuel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139420. [PMID: 32464391 DOI: 10.1016/j.scitotenv.2020.139420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Lipid-based biofuel is a clean and renewable energy that has been recognized as a promising replacement for petroleum-based fuels. Lipid-based biofuel can be made from three different types of intracellular biolipids; triacylglycerols (TAGs), wax esters (WEs), and polyhydroxybutyrate (PHB). Among many lipid-producing prokaryotes and eukaryotes, biolipids from prokaryotes have been recently highlighted due to simple cultivation of lipid-producing prokaryotes and their ability to accumulate high biolipid contents. However, the cost of lipid-based biofuel production remains high, in part, because of high cost of lipid extraction processes. This review summarizes the production mechanisms of these different types of biolipids from prokaryotes and extraction methods for these biolipids. Traditional and improved physical/chemical approaches for biolipid extraction remain costly, and these methods are summarized and compared in this review. Recent advances in biological lipid extraction including phage-based cell lysis or secretion of biolipids are also discussed. These new techniques are promising for bacterial biolipids extraction. Challenges and future research needs for cost-effective lipid extraction are identified in this review.
Collapse
Affiliation(s)
- Myung Hwangbo
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA.
| |
Collapse
|
48
|
Unraveling the camel rumen microbiome through metaculturomics approach for agriculture waste hydrolytic potential. Arch Microbiol 2020; 203:107-123. [PMID: 32772117 DOI: 10.1007/s00203-020-02010-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/13/2020] [Accepted: 08/01/2020] [Indexed: 10/23/2022]
Abstract
Cellulose is the most abundant natural polymer present on Earth in the form of agriculture waste. Hydrolysis of agriculture waste for simple fermentable reducing sugars is the bottleneck in the area of biofuel generation and other value-added products. The present study aims to utilize the camel rumen as a bioreactor for potent cellulolytic and hemicellulolytic bacteria by altering the feed types with varying cellulosic concentrations. A total of 6716 bacterial cultures were subjected to three layers of screening, where plate zymography and chromophoric substrate screening served as primary screening method for cellulolytic and hemicellulolytic potential. The potential isolates were genetically grouped using RAPD, and 51 representative isolates from each group were subjected to molecular identification through 16S rDNA sequencing, followed by quantification of various cellulolytic and hemicellulolytic enzymes. Out of 51 potent isolates, 5 isolates had high endoglucanase activity ranging from 0.3 to 0.48 U/ml. The selected five key isolates identified as Pseudomonas, Paenibacillus, Citrobacter, Bacillus subtilis, and Enterobacter were employed for hydrolyzing the various agriculture residues and resulted in approximately 0.4 mg/ml of reducing sugar. Furthermore, the metaculturomics approach was implemented to deduce the total cultured diversity through 16S rRNA amplicon library sequencing. The metaculturomics data revealed the dominance of proteobacteria and unidentified bacterial population in all four feed types, which indicates the possibility of culturing novel cellulose-deconstructing bacteria. Moreover, the presence of diverse hydrolytic enzymes in cultured isolates supports the usage of these bacteria in bio-processing of agriculture waste residues and obtaining the biofuels and other value-added products.
Collapse
|
49
|
El-malek FA, Khairy H, Farag A, Omar S. The sustainability of microbial bioplastics, production and applications. Int J Biol Macromol 2020; 157:319-328. [DOI: 10.1016/j.ijbiomac.2020.04.076] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/21/2020] [Accepted: 04/11/2020] [Indexed: 01/09/2023]
|
50
|
Pernicova I, Novackova I, Sedlacek P, Kourilova X, Kalina M, Kovalcik A, Koller M, Nebesarova J, Krzyzanek V, Hrubanova K, Masilko J, Slaninova E, Obruca S. Introducing the Newly Isolated Bacterium Aneurinibacillus sp. H1 as an Auspicious Thermophilic Producer of Various Polyhydroxyalkanoates (PHA) Copolymers-1. Isolation and Characterization of the Bacterium. Polymers (Basel) 2020; 12:polym12061235. [PMID: 32485983 PMCID: PMC7362256 DOI: 10.3390/polym12061235] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 11/25/2022] Open
Abstract
Extremophilic microorganisms are considered being very promising candidates for biotechnological production of various products including polyhydroxyalkanoates (PHA). The aim of this work was to evaluate the PHA production potential of a novel PHA-producing thermophilic Gram-positive isolate Aneurinibacillus sp. H1. This organism was capable of efficient conversion of glycerol into poly(3-hydroxybutyrate) (P3HB), the homopolyester of 3-hydroxybutyrate (3HB). In flasks experiment, under optimal cultivation temperature of 45 °C, the P3HB content in biomass and P3HB titers reached 55.31% of cell dry mass and 2.03 g/L, respectively. Further, the isolate was capable of biosynthesis of PHA copolymers and terpolymers containing high molar fractions of 3-hydroxyvalerate (3HV) and 4-hydroxybutyrate (4HB). Especially 4HB contents in PHA were very high (up to 91 mol %) when 1,4-butanediol was used as a substrate. Based on these results, it can be stated that Aneurinibacillus sp. H1 is a very promising candidate for production of PHA with tailored material properties.
Collapse
Affiliation(s)
- Iva Pernicova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.P.); (I.N.); (P.S.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.)
| | - Ivana Novackova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.P.); (I.N.); (P.S.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.)
| | - Petr Sedlacek
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.P.); (I.N.); (P.S.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.)
| | - Xenie Kourilova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.P.); (I.N.); (P.S.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.)
| | - Michal Kalina
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.P.); (I.N.); (P.S.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.)
| | - Adriana Kovalcik
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.P.); (I.N.); (P.S.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.)
| | - Martin Koller
- Office of Research and Management, c/o Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/VI, 8010 Graz, Austria;
- ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 8010 Graz, Austria
| | - Jana Nebesarova
- Biology Centre, The Czech Academy of Sciences, v.v.i., Branisovska 31, 370 05 Ceske Budejovice, Czech Republic;
- Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Vladislav Krzyzanek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic; (V.K.); (K.H.)
| | - Kamila Hrubanova
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic; (V.K.); (K.H.)
| | - Jiri Masilko
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.P.); (I.N.); (P.S.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.)
| | - Eva Slaninova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.P.); (I.N.); (P.S.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.)
| | - Stanislav Obruca
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (I.P.); (I.N.); (P.S.); (X.K.); (M.K.); (A.K.); (J.M.); (E.S.)
- Correspondence: ; Tel.: +420-541-149-354
| |
Collapse
|