1
|
Gao L, Jiang F, Zhang Z, Bao T, Zhu D, Wu X. Unlocking lignin valorization and harnessing lignin-based raw materials for bio-manufacturing. SCIENCE CHINA. LIFE SCIENCES 2025; 68:994-1009. [PMID: 39704933 DOI: 10.1007/s11427-024-2792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024]
Abstract
Lignin, an energy-rich and adaptable polymer comprising phenylpropanoid monomers utilized by plants for structural reinforcement, water conveyance, and defense mechanisms, ranks as the planet's second most prevalent biopolymer, after cellulose. Despite its prevalence, lignin is frequently underused in the process of converting biomass into fuels and chemicals. Instead, it is commonly incinerated for industrial heat due to its intricate composition and resistance to decomposition, presenting obstacles for targeted valorization. In contrast to chemical catalysts, biological enzymes show promise not only in selectively converting lignin components but also in seamlessly integrating into cellular structures, offering biocatalysis as a potentially efficient pathway for lignin enhancement. This review comprehensively summarizes cutting-edge biostrategies, ligninolytic enzymes, metabolic pathways, and lignin-degrading strains or consortia involved in lignin degradation, while critically evaluating the underlying mechanisms. Metabolic and genetic engineering play crucial roles in redirecting lignin and its derivatives towards metabolic pathways like the tricarboxylic acid cycle, opening up novel avenues for its valorization. Recent advancements in lignin valorization are scrutinized, highlighting key challenges and promising solutions. Furthermore, the review underscores the importance of innovative approaches, such as leveraging digital systems and synthetic biology, to unlock the commercial potential of lignin-derived raw materials as sustainable feedstocks. Artificial intelligence-driven technologies offer promise in overcoming current challenges and driving widespread adoption of lignin valorization, presenting an alternative to sugar-based feedstocks for bio-based manufacturing in the future. The utilization of available lignin residue for synthesis of high-value chemicals or energy, even alternative food, addresses various crises looming in the food-energy-water nexus.
Collapse
Affiliation(s)
- Le Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Fangting Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhaokun Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Tongtong Bao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
2
|
Lan W, Lam LPY, Lui A, Lo C. Occurrence and characterization of tricin-lignin. CURRENT OPINION IN PLANT BIOLOGY 2025; 85:102703. [PMID: 40121929 DOI: 10.1016/j.pbi.2025.102703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
Tricin, a flavonoid, is a noncanonical lignin monomer present in grasses and other monocots, but rarely in dicots. This review explores the latest discovery of biosynthesis, transport, and distribution of tricin in plant cell walls, and discusses the missing gaps in this engaging topic. Tricin biosynthesis in grasses involves the phenylpropanoid and flavonoid pathways, with distinct enzymatic processes leading to tricin incorporation into lignin polymers. Methods for characterizing and quantifying tricin in lignin are also highlighted, including NMR spectroscopy and chromatographic techniques with discussion of challenges associated with its low abundance in plant tissues. The stability of tricin during biomass pretreatment processes is discussed, with findings indicating that acidic and alkaline conditions degrade tricin, while milder pretreatments preserve its structure. These insights underscore the potential of tricin in enhancing the functionality of lignin for sustainable bioprocessing, offering promising applications in pharmaceuticals, nutraceuticals, and biorefinery industries.
Collapse
Affiliation(s)
- Wu Lan
- State Key Laboratory of Advanced Papermaking and Paper-based Materials, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lydia Pui Ying Lam
- Graduate School of Engineering Science, Akita University, Tegata Gakuen-machi 1-1, Akita City, Akita 010-0852, Japan
| | - Andy Lui
- Proteomics and Metabolomics Facility, Biotechnology Resource Center, Cornell University, Ithaca, NY 14850, USA
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
3
|
He Y, Ye H, Li H, Miao G, Hu Y, Zeng X, You T, Xu F. Fabrication of lignin nanoparticles with adjustable size, antioxidant, antibacterial, and hydrophobic properties by a two-step fractionation. Int J Biol Macromol 2025; 297:139618. [PMID: 39793791 DOI: 10.1016/j.ijbiomac.2025.139618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/17/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Lignin nanoparticles (LNPs) are gaining attention for their renewability and environmental friendliness in advanced nanomaterials. To establish a new sustainable value chain, it is vital to fully utilize lignin resources and thoroughly examine the effects of LNPs size and structure on performance. Herein, a two-step fractionation scheme is engineered via combining sequential organic solvent fractionation and acid precipitation methods to obtain four lignin fractions (denoted as F1, F2, F3, and F4) with low heterogeneity, suitable hydroxyl content and the syringyl (S)/guaiacyl (G) ratio for LNPs fabrication. Up to 88.7 % of alkali lignin was collected to prepare LNPs, and the LNPs showed controllable sizes (100-500 nm, denoted as F1-LNP, F2-LNP, F3-LNP, and F4-LNP). The size gradually decreased from F1-LNP to F4-LNP with increasing specific surface area of LNPs, contributing to superior antibacterial and antioxidant properties. Notably, a higher S/G ratio with enriched p-hydroxyphenyl (H) units resulted in a smaller size of LNPs, possibly resulting from the greater attraction and larger binding energy between S-S and H-H than G-G. This work gives insights into the full utilization of technical lignin to nano-particles to meet specific performance requirements, which will particularly broaden the commercialization and high-value utilization of lignin.
Collapse
Affiliation(s)
- Yuan He
- Beijing Key Laboratory of Lignocellulosic Chemistry, and Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Haichuan Ye
- Beijing Key Laboratory of Lignocellulosic Chemistry, and Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Haichao Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, and Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Guohua Miao
- Beijing Key Laboratory of Lignocellulosic Chemistry, and Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yucheng Hu
- Beijing Key Laboratory of Lignocellulosic Chemistry, and Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Xianhai Zeng
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361102, China; Fujian Engineering and Research Centre of Clean and High-Valued Technologies for Biomass, Xiamen Key Laboratory of Clean and High-Valued Utilization of Biomass, Xiamen 361102, China
| | - Tingting You
- Beijing Key Laboratory of Lignocellulosic Chemistry, and Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, and Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
4
|
Hoang AT, Nguyen XP, Duong XQ, Ağbulut Ü, Len C, Nguyen PQP, Kchaou M, Chen WH. Steam explosion as sustainable biomass pretreatment technique for biofuel production: Characteristics and challenges. BIORESOURCE TECHNOLOGY 2023; 385:129398. [PMID: 37385558 DOI: 10.1016/j.biortech.2023.129398] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
The biorefining process of lignocellulosic biomass has recently emerged as one of the most profitable biofuel production options. However, pretreatment is required to improve the recalcitrant lignocellulose's enzymatic conversion efficiency. Among biomass pretreatment methods, the steam explosion is an eco-friendly, inexpensive, and effective approach to pretreating biomass, significantly promoting biofuel production efficiency and yield. This review paper critically presents the steam explosion's reaction mechanism and technological characteristics for lignocellulosic biomass pretreatment. Indeed, the principles of steam explosion technology for lignocellulosic biomass pretreatment were scrutinized. Moreover, the impacts of process factors on pretreatment efficiency and sugar recovery for the following biofuel production were also discussed in detail. Finally, the limitations and prospects of steam explosion pretreatment were mentioned. Generally, steam explosion technology applications could bring great potential in pretreating biomass, although deeper studies are needed to deploy this method on industrial scales.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam
| | - Xuan Phuong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Xuan Quang Duong
- Institute of Mechanical Engineering, Vietnam Maritime University, Haiphong, Viet Nam
| | - Ümit Ağbulut
- Department of Mechanical Engineering, Faculty of Engineering, Duzce University, 81620, Düzce, Türkiye
| | - Christophe Len
- PSL Research University, Chimie ParisTech, CNRS, Paris Cedex 05, France
| | - Phuoc Quy Phong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Mohamed Kchaou
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 1, Bisha, Saudi Arabia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| |
Collapse
|
5
|
Sharma V, Tsai ML, Nargotra P, Chen CW, Sun PP, Singhania RR, Patel AK, Dong CD. Journey of lignin from a roadblock to bridge for lignocellulose biorefineries: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160560. [PMID: 36574559 DOI: 10.1016/j.scitotenv.2022.160560] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The grave concerns arisen as a result of environmental pollution and diminishing fossil fuel reserves in the 21st century have shifted the focus on the use of sustainable and environment friendly alternative resources. Lignocellulosic biomass constituted by cellulose, hemicellulose and lignin is an abundantly available natural bioresource. Lignin, a natural biopolymer has over the years gained much importance as a high value material with commercial importance. The present review provides an in-depth knowledge on the journey of lignin from being considered a roadblock to a bridge connecting diverse industries with widescale applications. The successful valorization of lignin for the production of bio-based platform chemicals and fuels has been the subject of intensive investigation. A deeper understanding of lignin characteristics and factors governing the biomass conversion into valuable products can support improved biomass consumption. The components of lignocellulosic biomass might be totally transformed into a variety of value-added products with the improvements in bioprocess techniques that valorize lignin. In this review, the recent advances in the lignin extraction and depolymerization methods that may help in achieving the cost-economics of the bioprocess are summarized and compared. The industrial potential of lignin-derived products such as aromatics, biopolymers, biofuels and agrochemicals are also outlined. Additionally, assessment of the recent research trends in lignin valorization into value-added chemicals has been done and present scenario of technological-industrial applications of lignin with economic perspectives is highlighted.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
6
|
Chen S, Davaritouchaee M. Nature-inspired pretreatment of lignocellulose - Perspective and development. BIORESOURCE TECHNOLOGY 2023; 369:128456. [PMID: 36503090 DOI: 10.1016/j.biortech.2022.128456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
As sustainability gains increasing importance in addition to cost-effectiveness as a criterion for evaluating engineering systems and practices, biological processes for lignocellulose pretreatment have attracted growing attention. Biological systems such as white and brown rot fungi and wood-consuming insects offer fascinating examples of processes and systems built by nature to effectively deconstruct plant cell walls under environmentally benign and energy-conservative environments. Research in the last decade has resulted in new knowledge that advanced the understanding of these systems, provided additional insights into these systems' functional mechanisms, and demonstrated various applications of these processes. The new knowledge and insights enable the adoption of a nature-inspired strategy aiming at developing technologies that are informed by the biological systems but superior to them by overcoming the inherent weakness of the natural systems. This review discusses the nature-inspired perspective and summarizes related advancements, including the evolution from biological systems to nature-inspired processes, the features of biological pretreatment mechanisms, the development of nature-inspired pretreatment processes, and future perspective. This work aims to highlight a different strategy in the research and development of novel lignocellulose pretreatment processes and offer some food for thought.
Collapse
Affiliation(s)
- Shulin Chen
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA.
| | - Maryam Davaritouchaee
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
7
|
He Y, Ye HC, You TT, Xu F. Sustainable and multifunctional cellulose-lignin films with excellent antibacterial and UV-shielding for active food packaging. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Li H, Li X, Li D, Zhang J, Nawaz H, You T, Xu F. Highly-efficient pretreatment using alkaline enhanced aqueous deep eutectic solvent to unlock poplar for high yield of fermentable sugars: Synergistic removal of lignin and mannan. BIORESOURCE TECHNOLOGY 2022; 351:126993. [PMID: 35288268 DOI: 10.1016/j.biortech.2022.126993] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Herein, a short-time alkaline enhanced aqueous DES (AaDES) pretreatment using choline chloride/ethylene glycol was reported, aiming at enhancing cellulose and xylan enzymatic digestibility. Simultaneously, saccharification efficiency of cellulose and xylan was reached to 91.2% and 99.0%, respectively, ∼4 and ∼ 24 times that of raw poplar. Pretreatment time was substantially shortened from 15-24 h to 4 h. Notably, 43.00 kg fermentable sugars (73% of the theoretical maximum) and 12.98 kg lignin with rich β-O-4' linkages were obtained based on 100 kg poplar. The complete removal of acetyl and partial removal of lignin and mannan contributed to excellent pretreatment performance. It was found that enzymatic digestibility of xylan/cellulose was positively correlated with removal of mannan (R2 = 0.9719; R2 = 0.9010) and delignification (R2 = 0.6888; R2 = 0.8293). Drastic reduction in pretreatment time along with high-yield sugars in AaDES system will provide strength towards industrial level biorefinery.
Collapse
Affiliation(s)
- Haichao Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Xin Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Deqiang Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China; College of Chemical Engineering, Xinjiang Agricultural University, Urumchi, Xinjiang 830052, PR China
| | - Jiankang Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Haq Nawaz
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Tingting You
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
9
|
Li H, Li X, You T, Li D, Nawaz H, Zhang X, Xu F. Insights into alkaline choline chloride-based deep eutectic solvents pretreatment for Populus deltoides: Lignin structural features and modification mechanism. Int J Biol Macromol 2021; 193:319-327. [PMID: 34699892 DOI: 10.1016/j.ijbiomac.2021.10.134] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022]
Abstract
Deep eutectic solvent (DES) is a kind of green solvent for biorefinery, which favors the progress of being more environmentally friendly and effective. A better understanding of structural changes of lignin is necessary to optimize pretreatment conditions and efficient utilization of the resultant lignin. The current study reported the structural features of lignin recovered from alkaline ChCl/imidazole and ChCl/urea DES pretreatment, and the mechanism of lignin modification was revealed. The profiling demonstrated that lignin samples possessed a high purity (>94.4%), low molecular weight ranging from 1544 to 2562 g/mol and an excellent uniformity (PDI < 1.6). Noteworthy, the content of β-O-4' linkages in lignin was over 75% (i.e. 72.2%-77.4% retention); S/G ratio was increased whereas the content of -OCH3 groups were decreased. It was revealed that slight cleavage of β-O-4' linkages, preferential breakdown of G units, and demethylation reaction were occurred during alkaline ChCl-based DES pretreatment. Specifically, cleavage of ester linkages between PB and lignin macromolecule was taking place during ChCl/imidazole pretreatment at a high temperature; whereas oxidation only appeared in ChCl/urea system. Despite the modification, well β-O-4' preserved and less condensed lignin samples were recovered after low-temperature pretreatment. Consequently, high contents of phenol derivatives (26.3-30.6%) were achieved in lignin oil. The present study provides critical information on alkaline ChCl-based DES pretreatment, which will contribute to the valorization of lignin by-products and will be beneficial to the development of biorefineries.
Collapse
Affiliation(s)
- Haichao Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Xin Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Tingting You
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| | - Deqiang Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China; College of Chemical Engineering, Xinjiang Agricultural University, Urumchi, Xinjiang 830052, PR China
| | - Haq Nawaz
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Xueming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
10
|
Nanomaterial conjugated lignocellulosic waste: cost-effective production of sustainable bioenergy using enzymes. 3 Biotech 2021; 11:480. [PMID: 34790504 DOI: 10.1007/s13205-021-03002-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/26/2021] [Indexed: 01/28/2023] Open
Abstract
The demand for novel and renewable sources of energy has increased as a result of rapid population growth, limited sources of bioenergy, and environmental pollution, caused by excessive use of fossil fuels. The need to meet future energy demands have motivated researchers to search for alternative and sustainable sources of energy. The bioconversion of lignocellulosic waste (agricultural and food waste) into biofuels shows competitive promises. Lignocellulosic waste is easily accessible and has a large enzyme system that can be immobilised onto nano-matrices. Consequently, resulting in higher biofuel production and process efficiency. However, the excessive production cost of the current procedures, which involve physical, chemical, and enzymatic reactions, is limited. The use of nanomaterials has recently been shown to concentrate lignocellulosic waste, therefore, reviewing the quest for efficient production of sustainable and cost-effective development of bioenergy from lignocellulosic wastes. This review paper explores the advanced strategies of using nanobiotechnology to combine enzyme-conjugated nanosystems for the cost-effective production of sustainable bioenergy solutions. This research will help to develop an inexpensive, eco-friendly technology for biofuels production and also help overcome the environmental burden of lignocellulosic waste worldwide.
Collapse
|
11
|
Zheng M, Li R, Wang Y, Yang F, Xu C. An efficient strategy to improve enzymatic hydrolysis of naked oat straw pretreated by Irpex lacteus. Bioprocess Biosyst Eng 2021; 45:227-236. [PMID: 34626233 DOI: 10.1007/s00449-021-02652-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/03/2021] [Indexed: 11/29/2022]
Abstract
The objective of this study was aiming at developing an efficient strategy to promote enzymatic hydrolysis of naked oat straw and deciphering the potential mechanism. Irpex lacteus and Phlebia acerina were employed to inoculated on the naked oat straw for 4 weeks which the changes of fiber components, fermentation losses, lignin-degrading enzymes production pattern were determined weekly. Furthermore, the 72 h enzymatic hydrolysis of ultimately fermented naked oat straw were also evaluated. The acid detergent lignin was degraded at about 25% along with the moderate dry matter and cellulose loss which both showed selective degradation. The lignin-degrading enzymes production patterns of the two fungi were different which lignin peroxidase was not detected in Irpex lacteus treatment. In addition, the activities of cellulolytic enzymes were higher in Phlebia acerina treatment. After 72 h enzymatic hydrolysis, the reducing sugar content and hydrolysis yield pretreated by Irpex lacteus was 12.92 g/L and 69.49%, respectively. It was much higher than that in sterilized substrate and Phlebia acerina treatment. Meanwhile, the hydrolysis yields of glucose, sum of xylose and arabinose were all improved by Irpex lacteus which were 30.96% and 25.62%, respectively, and showed significant enhancements compared to control and Phlebia acerina treatment. Irpex lacteus is one of effective white rot fungi which could promote the enzymatic hydrolysis of naked oat straw obviously.
Collapse
Affiliation(s)
- Menghu Zheng
- College of Engineering, China Agricultural University, No. 17 Qinghua Donglu, Haidian District, Beijing, 100083, China
| | - Rongrong Li
- College of Engineering, China Agricultural University, No. 17 Qinghua Donglu, Haidian District, Beijing, 100083, China
| | - Yan Wang
- College of Engineering, China Agricultural University, No. 17 Qinghua Donglu, Haidian District, Beijing, 100083, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100093, China
| | - Chuncheng Xu
- College of Engineering, China Agricultural University, No. 17 Qinghua Donglu, Haidian District, Beijing, 100083, China.
| |
Collapse
|
12
|
Wang R, Wang K, Zhou M, Xu J, Jiang J. Efficient fractionation of moso bamboo by synergistic hydrothermal-deep eutectic solvents pretreatment. BIORESOURCE TECHNOLOGY 2021; 328:124873. [PMID: 33639413 DOI: 10.1016/j.biortech.2021.124873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/13/2021] [Accepted: 02/13/2021] [Indexed: 05/24/2023]
Abstract
As an attractive renewable carbon resource, lignocellulose could be exploited to produce high-value-added products. Notably, comprehensive utilization of lignocelluloses and lignin first exploitation is still a challenge during bio-refinery process. In this study, an environmentally benign extraction method via hydrothermal-deep eutectic solvents pretreatment was proposed to separate hemicelluloses and high purity of lignin simultaneously from moso bamboo with most of cellulose retaining in the residues. Hemicelluloses were firstly removed by hydrothermal pretreatment, following with lignin extraction by DESs which was prepared from choline chloride and lactic acid, betaine and lactic acid, respectively. Notably, 98.2 wt% of hemicelluloses were degraded and mainly converted into pentose. Meanwhile, 80.1 wt% of delignification was achieved under the optimum condition (CC/LA, 140℃, 6 h), following with up to 99.49% of lignin purity. The mass balance evaluation demonstrated that the combined hydrothermal-deep eutectic solvents pretreatment is a potential method for efficient fractionation of lignocellulose.
Collapse
Affiliation(s)
- Ruizhen Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Kui Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Minghao Zhou
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Biomass Energy and Material, Jiangsu Province, China
| | - Junming Xu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Biomass Energy and Material, Jiangsu Province, China
| |
Collapse
|
13
|
Sheng Y, Lam SS, Wu Y, Ge S, Wu J, Cai L, Huang Z, Le QV, Sonne C, Xia C. Enzymatic conversion of pretreated lignocellulosic biomass: A review on influence of structural changes of lignin. BIORESOURCE TECHNOLOGY 2021; 324:124631. [PMID: 33454445 DOI: 10.1016/j.biortech.2020.124631] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 05/09/2023]
Abstract
The demands of energy sustainability drive efforts to bio-chemical conversion of biomass into biofuels through pretreatment, enzymatic hydrolysis, and microbial fermentation. Pretreatment leads to significant structural changes of the complex lignin polymer that affect yield and productivity of the enzymatic conversion of lignocellulosic biomass. Structural changes of lignin after pretreatment include functional groups, inter unit linkages and compositions. These changes influence non-productive adsorption of enzyme on lignin through hydrophobic interaction and electrostatic interaction as well as hydrogen bonding. This paper reviews the relationships between structural changes of lignin and enzymatic hydrolysis of pretreated lignocellulosic biomass. The formation of pseudo-lignin during dilute acid pretreatment is revealed, and their negative effect on enzymatic hydrolysis is discussed.
Collapse
Affiliation(s)
- Yequan Sheng
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Su Shiung Lam
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yingji Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Jinglei Wu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Liping Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Department of Mechanical Engineering, University of North Texas, Denton, TX 76207, USA
| | - Zhenhua Huang
- Department of Mechanical Engineering, University of North Texas, Denton, TX 76207, USA
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Christian Sonne
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
14
|
Liao JJ, Latif NHA, Trache D, Brosse N, Hussin MH. Current advancement on the isolation, characterization and application of lignin. Int J Biol Macromol 2020; 162:985-1024. [DOI: 10.1016/j.ijbiomac.2020.06.168] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/21/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022]
|
15
|
Chen W, Wang M, Gong Y, Deng Q, Zheng M, Chen S, Wan X, Yang C, Huang F. The unconventional adverse effects of fungal pretreatment on iturin A fermentation by Bacillus amyloliquefaciens CX-20. Microb Biotechnol 2020; 14:587-599. [PMID: 32997385 PMCID: PMC7936297 DOI: 10.1111/1751-7915.13658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/29/2022] Open
Abstract
Fungal pretreatment is the most common strategy for improving the conversion of rapeseed meal (RSM) into value-added microbial products. It was demonstrated that Bacillus amyloliquefaciens CX-20 could directly use RSM as the sole source of all nutrients except the carbon source for iturin A fermentation with high productivity. However, whether fungal pretreatment has an impact on iturin A production is still unknown. In this study, the effects of fungal pretreatment and direct bio-utilization of RSM for iturin A fermentation were comparatively analysed through screening suitable fungal species, and evaluating the relationships between iturin A production and the composition of solid fermented RSM and liquid hydrolysates. Three main unconventional adverse effects were identified. (1) Solid-state fermentation by fungi resulted in a decrease of the total nitrogen for B. amyloliquefaciens CX-20 growth and metabolism, which caused nitrogen waste from RSM. (2) The released free ammonium nitrogen in liquid hydrolysates by fungal pretreatment led to the reduction of iturin A. (3) The insoluble precipitates of hydrolysates, which were mostly ignored and wasted in previous studies, were found to have beneficial effects on producing iturin A. In conclusion, our study verifies the unconventional adverse effects of fungal pretreatment on iturin A production by B. amyloliquefaciens CX-20 compared with direct bio-utilization of RSM.
Collapse
Affiliation(s)
- Wenchao Chen
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.,Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, 430062, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062, China
| | - Meng Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yangmin Gong
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.,Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, 430062, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062, China
| | - Qianchun Deng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.,Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, 430062, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062, China
| | - Mingming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.,Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, 430062, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062, China
| | - Shouwen Chen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Xia Wan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.,Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, 430062, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062, China
| | - Chen Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.,Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, 430062, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062, China
| | - Fenghong Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.,Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, 430062, China.,Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062, China
| |
Collapse
|
16
|
Lin Q, Yan Y, Liu X, He B, Wang X, Wang X, Liu C, Ren J. Production of Xylooligosaccharide, Nanolignin, and Nanocellulose through a Fractionation Strategy of Corncob for Biomass Valorization. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Qixuan Lin
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Yuhuan Yan
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Xinxin Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Bei He
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Chuanfu Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| |
Collapse
|
17
|
Recent Insights into Lignocellulosic Biomass Pyrolysis: A Critical Review on Pretreatment, Characterization, and Products Upgrading. Processes (Basel) 2020. [DOI: 10.3390/pr8070799] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pyrolysis process has been considered to be an efficient approach for valorization of lignocellulosic biomass into bio-oil and value-added chemicals. Bio-oil refers to biomass pyrolysis liquid, which contains alkanes, aromatic compounds, phenol derivatives, and small amounts of ketone, ester, ether, amine, and alcohol. Lignocellulosic biomass is a renewable and sustainable energy resource for carbon that is readily available in the environment. This review article provides an outline of the pyrolysis process including pretreatment of biomass, pyrolysis mechanism, and process products upgrading. The pretreatment processes for biomass are reviewed including physical and chemical processes. In addition, the gaps in research and recommendations for improving the pretreatment processes are highlighted. Furthermore, the effect of feedstock characterization, operating parameters, and types of biomass on the performance of the pyrolysis process are explained. Recent progress in the identification of the mechanism of the pyrolysis process is addressed with some recommendations for future work. In addition, the article critically provides insight into process upgrading via several approaches specifically using catalytic upgrading. In spite of the current catalytic achievements of catalytic pyrolysis for providing high-quality bio-oil, the production yield has simultaneously dropped. This article explains the current drawbacks of catalytic approaches while suggesting alternative methodologies that could possibly improve the deoxygenation of bio-oil while maintaining high production yield.
Collapse
|
18
|
Xu C, Liu F, Alam MA, Chen H, Zhang Y, Liang C, Xu H, Huang S, Xu J, Wang Z. Comparative study on the properties of lignin isolated from different pretreated sugarcane bagasse and its inhibitory effects on enzymatic hydrolysis. Int J Biol Macromol 2020; 146:132-140. [DOI: 10.1016/j.ijbiomac.2019.12.270] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 01/17/2023]
|
19
|
Huang L, Ye J, Xiang H, Jiang J, Wang Y, Li Y. Enhanced nitrogen removal from low C/N wastewater using biodegradable and inert carriers: Performance and microbial shift. BIORESOURCE TECHNOLOGY 2020; 300:122658. [PMID: 31954945 DOI: 10.1016/j.biortech.2019.122658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
This work aims at investigating the enhancing effect of biodegradable and inert carriers on nitrogen removal from low C/N wastewater and revealing temporal changes in community succession. Natural corncobs and commercial fibers were used as biodegradable and inert carriers, respectively. Results showed that the TN removal efficiency was enhanced by 24% and 8.98% using biodegradable and inert carriers, respectively. For corncob carriers, denitrifiers achieved an obvious enrichment and reached a peak on the 30th day. On contrast, inert carriers were more favorable for the enrichment of nitirifiers. Additionally, the dominant denitrifying genus in the corncob system had changed to Dechloromonas, while it remained as Thauera at inert carriers. Finally, the potential coupling pattern of corncob conversion with denitrification in the corncob system was proposed based on the relevant functional enzymes. This work promotes a comprehensive understanding about carrier-enhanced nitrogen removal systems.
Collapse
Affiliation(s)
- Liping Huang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jiangyu Ye
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Hongwei Xiang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jianhua Jiang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yichao Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yunyi Li
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
20
|
Sankaran R, Parra Cruz RA, Pakalapati H, Show PL, Ling TC, Chen WH, Tao Y. Recent advances in the pretreatment of microalgal and lignocellulosic biomass: A comprehensive review. BIORESOURCE TECHNOLOGY 2020; 298:122476. [PMID: 31810736 DOI: 10.1016/j.biortech.2019.122476] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 05/12/2023]
Abstract
Microalgal and lignocellulosic biomass is the most sumptuous renewable bioresource raw material existing on earth. Recently, the bioconversion of biomass into biofuels have received significant attention replacing fossil fuels. Pretreatment of biomass is a critical process in the conversion due to the nature and structure of the biomass cell wall that is complex. Although green technologies for biofuel production are advancing, the productivity and yield from these techniques are low. Over the past years, various pretreatment techniques have been developed and successfully employed to improve the technology. This paper presents an in-depth review of the recent advancement of pretreatment methods focusing on microalgal and lignocellulosic biomass. The technological approaches involving physical, chemical, biological and other latest pretreatment methods are reviewed.
Collapse
Affiliation(s)
- Revathy Sankaran
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ricardo Andres Parra Cruz
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Harshini Pakalapati
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan.
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
21
|
Xu G, Li H, Xing W, Gong L, Dong J, Ni Y. Facilely reducing recalcitrance of lignocellulosic biomass by a newly developed ethylamine-based deep eutectic solvent for biobutanol fermentation. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:166. [PMID: 33062052 PMCID: PMC7547450 DOI: 10.1186/s13068-020-01806-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/27/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Biobutanol is promising and renewable alternative to traditional fossil fuels and could be produced by Clostridium species from lignocellulosic biomass. However, biomass is recalcitrant to be hydrolyzed into fermentable sugars attributed to the densely packed structure by layers of lignin. Development of pretreatment reagents and processes for increasing surface area, removing hemicellulose and lignin, and enhancing the relative content of cellulose is currently an area of great interest. Deep eutectic solvents (DESs), a new class of green solvents, are effective in the pretreatment of lignocellulosic biomass. However, it remains challenging to achieve high titers of total sugars and usually requires combinatorial pretreatment with other reagents. In this study, we aim to develop novel DESs with high application potential in biomass pretreatment and high biocompatibility for biobutanol fermentation. RESULTS Several DESs with betaine chloride and ethylamine chloride (EaCl) as hydrogen bond acceptors were synthesized. Among them, EaCl:LAC with lactic acid as hydrogen bond donor displayed the best performance in the pretreatment of corncob. Only by single pretreatment with EaCl:LAC, total sugars as high as 53.5 g L-1 could be reached. Consecutive batches for pretreatment of corncob were performed using gradiently decreased cellulase by 5 FPU g-1. At the end of the sixth batch, the concentration and specific yield of total sugars were 58.8 g L-1 and 706 g kg-1 pretreated corncob, saving a total of 50% cellulase. Utilizing hydrolysate as carbon source, butanol titer of 10.4 g L-1 was achieved with butanol yield of 137 g kg-1 pretreated corncob by Clostridium saccharobutylicum DSM13864. CONCLUSIONS Ethylamine and lactic acid-based deep eutectic solvent is promising in pretreatment of corncob with high total sugar concentrations and compatible for biobutanol fermentation. This study provides an efficient pretreatment reagent for facilely reducing recalcitrance of lignocellulosic materials and a promising process for biobutanol fermentation from renewable biomass.
Collapse
Affiliation(s)
- Guochao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Hao Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Wanru Xing
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Lei Gong
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Jinjun Dong
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu China
- Key Laboratory of Guangxi Biorefinery, Nanning, 530003 Guangxi China
| |
Collapse
|
22
|
Wang W, Guo T, Sun K, Jin Y, Gu F, Xiao H. Lignin Redistribution for Enhancing Barrier Properties of Cellulose-Based Materials. Polymers (Basel) 2019; 11:E1929. [PMID: 31771105 PMCID: PMC6960624 DOI: 10.3390/polym11121929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 01/19/2023] Open
Abstract
Renewable cellulose-based materials have gained increasing interest in food packaging because of its favorable biodegradability and biocompatibility, whereas the barrier properties of hydrophilic and porous fibers are inadequate for most applications. Exploration of lignin redistribution for enhancing barrier properties of paper packaging material was carried out in this work. The redistribution of nanolized alkali lignin on paper surface showed excellent water, grease, and water vapor barrier. It provided persisted water (contact angle decrease rate at 0.05°/s) and grease (stained area undetectable at 72 h) resistance under long-term moisture or oil direct contact conditions, which also inhibited the bacterial growth to certain degree. Tough water vapor transmission rate can be lowered 82% from 528 to 97 g/m2/d by lignin redistribution. The result suggests that alkali lignin, with multiple barrier properties, has great potential in bio-based application considering the biodegradability, biocompatibility, and recyclability.
Collapse
Affiliation(s)
- Wangxia Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224001, China; (W.W.); (K.S.)
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (T.G.); (Y.J.)
| | - Tianyu Guo
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (T.G.); (Y.J.)
| | - Kaiyong Sun
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224001, China; (W.W.); (K.S.)
- Jiangsu R & D Center of the Ecological Dyes and Chemicals, Yancheng Polytechnic College, Yancheng 224005, China
| | - Yongcan Jin
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China; (T.G.); (Y.J.)
| | - Feng Gu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224001, China; (W.W.); (K.S.)
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B5A3, Canada
| |
Collapse
|
23
|
Tao J, Li S, Ye F, Zhou Y, Lei L, Zhao G. Lignin - An underutilized, renewable and valuable material for food industry. Crit Rev Food Sci Nutr 2019; 60:2011-2033. [PMID: 31547671 DOI: 10.1080/10408398.2019.1625025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Lignin is the second most abundant biorenewable polymers only next to cellulose and is ubiquitous in various plant foods. In food industry, lignin often presented as a major component of by-products from plant foods. In the last decade, the food and nutritional interests of lignin attracted more and more attentions and great progresses have been accomplished. In the present review, the structure, physicochemical properties, dietary occurrence and preparation methods of lignin from food resources were summarized. Then, the versatile activities of food lignin were introduced under the subtitles of antioxidant, antimicrobial, antiviral, antidiabetic and other activities. Finally, the potential applications of food lignin were proposed as a food bioactive ingredient, an improver of food package films and a novel material in fabricating drug delivery vehicles and contaminant passivators. Hopefully, this review could bring new insights in exploiting lignin from nutrition- and food-directed views.
Collapse
Affiliation(s)
- Jianming Tao
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Sheng Li
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Yun Zhou
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing, People's Republic of China.,Chongqing Engineering Research Centre of Regional Foods, Chongqing, People's Republic of China
| |
Collapse
|
24
|
Huang D, Li T, Xu P, Zeng G, Chen M, Lai C, Cheng M, Guo X, Chen S, Li Z. Deciphering the Fenton-reaction-aid lignocellulose degradation pattern by Phanerochaete chrysosporium with ferroferric oxide nanomaterials: Enzyme secretion, straw humification and structural alteration. BIORESOURCE TECHNOLOGY 2019; 276:335-342. [PMID: 30641332 DOI: 10.1016/j.biortech.2019.01.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 05/20/2023]
Abstract
Nowadays, Nano-biotechnology is emerging to be one of the most promising tools in environmental remediation. In this study, the degradation efficiency of lignocellulose by white-rot fungi was improved by addition of Fe3O4 nanomaterials (NMs) in solid-state fermentation. The highly-ordered cellulose crystalline was demonstrated to be broken down through infrared spectroscopy (FT-IR) and crystallinity index analysis. The decay of fluorescence intensity presented a lower degree of aromatic polycondensation and less conjugated chromophores in lignocellulose. Mechanistic analysis showed that NMs participated in the Fenton reaction and affected lignocellulose biodegradation process by regulating enzyme secretion. Specifically, the time variation curves of hydroxyl radicals and Fe2+ were discussed to illustrate the degradation pattern. The NMs remained stable after the fermentation and were possible to be recycled for the next cycle. All the results support that the synergism of Fe3O4 NMs and white-rot fungi would be a promising research direction in lignocellulose treatment.
Collapse
Affiliation(s)
- Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China.
| | - Tao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Xueying Guo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Zhihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| |
Collapse
|