1
|
Li Q, Fang F, Chen W. Effect of a high Cl - concentration on the transformation of waste leachate DOM by the UV/PMS system: A mechanistic study using the Suwannee River natural organic matter (SRNOM) as a simulator of waste leachate DOM. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137038. [PMID: 39813921 DOI: 10.1016/j.jhazmat.2024.137038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/11/2024] [Accepted: 12/28/2024] [Indexed: 01/18/2025]
Abstract
The ultraviolet-activated peroxymosnofulate (UV/PMS) system, an effective advanced oxidation process for removing dissolved organic matter (DOM) from wastewater, is limited by high chloride ion (Cl-) concentrations in landfill leachate. This study used Fourier transform ion cyclotron resonance mass spectrometry to explore the transformation of DOM in the UV/PMS system with a high Cl- concentration. The results revealed that elevated Cl- levels generate reactive chlorine species, including chlorine radicals, dichlorine radicals, and hypochlorous acid/hypochlorite, reducing the total organic carbon (TOC) removal efficiency of Suwannee River natural organic matter (SRNOM) from 78.9 % to 39.3 % at 10,000 mg/L Cl-, 0.5 mM PMS, and 60 min. In the absence of Cl-, the UV/PMS system removes almost all molecular species from SRNOM and generates aliphatic substances with low oxygen contents. When high concentrations of Cl- are present, it preferentially removes aromatic and highly unsaturated molecules and produces 408 unknown chlorinated DOMs with highly unsaturated and high-oxygen content features, including CHOCl, CHONCl, and CHOSCl species. We find that in the UV/PMS system without Cl-, DOM is degraded primarily by dealkylation, decarboxylation, hydrogenation, and dearomatization; high concentrations of Cl- impair these reactions, and chlorinated DOM forms via chlorine addition/substitution along with other oxidative reactions.
Collapse
Affiliation(s)
- Qingyang Li
- School of Environmental Science and Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China
| | - Feiyan Fang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China
| | - Weiming Chen
- School of Environmental Science and Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China.
| |
Collapse
|
2
|
Liang H, Jia Y, Khanal SK, Huang D, Sun L, Lu H. Electrochemical-coupled sulfur-driven autotrophic denitrification for nitrogen removal from raw landfill leachate: Evaluation of performance and mechanisms. WATER RESEARCH 2024; 256:121592. [PMID: 38626614 DOI: 10.1016/j.watres.2024.121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024]
Abstract
The cost-effective and environment-friendly sulfur-driven autotrophic denitrification (SdAD) process has drawn significant attention for advanced nitrogen removal from low carbon-to-nitrogen (C/N) ratio wastewater in recent years. However, achieving efficient nitrogen removal and maintaining system stability of SdAD process in treating low C/N landfill leachate treatment have been a major challenge. In this study, a novel electrochemical-coupled sulfur-driven autotrophic denitrification (ESdAD) system was developed and compared with SdAD system through a long-term continuous study. Superior nitrogen removal performance (removal efficiency of 89.1 ± 2.5 %) was achieved in ESdAD system compared to SdAD process when treating raw landfill leachate (influent total nitrogen (TN) concentration of 241.7 ± 36.3 mg-N/L), and the effluent TN concentration of ESdAD bioreactor was as low as 24.8 ± 5.1 mg-N/L, which meets the discharge standard of China (< 40 mg N/L). Moreover, less sulfate production rate (1.3 ± 0.2 mg SO42--S/mgNOx--N vs 1.7 ± 0.2 mg SO42--S/mgNOx--N) and excellent pH modulation (pH of 6.9 ± 0.2 vs 5.8 ± 0.4) were also achieved in the ESdAD system compared to SdAD system. The improvement of ESdAD system performance was contributed to coexistence and interaction of heterotrophic bacteria (e.g., Rhodanobacter, Thermomonas, etc.), sulfur autotrophic bacteria (e.g., Thiobacillus, Sulfurimonas, Ignavibacterium etc.) and hydrogen autotrophic bacteria (e.g., Thauera, Comamonas, etc.) under current stimulation. In addition, microbial nitrogen metabolic activity, including functional enzyme (e.g., Nar and Nir) activities and electron transfer capacity of extracellular polymeric substances (EPS) and cytochrome c (Cyt-C), were also enhanced during current stimulation, which facilitated the nitrogen removal and maintained system stability. These findings suggested that ESdAD is an effective and eco-friendly process for advanced nitrogen removal for low C/N wastewater.
Collapse
Affiliation(s)
- Huiyu Liang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, PR China
| | - Yanyan Jia
- School of Ecology, Sun Yat-Sen University, Shenzhen, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, USA
| | - Dongqi Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, PR China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, PR China.
| |
Collapse
|
3
|
Wang P, Ou R, Tan J, Li N, Zheng M, Jin Q, Yu J, He D. Effect of sludge redistribution strategy on stability of partial nitrification-anammox process: Further exploration of the potential value of sludge. CHEMOSPHERE 2024; 355:141707. [PMID: 38521102 DOI: 10.1016/j.chemosphere.2024.141707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
The stability of the two-stage partial nitrification-anammox (PN/A) system was compromised by the inappropriate conversion of insoluble organic matter. In response, a sludge redistribution strategy was implemented. Through the redistribution of PN sludge and anammox sludge in the two-stage PN/A system, a transition was made to the Anammox-single stage PN/A (A-PN/A) system. This specific functional reorganization, facilitated by the rapid reorganization of microbial communities, has the potential to significantly decrease the current risk of suppression. The results of the study showed that implementing the sludge redistribution strategy led to a substantial enhancement in the total nitrogen removal rate (TNRR) by 87.51%, accompanied by a significant improvement of 34.78% in the chemical oxygen demand removal rate (CRR). Additionally, this approach resulted in a remarkable two-thirds reduction in the aeration requirements. High-throughput sequencing revealed that the strategy enriched anammox and ammonia-oxidizing bacteria while limiting denitrifying bacteria, as confirmed by quantitative polymerase chain reaction analysis. Furthermore, the principal component analysis revealed that the location and duration of aeration had direct and indirect effects on functional gene expression and the evolution of microbial communities. This study emphasizes the potential benefits of restructuring microbial communities through a sludge redistribution strategy, especially in integrated systems that encounter challenges with suppression.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Rui Ou
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Jun Tan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Ning Li
- Pearl River Water Resources Research Institute, Guangzhou, 510611, PR China.
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia.
| | - Qinghai Jin
- Shenzhen Pangu Environmental Protection Technology Co. Ltd, Shenzhen, 518055, PR China.
| | - Jin Yu
- Shenzhen Pangu Environmental Protection Technology Co. Ltd, Shenzhen, 518055, PR China.
| | - Di He
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
4
|
He Y, Jiang Z, Zeng M, Cao S, Wu N, Liu X. Unraveling potential mechanism of different metal ions effect on anammox through big data analysis, molecular docking and molecular dynamics simulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120092. [PMID: 38232596 DOI: 10.1016/j.jenvman.2024.120092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Heavy metals (HMs) have been widely reported to pose an adverse effect on anaerobic ammonia oxidation (anammox) bacteria, yet the underlying mechanisms remain unclear. This study provides new insights into the potential mechanisms of interaction between HMs and functional enzymes through big date analysis, molecular docking and molecular dynamics simulation. The statistical analysis indicated that 10 mg/L Cu(II) and Cd(II) reduced nitrogen removal rate (NRR) by 85% and 43%, while 5 mg/L Fe(II) enhanced NRR by 29%. Additionally, the results of molecular simulations provided a microscopic interpretation for these macroscopic data. Molecular docking revealed that Hg(II) formed a distinctive binding site on ferritin, while other HMs resided at iron oxidation sites. Furthermore, HMs exhibited distinct binding sites on hydrazine dehydrogenase. Concurrently, the molecular dynamics simulation results further substantiated their capacity to form complexes. Cu(II) displayed the strongest binding affinity with ferritin for -1576 ± 79 kJ/mol in binding free energy calculation. Moreover, Cd(II) bound to ferritin and HDH for -1052.67 ± 58.49 kJ/mol, -290.02 ± 49.68 kJ/mol, respectively. This research addressed a crucial knowledge gap, shedding light on potential applications for remediating heavy metal-laden industrial wastewater.
Collapse
Affiliation(s)
- Yuhang He
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Zhicheng Jiang
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Ming Zeng
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457 Tianjin, China.
| | - Shenbin Cao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China; College of Architecture and Civil Engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, China.
| | - Nan Wu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384, China
| | - Xinyuan Liu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
5
|
Wu Y, Zhao Y, Liu Y, Niu J, Zhao T, Bai X, Hussain A, Li YY. Insights into heavy metals shock on anammox systems: Cell structure-based mechanisms and new challenges. WATER RESEARCH 2023; 239:120031. [PMID: 37172374 DOI: 10.1016/j.watres.2023.120031] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/31/2023] [Accepted: 05/01/2023] [Indexed: 05/14/2023]
Abstract
Anaerobic ammonium oxidation (anammox) as a low-carbon and energy-saving technology, has shown unique advantages in the treatment of high ammonia wastewater. However, wastewater usually contains complex heavy metals (HMs), which pose a potential risk to the stable operation of the anammox system. This review systematically re-evaluates the HMs toxicity level from the inhibition effects and the inhibition recovery process, which can provide a new reference for engineering. From the perspective of anammox cell structure (extracellular, anammoxosome membrane, anammoxosome), the mechanism of HMs effects on cellular substances and metabolism is expounded. Furthermore, the challenges and research gaps for HMs inhibition in anammox research are also discussed. The clarification of material flow, energy flow and community succession under HMs shock will help further reveal the inhibition mechanism. The development of new recovery strategies such as bio-accelerators and bio-augmentation is conductive to breaking through the engineered limitations of HMs on anammox. This review provides a new perspective on the recognition of toxicity and mechanism of HMs in the anammox process, as well as the promotion of engineering applicability.
Collapse
Affiliation(s)
- Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Tianyang Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xinhao Bai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Arif Hussain
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
6
|
Xin X, Li B, Liu X, Yang W, Liu Q. Starting-up performances and microbial community shifts in the coupling process (SAPD-A) with sulfide autotrophic partial denitrification (SAPD) and anammox treating nitrate and ammonium contained wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117298. [PMID: 36669311 DOI: 10.1016/j.jenvman.2023.117298] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
A novel coupling process (SAPD-A) with sulfide autotrophic partial denitrification (SAPD) (NO3--N→NO2--N) and anaerobic ammonium oxidation (Anammox) was developed using anaerobic sequencing batch reactor (ASBR) in this work. The integrated process comprised two stages. Firstly, the starting-up of SAPD process succeeded by gradually increasing the influent nitrate and sulfide in 95 days. The average nitrate removal efficiency (NRE) and NO2--N accumulation rates were 71.24% ± 0.21% and 46.44% ± 0.53% at SAPD process (days 75-95). Then, successful coupling process (SAPD-A) was implemented in two stages (stage I and stage II of SAPD-A). In stage I, it is feasible to promote the successful construction of SAPD-A process by elevating influent ammonium only based on SAPD system, making the NRE increased from 44.45% ± 0.46% (day 95) to 64.62% ± 0.12% at the end of stage I in SAPD-A system (day 126). Meanwhile, the ammonium nitrogen removal efficiency (ARE) and total nitrogen removal efficiency (TN-RE) also rose up to 42.46% ± 2.02% and 63.28% ± 0.54% respectively. Furthermore, the average ARE, NRE and TN-RE during the stage II in the bioreactor could reach 65.17% ± 1.45%, 74.50% ± 0.81% and 77.81% ± 0.37% by loading some biofilters (with of approximate 10% of the volume of the bioreactor) attached anaerobic ammonium oxidation bacteria (AnAOB). High-throughput sequencing results showed that the dominant genera concerning nitrogen removal were norank_f_norank_o_Fimbriimonadates (with the abundance of 2.88-8.54%), norank_ o_ norank _ c_ OM190 (2.48-4.41%), norank_f_norank_o_norank_c_WWE3 (11.01-17.69%), subgroup_10 (1.97-3.81%), Limnobacter(2.17-3.49%), norank_f_n orank_ o_norank_ c_OLB14 (2.03-5.23%), norank-f-PHOS-HE36 (2.18-5.5%), Ellin6067 (1.34-2.24%) and Candidatus_ Brocadia (1.95-2.42%) during the whole starting-up period of coupling SAPD-A process. Batch experiments revealed that the sulfide was fully oxidized within 2 h, with the maximum reaction rate of 38.30 ± 1.53 mg (L h)-1 in the first 1 h. Simultaneously, the concentration of nitrate sharply decreased from 53.08 ± 0.23 mg L-1 to 24.16 ± 0.42 mg L-1 with the reaction rate of 66.41 ± 2.12 mg (L h)-1 in 0.5 h. Also, the ammonium concentration significantly declined from 47.88 ± 0.34 mg L-1 to 10.98 ± 0.39 mg L-1 in 8 h. Anammox process was responsible for the dominant nitrogen removal in the coupling SAPD-A system.
Collapse
Affiliation(s)
- Xin Xin
- School of Resources and Environment, Chengdu University of Information Technology,Chengdu, 610225, China.
| | - BaiXue Li
- School of Resources and Environment, Chengdu University of Information Technology,Chengdu, 610225, China
| | - Xin Liu
- School of Resources and Environment, Chengdu University of Information Technology,Chengdu, 610225, China
| | - Wenyu Yang
- School of Resources and Environment, Chengdu University of Information Technology,Chengdu, 610225, China
| | - Qin Liu
- School of Resources and Environment, Chengdu University of Information Technology,Chengdu, 610225, China
| |
Collapse
|
7
|
Qian Y, Shen J, Chen F, Guo Y, Qin Y, Li YY. Increasing nitrogen and organic matter removal from swine manure digestate by including pre-denitrification and recirculation in single-stage partial nitritation/anammox. BIORESOURCE TECHNOLOGY 2023; 367:128229. [PMID: 36332864 DOI: 10.1016/j.biortech.2022.128229] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
A novel two-stage process comprising pre-denitrification and single-stage partial nitritation/anammox was developed to treat swine manure digestate with a constant nitrogen loading rate of 1.0 gN/L/d. As the influent NH4+-N concentration increased from 500 to 1500 mg/L, a nitrogen removal efficiency of 88 %-96 % and 5-day biochemical oxygen demand removal efficiency of 93 %-97 % were achieved. Owing to the high influent chemical oxygen demand (COD)/nitrates and nitrites (NOX) ratio of 8.2-9.2 and high COD utilization of denitrifying bacteria (DB), the NO2--N and NO3--N removal efficiencies in the denitrification reactor reached 96 %-99 % and 97 %-99 %, respectively. The contribution of anammox bacteria to nitrogen removal was 70.9 %-84.3 %, whereas that of DB was 11.7 %-18.3 %. The contributions of DB and ordinary heterotrophic organisms to COD removal were 19.5 %-49.3 % and 17.9 %-39 %, respectively. This study will help guide the anammox process in swine wastewater treatment.
Collapse
Affiliation(s)
- Yunzhi Qian
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Junhao Shen
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Fuqiang Chen
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yan Guo
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
8
|
Chen Y, Guo G, Li YY. A review on upgrading of the anammox-based nitrogen removal processes: Performance, stability, and control strategies. BIORESOURCE TECHNOLOGY 2022; 364:127992. [PMID: 36150424 DOI: 10.1016/j.biortech.2022.127992] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The anaerobic ammonia oxidation (anammox) process is a promising biological nitrogen removal technology. However, owing to the sensitivity and slow cell growth of anammox bacteria, long startup time and initially low nitrogen removal rate (NRR) are still limiting factors of practical applications of anammox process. Moreover, nitrogen removal efficiency (NRE) is often lower than 88 %. This review summarizes the most common methods for improving NRR by increasing microorganism concentration, and modifying reactor configuration. Recent integrated anammox-based systems were evaluated, including hydroxyapatite (HAP)-enhanced one-stage partial nitritation/anammox (PNA) process for a high NRR of over 2 kg N/m3/d at 25 °C, partial denitrification/anammox (PDA) process, and simultaneous partial nitrification, anammox, and denitrification process for a high NRE of up to 100 %. After discussing the challenges for the application of these systems critically, a combined system of anaerobic digestion, HAP-enhanced one-stage PNA and PDA is proposed in order to achieve a high NRR, high NRE, and phosphorus removal simultaneously.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Guangze Guo
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
9
|
Yan Z, Li A, Shim H, Wang D, Cheng S, Wang Y, Li M. Effect of ozone pretreatment on biogranulation with partial nitritation - Anammox two stages for nitrogen removal from mature landfill leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115470. [PMID: 35751269 DOI: 10.1016/j.jenvman.2022.115470] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Due to the extremely low C/N ratio, high concentration of ammonia nitrogen and refractory organic matter of mature landfill leachate (MLL), appropriate processes should be selected to effectively remove nitrogen and reduce disposal costs. Partial nitritation (PN) and anaerobic ammonia oxidation (AMX) have been used as the main nitrogen removal processes for MLL, and the sludge granulation in PN and AMX processes could contribute to high biological activity, good sedimentation performance, and stable resistance to toxicity. In this study, the O3-PN-AMX biogranules process was selected to effectively remove nitrogen from MLL without carbon addition and pH adjustment. Without uneconomical NH4+-N oxidation and wasting the alkalinity of MLL, ozone pretreatment achieved color removal, decreased humic- and fulvic-like acid substances, and alleviated the MLL toxicity on ammonia oxidizers. In addition, the ozonation of MLL could shorten the start-up time and improve the treatment efficiency and biogranules stability of PN and AMX processes. Efficient and stable nitritation was achieved in PN reactor without strict dissolved oxygen (DO) control, which was attributed to the unique structure of granular sludge, ozone pretreatment, and alternating inhibition of free ammonia and free nitric acid on nitrite oxidizers. Through the application of ozone pretreatment and granular sludge, the nitrogen removal rate (NRR) and nitrogen removal efficiency (NRE) of the O3-PN-AMX biogranules process reached 0.39 kg/m3/day and 85%, respectively, for the undiluted MLL treatment. This study might provide a novel and effective operation strategy of combined process for the efficient, economical, and stable nitrogen removal from MLL.
Collapse
Affiliation(s)
- Zhenyu Yan
- Key Laboratory of Water and Sediment Sciences of Ministry of Education / State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Anjie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education / State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, 999078, China
| | - Danyang Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education / State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Shuqian Cheng
- Key Laboratory of Water and Sediment Sciences of Ministry of Education / State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yuexing Wang
- Shenzhen Shenshui Ecological & Environmental Technology Co., Ltd., Shenzhen, 518048, China
| | - Ming Li
- Engelbart (Beijing) Eco-Tech Co., Ltd., Beijing, 101300, China
| |
Collapse
|
10
|
Lin L, Luo Z, Ishida K, Urasaki K, Kubota K, Li YY. Fast formation of anammox granules using a nitrification-denitrification sludge and transformation of microbial community. WATER RESEARCH 2022; 221:118751. [PMID: 35728499 DOI: 10.1016/j.watres.2022.118751] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
A lengthy start-up period has been one of the key obstacles limiting the application of the anammox process. In this investigation, a nitrification-denitrification sludge was used to start-up the anammox EGSB process. The transformation process from nitrification-denitrification sludge to anammox granule sludge was explored through the aspects of nitrogen removal performance, granule properties, microbial community structure, and evolution route. A successful start-up of the anammox process was achieved after 94 days of reactor operation. The highest nitrogen removal rate (NRR) obtained was 7.25±0.16 gN/L/d at a nitrogen loading rate (NLR) of 8.0 gN/L/d, and the corresponding nitrogen removal efficiency was a high 90.61±1.99%. The results of the microbial analysis revealed significant changes in anammox bacteria, nitrifying bacteria, and denitrifying bacteria in the sludge. Notably, the anammox bacteria abundance increased from 2.5% to 29.0% during the operation, and Candidatus Kuenenia and Candidatus Brocadia were the dominant genera. Distinct-different successions on Candidatus Brocadia and Candidatus Kuenenia were also observed over the long-term period. In addition, the settling performance, anammox activity and biomass retention capacity of the granules were significantly enhanced during this process, and the corresponding granule evolution route was also proposed. The results in this study indicate the feasibility of using available seed sludge source for the fast-transformation of anammox granules, it is beneficial to the large-scale application of anammox process and the utilization of excess sludge.
Collapse
Affiliation(s)
- Lan Lin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Zibin Luo
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Kyuto Ishida
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Kampachiro Urasaki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan.
| |
Collapse
|
11
|
Huo D, Dang Y, Sun D, Holmes DE. Efficient nitrogen removal from leachate by coupling Anammox and sulfur-siderite-driven denitrification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154683. [PMID: 35314225 DOI: 10.1016/j.scitotenv.2022.154683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
High concentrations of nitrate can be generated during anaerobic ammonium oxidation (Anammox) wastewater treatment processes. Addition of sulfur to Anammox reactors stimulates the growth of sulfur-driven denitrifying (SADN) bacteria that can reduce nitrate to nitrogen gas. However, protons released during the SADN process lower the pH of the system and inhibit Anammox activity. The system will keep stable when pH is in the range of 7.5-8.5. This study showed that addition of siderite stabilized the reactor system and significantly improved the nitrogen removal process. In fact, even when concentrations of total nitrogen were 477.15 ± 16.84 mg/L, the sulfur/siderite reactor maintained nitrogen removal efficiencies >90%, while efficiencies in the sulfur reactor were < 80%. Anammox accounted for 31% of the bacterial sequences in the sulfur/siderite reactor compared to only 14% in the sulfur reactor with the majority of sequences clustering with Ca. Brocadia. An abundance of c-type cytochromes in anammox aggregates in the sulfur-siderite reactor also indicated that anammox activity was higher in this system.
Collapse
Affiliation(s)
- Da Huo
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Dawn E Holmes
- Department of Physical and Biological Sciences, Western New England University, 1215 Wilbraham Rd, Springfield, MA 01119, USA
| |
Collapse
|
12
|
Wang H, Wang J, Zhou M, Wang W, Liu C, Wang Y. A versatile control strategy based on organic carbon flow analysis for effective treatment of incineration leachate using an anammox-based process. WATER RESEARCH 2022; 215:118261. [PMID: 35294909 DOI: 10.1016/j.watres.2022.118261] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Anammox-based process provides an alternative for the sustainable treatment of incineration leachate that has high-load ammonium and high residual heat, but the high concentrations of organics in such leachates brought challenges for the process control. For the first time, a two-stage partial nitrification (PN)-anammox process coupled with a pre-enhanced anaerobic digestion (AD) was established to achieve efficient nitrogen removal from incineration leachate. Satisfactory nitrogen and chemical oxygen demand (COD) removal efficiencies were achieved-with the average values of 90% and 78%, respectively-despite fluctuating influent properties [1100-2000 mg-total nitrogen (TN)/L and 3800-15800 mg-COD/L]. A versatile control strategy was developed to create an optimum autotrophic environment for nitrifier and anammox bacteria: i) enhanced AD set before the PN-anammox process captured nearly 50% of the influent COD; ii) in the PN unit, ammonia-oxidizing bacteria were well adapted to COD concentrations of 1420-2400 mg/L, and dissolved oxygen (0.2-0.4 mg/L) controlling combined with a high free nitrous acid concentration (>0.08 mg/L) ensured a nitrite accumulation rate of >95%; and iii) in the anammox unit, a suitable influent NO2--N/NH4+-N ratio (the average value of 1.27) was achieved by mixing AD effluent with PN effluent (1:1.78, v/v), contributing to a high TN removal of 78 ± 2.4%. Nevertheless, 980-1560 mg/L of COD remained in the influent of the anammox unit; biorefractory humic acids in this (245.6 ± 3 mg/L) might be the main component that caused the observed 66 ± 2% decrease in anammox activity. The proliferation of denitrifying bacteria and sulfate-reducing bacteria induced by the organic compounds may have led to the observed decline in the abundance of the anammox bacterium Candidatus Kuenenia. The proposed strategy guaranteed the robust operation of the PN-anammox process and provides a promising approach for the sustainable treatment of incineration leachate.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P R China
| | - Junjie Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P R China
| | - Mingda Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P R China
| | - Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P R China
| | - Chao Liu
- Shanghai Youlin Zhuyuan Sewage Investment and Development Co. Ltd., Shanghai 200125, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P R China.
| |
Collapse
|
13
|
Xiong J, Zhang C, He P, He J, Dai X, Li W, Yang X, Li X, Huang X, Feng J. Nitrogen resource recovery from mature leachate via heat extraction technology: An engineering project application. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:549-561. [PMID: 35100138 DOI: 10.2166/wst.2022.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A large pool of ammonia in mature leachate is challenging to treat with a membrane bioreactor system to meet the discharge Standard for Pollution Control on the Landfill Site of Municipal Solid Waste in China (GB 16889-2008) without external carbon source addition. In this study, an engineering leachate treatment project with a scale of 2,000 m3/d was operated to evaluate the ammonia heat extraction system (AHES), which contains preheat, decomposition, steam-stripping, ammonia recovery, and centrifuge dewatering. The operation results showed that NH3-N concentrations of raw leachate and treated effluent from an ammonia heat extraction system (AHES) were 1,305-2,485 mg/L and 207-541 mg/L, respectively. The ratio of COD/NH3-N increased from 1.40-1.84 to 7.69-28.00. Nitrogen was recovered in the form of NH4HCO3 by the ammonia recovery tower with the introduction of CO2, wherein the mature leachate can offer 37% CO2 consumption. The unit consumptions of steam and power were 8.0% and 2.66 kWh/m3 respectively, and the total operation cost of AHES was 2.06 USD per cubic metre of leachate. These results confirm that heat extraction is an efficient and cost-effective technology for the recovery of nitrogen resource from mature leachate.
Collapse
Affiliation(s)
- Jianying Xiong
- Shanghai Municipal Engineering Design Institute (Group) Co., LTD., 901 North Zhongshan Road (2nd), Shanghai, China E-mail:
| | - Chen Zhang
- Shanghai Municipal Engineering Design Institute (Group) Co., LTD., 901 North Zhongshan Road (2nd), Shanghai, China E-mail:
| | - Pinjing He
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jun He
- Shanghai Municipal Engineering Design Institute (Group) Co., LTD., 901 North Zhongshan Road (2nd), Shanghai, China E-mail:
| | - Xiaodong Dai
- Shanghai Municipal Engineering Design Institute (Group) Co., LTD., 901 North Zhongshan Road (2nd), Shanghai, China E-mail:
| | - Wudong Li
- Shanghai Municipal Engineering Design Institute (Group) Co., LTD., 901 North Zhongshan Road (2nd), Shanghai, China E-mail:
| | - Xiaoying Yang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xueting Li
- Veolia (China) Environmental Services Limited Company, Shanghai 200041, China
| | - Xiaowen Huang
- Veolia (China) Environmental Services Limited Company, Shanghai 200041, China
| | - Jia Feng
- Veolia (China) Environmental Services Limited Company, Shanghai 200041, China
| |
Collapse
|
14
|
Li X, Tao RJ, Tian MJ, Yuan Y, Huang Y, Li BL. Recovery and dormancy of nitrogen removal characteristics in the pilot-scale denitrification-partial nitrification-Anammox process for landfill leachate treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113711. [PMID: 34509812 DOI: 10.1016/j.jenvman.2021.113711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/15/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The pilot-scale partial nitrification-anaerobic ammonia oxidation (PN-Anammox) process for landfill leachate treatment has been running stably for 2 years. The degradation characteristics of nitrogen removal performance of PN-Anammox in this system were discussed during shutdown, and different recovery strategies were analyzed from the perspective of economy and easy implementation. The results showed that during the 166 d dormancy period, the decrease in Anammox bacteria activity occurred earlier than that of Anammox bacteria, and both tended to slow down after 128 d. The recovery strategy of simulated wastewater was the fastest, followed by the pretreated landfill leachate recovery strategy with inoculation of some corresponding functional sludges, while the worst strategy was the direct pretreated landfill leachate recovery strategy. The recovery start-up of the pilot-scale PN-Anammox process further showed that microbial activities were difficult to recover simultaneously during operation using raw wastewater directly due to the presence of high NH4+-N levels and the coupling process, which easily led to the accumulation of NH4+-N or NO2-N, thereby inhibiting microbial activity. The addition of some functional bacteria was more conducive to the rapid recovery of microbial activity. This study provides a new strategy for the rapid recovery of microbial activity for the engineering application of the PN-Anammox process.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Ren-Jie Tao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou, 215009, China
| | - Meng-Jia Tian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou, 215009, China
| | - Yan Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou, 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Bo-Lin Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| |
Collapse
|
15
|
Li Y, Liu Y, Luo J, Li YY, Liu J. Emerging onsite electron donors for advanced nitrogen removal from anammox effluent of leachate treatment: A review and future applications. BIORESOURCE TECHNOLOGY 2021; 341:125905. [PMID: 34523566 DOI: 10.1016/j.biortech.2021.125905] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Partial nitrification-anammox process is promising in leachate treatment, but the 11% residue nitrate limits the total nitrogen removal efficiency. Denitrification or partial denitrification and anammox are both practical polishing processes of anammox effluent, requiring extra electron donors. Fortunately, there are organic matter, sulfide and methane in leachate or produced by leachate treatment, which can serve as onsite electron donors. In this review, the mechanisms and processes using these three kinds of electron donors for residue nitrate reduction in anammox effluent of leachate are systematically summarized and discussed. It can be concluded that, biodegradable organic matter is an effective electron donor, sulfide is a promising electron donor, methane is a potential electron donor. Two possible applications in future based on anammox treatment of fresh and mature leachate using sulfide and methane as onsite electron donors are proposed. Through sulfide reutilization, energy-saving with about 14% of aeration reduction can be achieved.
Collapse
Affiliation(s)
- Yanyan Li
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yanxu Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jinghuan Luo
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
16
|
Li X, Lu MY, Huang Y, Yuan Y, Yuan Y. Influence of seasonal temperature change on autotrophic nitrogen removal for mature landfill leachate treatment with high-ammonia by partial nitrification-Anammox process. J Environ Sci (China) 2021; 102:291-300. [PMID: 33637255 DOI: 10.1016/j.jes.2020.09.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 06/12/2023]
Abstract
In this study, a denitrification (DN)-partial nitritation (PN)-anaerobic ammonia oxidation (Anammox) system for the efficient nitrogen removal of mature landfill leachate was built with a zone-partitioning self-reflux biological reactor as the core device, and the effects of changes in seasonal temperature on the nitrogen removal in non-temperature-control environment were explored. The results showed that as the seasonal temperature decreased from 34°C to 11.3°C, the total nitrogen removal rate of the DN-PN-Anammox system gradually decreased from the peak value of 1.42 kg/(m3•day) to 0.49 kg/(m3•day). At low temperatures (<20°C), when the nitrogen load (NLR) of the system is not appropriate, the fluctuation of high NH4+-N concentration in the landfill leachate greatly influenced the stability of the nitrogen removal. At temperatures of 11°C-15°C, the NLR of the system is controlled below 0.5 kg/(m3•day), which can achieve stable nitrogen removal and the nitrogen removal efficiency can reach above 96%. The abundance of Candidatus Brocadia gradually increased with the decrease of temperature. Nitrosomonas, Candidatus Brocadia and Candidatus Kuenenia as the main functional microorganisms in the low temperature.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China.
| | - Ming-Yu Lu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Yi Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Yan Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| |
Collapse
|
17
|
Zhuang JL, Zhou YY, Liu YD, Li W. Flocs are the main source of nitrous oxide in a high-rate anammox granular sludge reactor: insights from metagenomics and fed-batch experiments. WATER RESEARCH 2020; 186:116321. [PMID: 32861184 DOI: 10.1016/j.watres.2020.116321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/10/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Nitrous oxide (N2O) emissions from anammox-based processes are well documented but insight into source of the N2O emission in high-rate anammox granular sludge reactors (AGSR) is limited. In this study, metagenomics and fed-batch experiments were applied to investigate the relative contributions of anammox granules and flocs to N2O production in a high-rate AGSR. Flocs, which constitute only ~10% of total biomass contributed about 60% of the total N2O production. Granules, the main contributor of nitrogen removal (~95%), were responsible for the remaining ~40% of N2O production. This result is inconsistent with reads-based analysis that found the gene encoding clade II type nitrous oxide reductase (nosZII) had similar abundances in both granules and flocs. Another notable trend observed was the relatively higher abundance of the gene for NO-producing nitrite reductase (nir) in comparison to the gene for the nitric oxide reductase gene (nor) in both granules and flocs, indicating nitric oxide (NO) may accumulate in the AGSR. This is significant since NO and N2O pulse assays demonstrated that NO could lead to N2O production from both granules and flocs. However, since anammox bacteria, which were shown to be in higher abundance in granules than in flocs, have the capacity to scavenge NO this provides a mechanism by which its inhibitory effects can be mitigated, limiting N2O release from the granules, consistent with experimental observation. These results demonstrate flocs are the main source of N2O emission in AGSR and provide lab-scale evidence that NO-dependent anammox can mitigate N2O emission.
Collapse
Affiliation(s)
- Jin-Long Zhuang
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuan-Yuan Zhou
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Yong-di Liu
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Wei Li
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
18
|
Gao M, Wang M, Wu C, Wang X, Yang Y, Liu S, Shimaoka T, Wang Q. Dechlorination of fly ash by hydrolysate of municipal solid waste leachate. RSC Adv 2020; 10:26397-26406. [PMID: 35519747 PMCID: PMC9055411 DOI: 10.1039/d0ra03113e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/06/2020] [Indexed: 02/01/2023] Open
Abstract
Municipal solid waste incineration fly ash (referred to as the fly ash) presents an important environmental problem in China today, but strategies for its treatment have yet to be widely studied and implemented. The currently available methods for the dechlorination of fly ash are not sufficient, given the amounts of fly ash produced each year. To increase the reuse fraction of fly ash as raw material for cement production, we propose an improved dechlorination method. Specifically, fly ash was leached with the hydrolysate of municipal solid waste leachate (HMSWL) to remove the water-insoluble chlorine. Three-step HMSWL leaching removed 94.3% of the total chlorine in fly ash, much more than the 82.7% that was removed through three-step ultrapure water (UW) leaching. X-ray diffraction indicated that three-step UW leaching could remove Cl mainly in the forms of KCl, NaCl, CaClOH and AlOCl, whereas three-step HMSWL leaching could further remove more water-insoluble Cl in the forms of AlOCl. In addition, the experimental results further suggested that the low pH of HMSWL (4.9) contributed little to the water-insoluble Cl removal, whereas the displacement of organic acid radicals (especially by the butyrate radical) was the major cause of water-insoluble Cl removal. Therefore, HMSWL rich in butyrate radical could be an ideal water substitute for fly ash dechlorination.
Collapse
Affiliation(s)
- Ming Gao
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants 30 Xueyuan Road, Haidian District Beijing 100083 PR China +86-10-6233-2778 +86-10-6233-2778
| | - Menglu Wang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants 30 Xueyuan Road, Haidian District Beijing 100083 PR China +86-10-6233-2778 +86-10-6233-2778
| | - Chuanfu Wu
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants 30 Xueyuan Road, Haidian District Beijing 100083 PR China +86-10-6233-2778 +86-10-6233-2778
| | - Xiaona Wang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants 30 Xueyuan Road, Haidian District Beijing 100083 PR China +86-10-6233-2778 +86-10-6233-2778
| | - Yufei Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences Beijing 100012 PR China
| | - Shu Liu
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University Beijing 100191 PR China
| | - Takayuki Shimaoka
- Department of Urban and Environmental Engineering, Faculty of Engineering, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Qunhui Wang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants 30 Xueyuan Road, Haidian District Beijing 100083 PR China +86-10-6233-2778 +86-10-6233-2778
| |
Collapse
|
19
|
Shao C, Yang Y, Liu Z, Wang Q, Ji Z, Wang S, Demeestere K, Guo Y, Hulle SV. Characterization of landfill leachate by spectral-based surrogate measurements during a combination of different biological processes and activated carbon adsorption. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:2606-2616. [PMID: 32857747 DOI: 10.2166/wst.2020.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surrogate measurements based on excitation-emission matrix fluorescence spectra (EEMs) and ultraviolet-visible absorption spectra (UV-vis) were used to monitor the evolution of dissolved organic matter (DOM) in landfill leachate during a combination of biological and physical-chemical treatment consisting of partial nitritation-anammox (PN-Anammox) or nitrification-denitrification (N-DN) combined with granular active carbon adsorption (GAC). PN-Anammox resulted in higher nitrogen removal (81%), whereas N-DN required addition of an external carbon source to increase nitrogen removal from 24% to 56%. Four DOM components (C1 to C4) were identified by excitation-emission matrix-parallel factor analysis (EEM-PARAFAC). N-DN showed a greater ability to remove humic-like components (C1 and C3), while the protein-like component (C4) was better removed by PN-Anammox. Both biological treatment processes showed limited removal of the medium molecular humic-like component (C2). In addition, the synergistic effect of biological treatments and adsorption was studied. The combination of PN-Anammox and GAC adsorption could remove C4 completely and also showed a good removal efficiency for C1 and C2. The Thomas model of adsorption revealed that GAC had the maximum adsorption capacity for PN-Anammox treated leachate. This study demonstrated better removal of nitrogen and fluorescence DOM by a combination of PN-Anammox and GAC adsorption, and provides practical and technical support for improved landfill leachate treatment.
Collapse
Affiliation(s)
- Chenjia Shao
- College of Environment, Zhejiang University of Technology, No. 18, Chaowang Road, 310014 Hangzhou, Zhejiang, China E-mail: ; LIWET, Department of Green Chemistry and Technology, Ghent University, Campus Kortrijk, Graaf Karel De Goedelaan 5, B-8500 Kortrijk, Belgium
| | - Yongyuan Yang
- LIWET, Department of Green Chemistry and Technology, Ghent University, Campus Kortrijk, Graaf Karel De Goedelaan 5, B-8500 Kortrijk, Belgium
| | - Ze Liu
- LIWET, Department of Green Chemistry and Technology, Ghent University, Campus Kortrijk, Graaf Karel De Goedelaan 5, B-8500 Kortrijk, Belgium
| | - Qiaoling Wang
- College of Environment, Zhejiang University of Technology, No. 18, Chaowang Road, 310014 Hangzhou, Zhejiang, China E-mail:
| | - Zengwen Ji
- College of Environment, Zhejiang University of Technology, No. 18, Chaowang Road, 310014 Hangzhou, Zhejiang, China E-mail:
| | - Shijie Wang
- College of Environment, Zhejiang University of Technology, No. 18, Chaowang Road, 310014 Hangzhou, Zhejiang, China E-mail:
| | - Kristof Demeestere
- EnVOC, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Yaping Guo
- College of Environment, Zhejiang University of Technology, No. 18, Chaowang Road, 310014 Hangzhou, Zhejiang, China E-mail:
| | - Stijn Van Hulle
- LIWET, Department of Green Chemistry and Technology, Ghent University, Campus Kortrijk, Graaf Karel De Goedelaan 5, B-8500 Kortrijk, Belgium
| |
Collapse
|
20
|
Jiang H, Peng Y, Li X, Zhang F, Wang Z, Ren S. Advanced nitrogen removal from mature landfill leachate via partial nitrification-Anammox biofilm reactor (PNABR) driven by high dissolved oxygen (DO): Protection mechanism of aerobic biofilm. BIORESOURCE TECHNOLOGY 2020; 306:123119. [PMID: 32192962 DOI: 10.1016/j.biortech.2020.123119] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
A novel partial nitrification-Anammox biofilm reactor (PNABR) operated under high dissolved oxygen (DO) with pre-anoxic - aerobic - anoxic operational mode was developed for efficient denitrogenation from mature landfill leachate. With DO concentration gradually increasing to 4.03 ± 0.03 mg/L, the ammonia oxidation rate (AOR) was enhanced to 25.8 mgNH4+-N/(L h), while nitrite oxidation bacteria (NOB) was inhibited effectively by alternating free ammonia (FA) and oxygen starvation. DO micro-distribution revealed that estimated 1900 μm of aerobic biofilm could protect anammox biofilm underneath from being inhibited by high DO. qPCR analysis further suggested that ammonia oxidation bacteria (AOB) abundance in whole biofilm was 6.12 × 109 gene copies/(g dry sludge), which was twice than found in the floc. Anammox bacteria accounted for 2.39% of total bacteria in whole biofilm, contributing 90.0% to nitrogen removal. Nitrogen removal rate (NRR) and nitrogen removal efficiency (NRE) finally reached 396.6 gN/(m3 d) and 96.1%, respectively.
Collapse
Affiliation(s)
- Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Fangzhai Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Zhong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shang Ren
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
21
|
Li X, Tan XW, Yuan Y, Huang Y, Li BL, Jin R. Highly efficient and low-energy nitrogen removal of sludge reduction liquid by coupling denitrification- partial nitrification-Anammox in an innovative auto-recycling integration device with different partitions. BIORESOURCE TECHNOLOGY 2020; 302:122880. [PMID: 32007855 DOI: 10.1016/j.biortech.2020.122880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
The denitrification (DN), partial nitrification (PN) and Anammox processes were coupled in an auto-recycling integration device to remove nitrogen from the supernatant of sludge reduction pretreatment. The nitrogen removal performance of the device and the effect of organic matter concentration on the nitrogen transformation were discussed. The results showed that DN, PN and Anammox are well coupled and total nitrogen (TN) removal rate reached 0.85 kg/(m3·d). The pre-DN process can achieve the removal of NO3--N produced by the back-end PN-Anammox process without the need of reflux pump drive. When the influent NH4+-N concentration was approximately 400 mg/L, the effluent TN concentration was less than 20 mg/L. The fluctuation of organic matter led to changes of nitrogen transformation in the system, and the best ratio of influent CODbio/TN was 0.7-0.9. Nitrosomonas and Candidatus Brocadia played important roles in the nitrogen removal process as the main functional microorganisms of PN and Anammox, respectively.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China.
| | - Xin-Wei Tan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Yan Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Bo-Lin Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Run Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| |
Collapse
|
22
|
Guo Y, Chen Y, Webeck E, Li YY. Towards more efficient nitrogen removal and phosphorus recovery from digestion effluent: Latest developments in the anammox-based process from the application perspective. BIORESOURCE TECHNOLOGY 2020; 299:122560. [PMID: 31882199 DOI: 10.1016/j.biortech.2019.122560] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Over the past forty years, anammox-based processes have been extensively researched and applied to some extent. However, some of the long-standing problems present serious impediments to wide application of these processes, and knowledge gap between lab-scale research and full-scale operations is still considerable. In recent years, anammox-based research has developed rapidly and some emerging concepts have been proposed. The focus of this review is on the critical problems facing actual application of anammox processes. The latest developments in anammox-based processes are summarized, and particular consideration is given to the following aspects: (1) the evolution of the chemical stoichiometry of anammox reaction; (2) the status of several main anammox-based processes; (3) the critical problems and countermeasures; (4) the emerging anammox-based processes; and (5) the suggested optimal process integrating partial nitritation, anammox, hydroxyapatite crystallization and denitratation for digestion effluent treatment towards more efficient nitrogen removal and phosphorus recovery in the future.
Collapse
Affiliation(s)
- Yan Guo
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yujie Chen
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Elizabeth Webeck
- Department of Metallurgy, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980 8579, Japan.
| |
Collapse
|
23
|
Li W, Zhuang JL, Zhou YY, Meng FG, Kang D, Zheng P, Shapleigh JP, Liu YD. Metagenomics reveals microbial community differences lead to differential nitrate production in anammox reactors with differing nitrogen loading rates. WATER RESEARCH 2020; 169:115279. [PMID: 31734392 DOI: 10.1016/j.watres.2019.115279] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/14/2019] [Accepted: 11/04/2019] [Indexed: 05/12/2023]
Abstract
Nitrate production during anammox can decrease total nitrogen removal efficiency, which will negatively impact its usefulness for the removal of nitrogen from waste streams. However, neither the performance characteristics nor physiological shifts associated with nitrate accumulation in anammox reactors under different nitrogen loading rates (NLRs) is well understood. Consequently, these parameters were studied in a lower NLR anammox reactor, termed R1, producing higher than expected levels of nitrate and compared with a higher NLR reactor, termed R2, showing no excess nitrate production. While both reactors showed high NH4+-N removal efficiencies (>90%), the total nitrogen removal efficiency (<60%) was much lower in R1 due to higher nitrate production. Metagenomic analysis found that the number of reads derived from anammox bacteria were significantly higher in R2. Another notable trend in reads occurrence was the relatively higher levels of reads from genes predicted to be nitrite oxidoreductases (nxr) in R1. Binning yielded 27 high quality draft genomes from the two reactors. Analysis of bin occurrence found that R1 showing both a decrease in anammox bacteria and an unexpected increase in nxr. In-situ assays confirmed that R1 had higher rates of nitrite oxidation to nitrate and suggested that it was not solely due to obligate NOB, but other nxr-containing bacteria are important contributors as well. Our results demonstrate that nitrate accumulation can be a serious operational concern for the application of anammox technology to low-strength wastewater treatment and provide insight into the community changes leading to this outcome.
Collapse
Affiliation(s)
- Wei Li
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangdong, China
| | - Jin-Long Zhuang
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuan-Yuan Zhou
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Fan-Gang Meng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangdong, China
| | - Da Kang
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | | | - Yong-di Liu
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
24
|
Liu Z, Sun D, Tian H, Yan L, Dang Y, Smith JA. Enhancing biotreatment of incineration leachate by applying an electric potential in a partial nitritation-Anammox system. BIORESOURCE TECHNOLOGY 2019; 285:121311. [PMID: 30954830 DOI: 10.1016/j.biortech.2019.121311] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
An electric potential (EP) was applied to enhance biotreatment of anaerobically-treated leachate from municipal solid waste incineration plants using a partial nitritation-Anammox system. At an optimal EP difference of 0.06 V, total nitrogen removal efficiency reached 71.9%, 17.3% higher than the control system without an EP. Removal of organic matter was also stimulated with the EP, particularly macromolecules with molecular weight >20 kDa in the leachate. Applying EP also promoted production of extracellular polymeric substances and improved the protein/polysaccharide ratio. High-throughput DNA sequencing revealed that Anammox bacteria in the genus Candidatus Kuenenia were enriched for on electrodes with the applied EP. Heterotrophic denitrifiers, which potentially could degrade organic macromolecules, were also more abundant on the electrodes with EP compared with the control reactor. These results show that applying an EP could be a useful strategy in Anammox technologies treating real wastewater high in ammonia and refractory organic compounds.
Collapse
Affiliation(s)
- Zhao Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China
| | - Haozhong Tian
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China
| | - Liangming Yan
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China.
| | - Jessica A Smith
- Department of Biology, American International College, 1000 State Street, Springfield, MA 01109, USA
| |
Collapse
|
25
|
Chen F, Li X, Yuan Y, Huang Y. An efficient way to enhance the total nitrogen removal efficiency of the Anammox process by S 0-based short-cut autotrophic denitrification. J Environ Sci (China) 2019; 81:214-224. [PMID: 30975324 DOI: 10.1016/j.jes.2019.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
In order to reduce the amount of NO3--N generated by the Anammox process, and alleviate the competition between denitrification and Anammox for NO2--N in a single reactor, the preference of S0 for reacting with coexisting NO2--N and NO3--N in the sulfur autotrophic denitrifying (SADN) process and the coupling effect of short-cut SADN and the Anammox process were studied. The results showed that S0 preferentially reacted with NO3- to produce NO2--N, and then reacted with NO2--N when NO3--N was insufficient, which could effectively alleviate the competition between SADN bacteria (SADNB) and Anammox bacteria (AnAOB) for NO2--N. After 170 days of operation, coupling between short-cut S0-SADN and the Anammox process was first successfully achieved. SADNB converted the NO3--N generated by the Anammox process into NO2--N, which was once again available to AnAOB. The total nitrogen removal efficiency eventually stabilized at over 95%, and the effluent NO3--N was controlled within 10 mg/L, when high NH4+-N wastewater was treated by the Anammox process. Microbial community analysis further showed that Candidatus Brocadia and Thiobacillus were the functional microorganisms for AnAOB and SADNB.
Collapse
Affiliation(s)
- Fangmin Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China.
| | - Yan Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| |
Collapse
|
26
|
Li X, Yuan Y, Huang Y, Bi Z, Lin X. Inhibition of nitrite oxidizing bacterial activity based on low nitrite concentration exposure in an auto-recycling PN-Anammox process under mainstream conditions. BIORESOURCE TECHNOLOGY 2019; 281:303-308. [PMID: 30826516 DOI: 10.1016/j.biortech.2019.02.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
For municipal wastewater with low temperature and ammonium, conventional oxygen-limited have difficulty achieving long-term stable inhibition of nitrite oxidizing bacteria (NOB) and stable nitritation. So a partial nitrification-anaerobic ammonium oxidation integrated reactor with independent partitions was used to investigate the feasibility of adding an auto-recycling system to promote low exposure of nitrite in the aerobic zone and to inhibit the NOB activity. The results showed that nitrite produced in the aerobic zone could be timely transported to the anaerobic zone for Anammox utilization, and the nitrite nitrogen concentration was diluted to keep within 1 mg/L in the aerobic zone by the effluent recycling. NOB growth was inhibited by nitrite deficiency. The maximum nitrogen removal rate of the reactor was 0.29 kg/(m3·d), and the nitrate nitrogen production rate of NOB was controlled within 0.04 kg/(m3·d). Nitrosomonas and Candidatus Kuenenia were found as functional species of ammonia-oxidizing bacteria and Anammox bacteria, respectively.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China.
| | - Yan Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Zhen Bi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Xin Lin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| |
Collapse
|
27
|
Li X, Yuan Y, Huang Y, Bi Z. Simultaneous removal of ammonia and nitrate by coupled S 0-driven autotrophic denitrification and Anammox process in fluorine-containing semiconductor wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:235-242. [PMID: 30677671 DOI: 10.1016/j.scitotenv.2019.01.164] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/12/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
To achieve the simultaneous removal of NH4+-N and NO3--N in F--containing semiconductor wastewater by coupled S0-driven autotrophic denitrification and Anammox process, the effect of variable F- concentration on the Anammox process was investigated by batch experiments. The denitrifying ammonium oxidation (Deamox) reactor was then started-up to explore the feasibility of the coupling of Anammox and sulfur autotrophic denitrification (SADN) for the treatment of semiconductor wastewater. Short-term variation of F- concentration has an obviously effect on the activity of Anammox sludge, but didn't affect the nitrogen conversion rate. The activity of Anammox obviously decreased after long-term operation of the Deamox reactor when influent F- concentrations reached 552 mg/L. The sensitivity of Anammox bacteria to F- concentration is stronger than that of SADN bacteria. Total nitrogen removal efficiency of 98% and total nitrogen removal rate of 4.11 kg/(m3·d) were achieved in the Deamox reactor, when the F- was pre-treated by calcium ions. Moreover, the high-throughput 16S rRNA gene sequence analysis indicated that variation in F- concentrations could influence the structure and functional of microbial communities in the Deamox process. Candidatus Kuenenia, Thiobacillus and Sulfurimonas were main functional bacteria that achieved symbiotic.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Yan Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China.
| | - Zhen Bi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| |
Collapse
|