1
|
Thangsiri S, Inthachat W, Temviriyanukul P, Sahasakul Y, Trisonthi P, Pan-Utai W, Siriwan D, Suttisansanee U. Bioactive compounds and in vitro biological properties of Arthrospira platensis and Athrospira maxima: a comparative study. Sci Rep 2024; 14:23786. [PMID: 39390067 PMCID: PMC11467430 DOI: 10.1038/s41598-024-74492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Cyanobacteria, especially Arthrospira, are valuable resources of nutrients and natural pigments with many beneficial health-related properties. This study optimized the extraction conditions of Arthrospira to achieve high phenolic contents and antioxidant activities. Under optimized extraction conditions, the bioactive compounds (phenolics and pigment components), antioxidant activities, and inhibitions of the key enzymes relevant to some non-communicable diseases were compared between Arthrospira platensis and Arthrospira maxima. Optimized extraction conditions were determined as 2 h shaking time, 50 °C extraction temperature, and 1% (w/v) solid-to-liquid ratio, giving effective phenolic and phycocyanin contents using aqueous extraction, while 80% (v/v) aqueous ethanolic extraction provided high total chlorophyll content. Most antioxidant activities were higher using 80% (v/v) aqueous ethanolic extracts. Both Arthrospira species inhibited the key enzymes involved in controlling non-communicable diseases including hyperlipidemia (lipase), diabetes (α-amylase, α-glucosidase, and dipeptidyl peptidase-IV), Alzheimer's disease (acetylcholinesterase, butyrylcholinesterase and β-secretase), and hypertension (angiotensin-converting enzyme). High inhibitory activities were detected against β-secretase (BACE-1), the enzyme responsible for β-amyloid plaque formation in the brain that acts as a significant hallmark of Alzheimer's disease. Arthrospira extract and donepezil (Alzheimer's disease drug) synergistically inhibited BACE-1, suggesting the potential of Arthrospira extracts as effective BACE-1 inhibitors. Interestingly, A. maxima exhibited higher bioactive compound contents, antioxidant activities, and key enzyme inhibitions than A. platensis, indicating high potential for future food and medicinal applications.
Collapse
Affiliation(s)
- Sirinapa Thangsiri
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Woorawee Inthachat
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Piya Temviriyanukul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Yuraporn Sahasakul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Piyapat Trisonthi
- Institute of Food Research and Product Development, Kasetsart University, Chatuchak Bangkok, 10900, Thailand
| | - Wanida Pan-Utai
- Institute of Food Research and Product Development, Kasetsart University, Chatuchak Bangkok, 10900, Thailand
| | - Dalad Siriwan
- Institute of Food Research and Product Development, Kasetsart University, Chatuchak Bangkok, 10900, Thailand.
| | - Uthaiwan Suttisansanee
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
2
|
Yang Z, Li F, Shen S, Wang X, Nihmot Ibrahim A, Zheng H, Zhang J, Ji X, Liao X, Zhang Y. Natural chlorophyll: a review of analysis methods, health benefits, and stabilization strategies. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38795062 DOI: 10.1080/10408398.2024.2356259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
Chlorophyll (Chl) is a natural pigment, widely distributed ranging from photosynthetic prokaryotes to higher plants, with an annual yield of up to 1.2 billion tons worldwide. Five types of Chls are observed in nature, that can be distinguished and identified using spectroscopy and mass spectrometry. Chl is also used in the food industry owing to its bioactivities, including obesity prevention, inflammation reduction, viral infection inhibition, anticancer effects, anti-oxidation, and immunostimulatory properties. It has great potential of being applied as a colorant and dietary supplement in the food industry. However, Chl is unstable under various enzymatic, acidic, heat, and light conditions, which limit its application. Although some strategies, such as aggregation with other food components, microencapsulation, and metal cation replacement, have been proposed to overcome these limitations, they are still not enough to facilitate its widespread application. Therefore, stabilization strategies and bioactivities of Chl need to be expected to expand its application in various fields, thereby aiding in the sustainable development of mankind.
Collapse
Affiliation(s)
- Zhaotian Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
- Sanya Institute of China Agricultural University, Sanya, PR China
| | - Fangwei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
- College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Suxia Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Xiao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Ajibola Nihmot Ibrahim
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Hongli Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Jinghao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Xingyu Ji
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Yan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
- Sanya Institute of China Agricultural University, Sanya, PR China
| |
Collapse
|
3
|
Li Z, Zhou T, Zhang Q, Liu T, Lai J, Wang C, Cao L, Liu Y, Ruan R, Xue M, Wang Y, Cui X, Liu C, Ren Y. Influence of cold atmospheric pressure plasma treatment of Spirulina platensis slurry over biomass characteristics. BIORESOURCE TECHNOLOGY 2023; 386:129480. [PMID: 37437813 DOI: 10.1016/j.biortech.2023.129480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Cold atmospheric pressure plasma (CAPP) technique is an innovative non-thermal approach for food preservation and decontamination. This study aimed to evaluate the effect of CAPP power density on microorganism inactivation and quality of Spirulina platensis (S. platensis) slurry. 91.31 ± 1.61% of microorganism were inactivated within 2.02 ± 0.11 min by 26.67 W/g CAPP treatment under 50 ℃. Total phenolic, Chlorophyll-a (Chl-a), and carotenoids contents were increased by 20.51%, 63.55%, and 70.04% after 20.00 W/g CAPP treatment. Phycobiliproteins (PBPs), protein, intracellular polysaccharide, and moisture content of S. platensis was decreased, while vividness, lightness, color of yellow and green, antioxidant activity, Essential Amino Acid Index were enhanced after CAPP treatment. The nutrient release and filaments breakage of CAPP-treated S. platensis improved its bio-accessibility. The findings provided a deep understanding and insight into the influence of CAPP treatment on S. platensis, which were meaningful for optimizing its sterilization and drying processing condition.
Collapse
Affiliation(s)
- Zihan Li
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qi Zhang
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Tongying Liu
- Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, China
| | - Jiangling Lai
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Canbo Wang
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Leipeng Cao
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul MN 55108, USA
| | - Mingxiong Xue
- Beihai Spd Science Technology Co., LTD, Beihai, Guangxi 530021, China
| | - Yunpu Wang
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xian Cui
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Cuixia Liu
- School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
| | - Yan Ren
- Zhejiang Suntown Environment Protection Co., LTD, Quzhou, Zhejiang 324000, China
| |
Collapse
|
4
|
Ebrahimi P, Shokramraji Z, Tavakkoli S, Mihaylova D, Lante A. Chlorophylls as Natural Bioactive Compounds Existing in Food By-Products: A Critical Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:1533. [PMID: 37050159 PMCID: PMC10096697 DOI: 10.3390/plants12071533] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Chlorophylls are a group of naturally occurring pigments that are responsible for the green color in plants. This pigment group could have numerous health benefits due to its high antioxidant activity, including anti-inflammatory, anti-cancer, and anti-obesity properties. Many food by-products contain a high level of chlorophyll content. These by-products are discarded and considered environmental pollutants if not used as a source of bioactive compounds. The recovery of chlorophylls from food by-products is an interesting approach for increasing the sustainability of food production. This paper provides insight into the properties of chlorophylls and the effect of different treatments on their stability, and then reviews the latest research on the extraction of chlorophylls from a sustainable perspective.
Collapse
Affiliation(s)
- Peyman Ebrahimi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment—DAFNAE, University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy;
| | - Zahra Shokramraji
- Department of Land, Environment, Agriculture, and Forestry—TESAF, University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy; (Z.S.); (S.T.)
| | - Setareh Tavakkoli
- Department of Land, Environment, Agriculture, and Forestry—TESAF, University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy; (Z.S.); (S.T.)
| | - Dasha Mihaylova
- Department of Biotechnology, University of Food Technologies, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria;
| | - Anna Lante
- Department of Agronomy, Food, Natural Resources, Animals, and Environment—DAFNAE, University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy;
| |
Collapse
|
5
|
Carrillo C, Nieto G, Martínez-Zamora L, Ros G, Kamiloglu S, Munekata PES, Pateiro M, Lorenzo JM, Fernández-López J, Viuda-Martos M, Pérez-Álvarez JÁ, Barba FJ. Novel Approaches for the Recovery of Natural Pigments with Potential Health Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6864-6883. [PMID: 35040324 PMCID: PMC9204822 DOI: 10.1021/acs.jafc.1c07208] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 05/27/2023]
Abstract
The current increased industrial food production has led to a significant rise in the amount of food waste generated. These food wastes, especially fruit and vegetable byproducts, are good sources of natural pigments, such as anthocyanins, betalains, carotenoids, and chlorophylls, with both coloring and health-related properties. Therefore, recovery of natural pigments from food wastes is important for both economic and environmental reasons. Conventional methods that are used to extract natural pigments from food wastes are time-consuming, expensive, and unsustainable. In addition, natural pigments are sensitive to high temperatures and prolonged processing times that are applied during conventional treatments. In this sense, the present review provides an elucidation of the latest research on the extraction of pigments from the agri-food industry and how their consumption may improve human health.
Collapse
Affiliation(s)
- Celia Carrillo
- Nutrición
y Bromatología, Facultad de Ciencias, Universidad de Burgos, E-09001 Burgos, Spain
| | - Gema Nieto
- Department
of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain
| | - Lorena Martínez-Zamora
- Department
of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain
| | - Gaspar Ros
- Department
of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain
| | - Senem Kamiloglu
- Department
of Food Engineering, Faculty of Agriculture, Bursa Uludag University, 16059 Gorukle, Bursa, Turkey
- Science
and Technology Application and Research Center (BITUAM), Bursa Uludag University, 16059 Gorukle, Bursa, Turkey
| | - Paulo E. S. Munekata
- Centro
Tecnológico de la Carne de Galicia, Avenida Galicia No. 4, Parque Tecnológico
de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - Mirian Pateiro
- Centro
Tecnológico de la Carne de Galicia, Avenida Galicia No. 4, Parque Tecnológico
de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - José M. Lorenzo
- Centro
Tecnológico de la Carne de Galicia, Avenida Galicia No. 4, Parque Tecnológico
de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
- Área
de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Juana Fernández-López
- IPOA
Research Group, Agro-Food Technology Department, Centro de Investigación
e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Alicante, Spain
| | - Manuel Viuda-Martos
- IPOA
Research Group, Agro-Food Technology Department, Centro de Investigación
e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Alicante, Spain
| | - José Ángel Pérez-Álvarez
- IPOA
Research Group, Agro-Food Technology Department, Centro de Investigación
e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, 03312 Alicante, Spain
| | - Francisco J. Barba
- Nutrition
and Food Science Area, Preventive Medicine and Public Health, Food
Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| |
Collapse
|
6
|
Prabha S, Vijay AK, Paul RR, George B. Cyanobacterial biorefinery: Towards economic feasibility through the maximum valorization of biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152795. [PMID: 34979226 DOI: 10.1016/j.scitotenv.2021.152795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are well known for their plethora of applications in the fields of food industry, pharmaceuticals and bioenergy. Their simple growth requirements, remarkable growth rate and the ability to produce a wide range of bio-active compounds enable them to act as an efficient biorefinery for the production of valuable metabolites. Most of the cyanobacteria based biorefineries are targeting single products and thus fails to meet the efficient valorization of biomass. On the other hand, multiple products recovering cyanobacterial biorefineries can efficiently valorize the biomass with minimum to zero waste generation. But there are plenty of bottlenecks and challenges allied with cyanobacterial biorefineries. Most of them are being associated with the production processes and downstream strategies, which are difficult to manage economically. There is a need to propose new solutions to eliminate these tailbacks so on to elevate the cyanobacterial biorefinery to be an economically feasible, minimum waste generating multiproduct biorefinery. Cost-effective approaches implemented from production to downstream processing without affecting the quality of products will be beneficial for attaining economic viability. The integrated approaches in cultivation systems as well as downstream processing, by simplifying individual processes to unit operation systems can obviously increase the economic feasibility to a certain extent. Low cost approaches for biomass production, multiparameter optimization and successive sequential retrieval of multiple value-added products according to their high to low market value from a biorefinery is possible. The nanotechnological approaches in cyanobacterial biorefineries make it one step closer to the goal. The current review gives an overview of strategies used for constructing self-sustainable- economically feasible- minimum waste generating; multiple products based cyanobacterial biorefineries by the efficient valorization of biomass. Also the possibility of uplifting new cyanobacterial strains for biorefineries is discussed.
Collapse
Affiliation(s)
- Syama Prabha
- Department of Botany, CMS College (Autonomous), Kottayam 686001. Kerala, India
| | - Aravind K Vijay
- Department of Botany, CMS College (Autonomous), Kottayam 686001. Kerala, India
| | - Rony Rajan Paul
- Department of Chemistry, CMS College (Autonomous), Kottayam 686001. Kerala, India
| | - Basil George
- Department of Botany, CMS College (Autonomous), Kottayam 686001. Kerala, India.
| |
Collapse
|
7
|
Microalgal Biorefinery Concepts’ Developments for Biofuel and Bioproducts: Current Perspective and Bottlenecks. Int J Mol Sci 2022; 23:ijms23052623. [PMID: 35269768 PMCID: PMC8910654 DOI: 10.3390/ijms23052623] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/14/2022] [Accepted: 02/22/2022] [Indexed: 01/04/2023] Open
Abstract
Microalgae have received much interest as a biofuel feedstock. However, the economic feasibility of biofuel production from microalgae does not satisfy capital investors. Apart from the biofuels, it is necessary to produce high-value co-products from microalgae fraction to satisfy the economic aspects of microalgae biorefinery. In addition, microalgae-based wastewater treatment is considered as an alternative for the conventional wastewater treatment in terms of energy consumption, which is suitable for microalgae biorefinery approaches. The energy consumption of a microalgae wastewater treatment system (0.2 kW/h/m3) was reduced 10 times when compared to the conventional wastewater treatment system (to 2 kW/h/m3). Microalgae are rich in various biomolecules such as carbohydrates, proteins, lipids, pigments, vitamins, and antioxidants; all these valuable products can be utilized by nutritional, pharmaceutical, and cosmetic industries. There are several bottlenecks associated with microalgae biorefinery. Hence, it is essential to promote the sustainability of microalgal biorefinery with innovative ideas to produce biofuel with high-value products. This review attempted to bring out the trends and promising solutions to realize microalgal production of multiple products at an industrial scale. New perspectives and current challenges are discussed for the development of algal biorefinery concepts.
Collapse
|
8
|
Aye Myint A, Hariyanto P, Irshad M, Ruqian C, Wulandari S, Eui Hong M, Jun Sim S, Kim J. Strategy for high-yield astaxanthin recovery directly from wet Haematococcus pluvialis without pretreatment. BIORESOURCE TECHNOLOGY 2022; 346:126616. [PMID: 34954361 DOI: 10.1016/j.biortech.2021.126616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
A novel integrated extraction technique for high recovery of natural astaxanthin from wet encysted Haematococcus pluvialis (H. pluvialis) is demonstrated. The technique can be used to effectively disrupt the cell wall and perform extraction in a one-pot system without a high-energy, cost intensive pre-drying step. The most suitable green solvent was researched in terms of high extraction yield and astaxanthin recovery. Moreover, an optimized condition for the selected green solvents was determined by varying process parameters, viz., the ball milling speed (100-300 rpm) and time (5-30 min). A high recovery of astaxanthin directly from wet H. pluvialis (30.6 mg/g based on its dry mass) and a high extraction yield (58.2 wt%) were achieved using ethyl acetate at 200 rpm after 30 min. Therefore, compared to its counterparts, the biphasic solvent system plays a key role in achieving high extraction yield and astaxanthin recovery from wet H. pluvialis.
Collapse
Affiliation(s)
- Aye Aye Myint
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, South Korea; School of Mechanical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, South Korea
| | - Patrick Hariyanto
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, South Korea
| | - Muhammad Irshad
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, South Korea
| | - Cao Ruqian
- School of Mechanical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, South Korea
| | - Sabrinna Wulandari
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, South Korea
| | - Min Eui Hong
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Jaehoon Kim
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, South Korea; School of Mechanical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, South Korea; SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, South Korea.
| |
Collapse
|
9
|
Park WK, Min K, Yun JH, Kim M, Kim MS, Park GW, Lee SY, Lee S, Lee J, Lee JP, Moon M, Lee JS. Paradigm shift in algal biomass refinery and its challenges. BIORESOURCE TECHNOLOGY 2022; 346:126358. [PMID: 34800638 DOI: 10.1016/j.biortech.2021.126358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Microalgae have been studied and tested for over 70 years. However, biodiesel, the prime target of the algal industry, has suffered from low competitiveness and current steps toward banning the internal combustion engine all over the world. Meanwhile, interest in reducing CO2 emissions has grown as the world has witnessed disasters caused by global warming. In this situation, in order to maximize the benefits of the microalgal industry and surmount current limitations, new breakthroughs are being sought. First, drop-in fuel, mandatory for the aviation and maritime industries, has been discussed as a new product. Second, methods to secure stable and feasible outdoor cultivation focusing on CO2 sequestration were investigated. Lastly, the need for an integrated refinery process to simultaneously produce multiple products has been discussed. While the merits of microalgae industry remain valid, further investigations into these new frontiers would put algal industry at the core of future bio-based economy.
Collapse
Affiliation(s)
- Won-Kun Park
- Department of Chemistry & Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Kyoungseon Min
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Minsik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Min-Sik Kim
- Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Gwon Woo Park
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Soo Youn Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Sangmin Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Jiye Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Joon-Pyo Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Myounghoon Moon
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea.
| | - Jin-Suk Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| |
Collapse
|
10
|
Tolpeznikaite E, Bartkevics V, Ruzauskas M, Pilkaityte R, Viskelis P, Urbonaviciene D, Zavistanaviciute P, Zokaityte E, Ruibys R, Bartkiene E. Characterization of Macro- and Microalgae Extracts Bioactive Compounds and Micro- and Macroelements Transition from Algae to Extract. Foods 2021; 10:2226. [PMID: 34574335 PMCID: PMC8471643 DOI: 10.3390/foods10092226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to evaluate the characteristics of macroalgae (Cladophora rupestris, Furcellaria lumbricalis, Ulva intestinalis) and microalgae (Arthrospira platensis (Sp1, Sp2), Chlorella vulgaris) extracts, including micro- and macroelement transition to extract, antioxidant, antimicrobial properties, the concentrations of chlorophyll (-a, -b), and the total carotenoid concentration (TCC). In macroalgae, the highest TCC and chlorophyll content were found in C. rupestris. In microalgae, the TCC was 10.1-times higher in C. vulgaris than in Sp1, Sp2; however, the chlorophyll contents in C. vulgaris samples were lower. A moderate negative correlation was found between the chlorophyll-a and TCC contents (r = -0.4644). In macroalgae extract samples, C. rupestris and F. lumbricalis showed the highest total phenolic compound content (TPCC). DPPH antioxidant activity and TPCC in microalgae was related to the TCC (r = 0.6191, r = 0.6439, respectively). Sp2 extracts inhibited Staphylococcus haemolyticus; C. rupestris, F. lumbricalis, U. intestinalis, and Sp2 extracts inhibited Bacillus subtilis; and U. intestinalis extracts inhibited Streptococcus mutans strains. This study showed that extraction is a suitable technology for toxic metal decontamination in algae; however, some of the desirable microelements are reduced during the extraction, and only the final products, could be applied in food, feed, and others.
Collapse
Affiliation(s)
- Ernesta Tolpeznikaite
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (E.T.); (P.Z.); (E.Z.)
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes iela 3, Zemgales priekšpilsēta, LV-1076 Riga, Latvia;
| | - Modestas Ruzauskas
- Department of Anatomy and Physiology, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania;
- Faculty of Veterinary, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Renata Pilkaityte
- Marine Research Institute, Klaipėda University, Universiteto ave. 17, LT-92294 Klaipėda, Lithuania;
| | - Pranas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno Str. 30, LT-54333 Babtai, Lithuania; (P.V.); (D.U.)
| | - Dalia Urbonaviciene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno Str. 30, LT-54333 Babtai, Lithuania; (P.V.); (D.U.)
| | - Paulina Zavistanaviciute
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (E.T.); (P.Z.); (E.Z.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Egle Zokaityte
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (E.T.); (P.Z.); (E.Z.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Romas Ruibys
- Institute of Agricultural and Food Sciences, Agriculture Academy, Vytautas Magnus University, K. Donelaicio Str. 58, LT-44244 Kaunas, Lithuania;
| | - Elena Bartkiene
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (E.T.); (P.Z.); (E.Z.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| |
Collapse
|
11
|
Ma R, Wang B, Chua ET, Zhao X, Lu K, Ho SH, Shi X, Liu L, Xie Y, Lu Y, Chen J. Comprehensive Utilization of Marine Microalgae for Enhanced Co-Production of Multiple Compounds. Mar Drugs 2020; 18:md18090467. [PMID: 32948074 PMCID: PMC7551828 DOI: 10.3390/md18090467] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Marine microalgae are regarded as potential feedstock because of their multiple valuable compounds, including lipids, pigments, carbohydrates, and proteins. Some of these compounds exhibit attractive bioactivities, such as carotenoids, ω-3 polyunsaturated fatty acids, polysaccharides, and peptides. However, the production cost of bioactive compounds is quite high, due to the low contents in marine microalgae. Comprehensive utilization of marine microalgae for multiple compounds production instead of the sole product can be an efficient way to increase the economic feasibility of bioactive compounds production and improve the production efficiency. This paper discusses the metabolic network of marine microalgal compounds, and indicates their interaction in biosynthesis pathways. Furthermore, potential applications of co-production of multiple compounds under various cultivation conditions by shifting metabolic flux are discussed, and cultivation strategies based on environmental and/or nutrient conditions are proposed to improve the co-production. Moreover, biorefinery techniques for the integral use of microalgal biomass are summarized. These techniques include the co-extraction of multiple bioactive compounds from marine microalgae by conventional methods, super/subcritical fluids, and ionic liquids, as well as direct utilization and biochemical or thermochemical conversion of microalgal residues. Overall, this review sheds light on the potential of the comprehensive utilization of marine microalgae for improving bioeconomy in practical industrial application.
Collapse
Affiliation(s)
- Ruijuan Ma
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (R.M.); (K.L.); (S.-H.H.); (X.S.); (L.L.)
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Baobei Wang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China;
| | - Elvis T. Chua
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Xurui Zhao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (X.Z.); (Y.L.)
| | - Kongyong Lu
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (R.M.); (K.L.); (S.-H.H.); (X.S.); (L.L.)
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Shih-Hsin Ho
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (R.M.); (K.L.); (S.-H.H.); (X.S.); (L.L.)
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinguo Shi
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (R.M.); (K.L.); (S.-H.H.); (X.S.); (L.L.)
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Lemian Liu
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (R.M.); (K.L.); (S.-H.H.); (X.S.); (L.L.)
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Youping Xie
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (R.M.); (K.L.); (S.-H.H.); (X.S.); (L.L.)
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
- Correspondence: (Y.X.); (J.C.); Tel.: +86-591-22866373 (Y.X. & J.C.)
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (X.Z.); (Y.L.)
| | - Jianfeng Chen
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (R.M.); (K.L.); (S.-H.H.); (X.S.); (L.L.)
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
- Correspondence: (Y.X.); (J.C.); Tel.: +86-591-22866373 (Y.X. & J.C.)
| |
Collapse
|
12
|
Sarkar S, Manna MS, Bhowmick TK, Gayen K. Extraction of chlorophylls and carotenoids from dry and wet biomass of isolated Chlorella Thermophila: Optimization of process parameters and modelling by artificial neural network. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Juvvi P, Debnath S. Enzyme-assisted three-phase partitioning: An efficient alternative for oil extraction from Sesame (<em>Sesamum indicum</em> L.). GRASAS Y ACEITES 2020. [DOI: 10.3989/gya.1060182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Three-phase partitioning (TPP) was explored for oil extraction from Sesamum indicum L. seeds. The process parameters, namely the salt concentration, slurry/t-butanol ratio and system pH were standardized. The optimum conditions for maximum oil recovery using TPP were an ammonium sulphate concentration of 40% (w/v), slurry/t-butanol ratio of 1:1 (v/v) and system pH of 5.0. The powdered seeds were subjected to enzyme-assisted three-phase partitioning (EATPP) which was pre-treated with pectinase, protease and a mixture of ɑ-amylase and amylo-glucosidase (1:1 ratio) followed by TPP (as standardized conditions) and its efficacy in recovering oil was compared with TPP and solvent extraction (SE). Out of all the enzymes studied, EATPP with pectinase resulted in the highest oil recovery (86.12%), which was higher than that of TPP (78.24%). The free fatty acids, saponification value and peroxide values were observed to be lower in the case of TPP and EATPP when compared to SE, indicating better oil quality.
Collapse
|
14
|
Mitra M, Mishra S. Multiproduct biorefinery from Arthrospira spp. towards zero waste: Current status and future trends. BIORESOURCE TECHNOLOGY 2019; 291:121928. [PMID: 31399315 DOI: 10.1016/j.biortech.2019.121928] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Considering the high- and low-value product perspectives, Arthrospira spp. are one of the most industrially exploited microalgae. However, currently, the biomass is being utilized for one specific product resulting in a steep upsurge in the overall production cost. Hence, to boost the economic viability of Arthrospira biorefinery process, every high- and low-value products from it ought to be valorized. Envisioning how costlier can be the multiproduct biorefinery concept owing to the downstream processing at an industrial scale, it is quite essential to look for new trends and encouraging solutions. This article intended to propose a sustainable biorefinery in the wake of the current understanding of the present constraints and challenges associated with Arthrospira biorefinery. The current review aimed at defining the future aspects of this biorefinery including integration and optimization of the culture strategy, and, implementation of new ingenious techniques to improve downstream processing (harvesting, extraction, fractionation, and purification).
Collapse
Affiliation(s)
- Madhusree Mitra
- Microalgae Group, Division of Biotechnology and Phycology, CSIR-Central Salt and Marine Chemicals Research Institute, India; Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, India
| | - Sandhya Mishra
- Microalgae Group, Division of Biotechnology and Phycology, CSIR-Central Salt and Marine Chemicals Research Institute, India; Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, India.
| |
Collapse
|
15
|
Synergistic method for extraction of high purity Allophycocyanin from dry biomass of Arthrospira platensis and utilization of spent biomass for recovery of carotenoids. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
|