1
|
Zhang Y, Zhou J, Ji L, Zhang L, Zhao L, Guo Y, Wei H, Lu L. Bacillus subtilis improves antioxidant capacity and optimizes inflammatory state in broilers. Anim Biosci 2024; 37:1041-1052. [PMID: 38419535 PMCID: PMC11065946 DOI: 10.5713/ab.23.0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE Bacillus subtilis, a kind of probiotic with broad-spectrum antibacterial function, was commonly used in livestock and poultry production. Recent research suggested that Bacillus subtilis may have antioxidant properties and improve immune response. This study aimed to verify the probiotic function of Bacillus subtilis in the production of broiler chickens. METHODS A total of 324 (1-day-old) Arbor Acres broilers were selected and randomly divided into three groups: basal diet group (Ctr Group), basal diet + antibiotic growth promoter group (Ctr + AGP) and basal diet + 0.5% Bacillus subtilis preparation group (Ctr + Bac). The experiment lasted for 42 days. Muscle, serum and liver samples were collected at 42 days for determination. RESULTS The results showed that Bacillus subtilis could decrease malondialdehyde content in the serum and liver (p<0.05) and increase superoxide dismutase 1 mRNA expression (p<0.01) and total superoxide dismutase (p<0.05) in the liver. In addition, compared with AGP supplementation, Bacillus subtilis supplementation increased interleukin-10 (IL-10) and decreased tumor necrosis factor-α and IL-1β level in the serum (p<0.05). At 45 minutes after slaughter Ctr + Bac presented a higher a* value of breast muscle than Ctr Group (p<0.05), while significant change in leg muscle was not identified. Moreover, there was no difference in weight, shear force, cooking loss and drip loss of breast and leg muscle between treatments. CONCLUSION Our results demonstrate that Bacillus subtilis in diet can enhance antioxidant capacity and optimize immune response of broilers.
Collapse
Affiliation(s)
- Yu Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206,
China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193,
China
| | - Junyan Zhou
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206,
China
| | - Linbao Ji
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193,
China
| | - Lian Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193,
China
| | - Liying Zhao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206,
China
| | - Yubing Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206,
China
| | - Haitao Wei
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206,
China
| | - Lin Lu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206,
China
| |
Collapse
|
2
|
Moscoviz R, Kleerebezem R, Rombouts JL. Directing carbohydrates toward ethanol using mesophilic microbial communities. Curr Opin Biotechnol 2021; 67:175-183. [PMID: 33588238 DOI: 10.1016/j.copbio.2021.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
Bioethanol production is an established biotechnological process. Margins are low which prevent a larger scale production of bioethanol. As a large part of the production cost is due to the feedstock, the use of low value unsterile feedstocks fermented by microbial communities will enable a more cost-competitive bioethanol production. To select for high yield ethanol producing communities, three selective conditions are proposed: acid washing of the cells after fermentation, a low pH (<5) during the fermentation and microaerobiosis at the start of the fermentation. Ethanol producers, such as Zymomonas species and yeasts, compete for carbohydrates with volatile fatty acid and lactic acid producing bacteria. Creating effective consortia of lactic acid bacteria and homo-ethanol producers at low pH will lead to robust and competitive ethanol yields and titres. A conceptual design of an ecology-based bioethanol production process is proposed using food waste to produce bioethanol, electricity, digestate and heat.
Collapse
Affiliation(s)
- Roman Moscoviz
- SUEZ, Centre International de Recherche Sur l'Eau et l'Environnement (CIRSEE), 38 rue du Président Wilson, Le Pecq, France
| | - Robbert Kleerebezem
- Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | | |
Collapse
|
3
|
Sabarinathan D, Vanaraj S, Sathiskumar S, Poorna Chandrika S, Sivarasan G, Arumugam SS, Preethi K, Li H, Chen Q. Characterization and application of rhamnolipid from Pseudomonas plecoglossicida BP03. Lett Appl Microbiol 2020; 72:251-262. [PMID: 33025574 DOI: 10.1111/lam.13403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/06/2023]
Abstract
The production of rhamnolipid (glycolipid) biosurfactant was achieved under optimized conditions from newly isolated bacteria (Pseudomonas plecoglossicida BP03) from rice mill effluent. The isolated biosurfactant was structurally characterized using FTIR and NMR spectroscopic studies. The obtained biosurfactant (1·39 g l-1 ) showed a variety of applications including larvicidal and pupicidal activity against malarial vector (Anopheles sunadicus). It also exhibited antimicrobial activity against human pathogens, and possessed potent anti-biofilm activity against Staphylococcus aureus, Bacillus subtilis and Aeromonas hydrophila. The obtained biosurfactant showed a dose-dependent inhibition of exopolymeric substance (EPS) and growth curve in S. aureus. Furthermore, the cytotoxicity assays revealed that the biosurfactant exhibit a cytotoxic potency against the human fibroblastic sarcoma cells Ht-1080. An in silco analysis was also performed using Schrodinger maestro 9.3 against surface protein (SasG) of S. aureus, and the resultant analysis revealed an interactive docking score of -3·4 kcal mol-1 . The obtained result indicates that the synthesized economically viable biosurfactant ensures excellent applications towards various fields.
Collapse
Affiliation(s)
- D Sabarinathan
- Department of Food Science and Engineering, Jiangsu University, Zhenjiang, China
| | - S Vanaraj
- Department of Food Science and Engineering, Jiangsu University, Zhenjiang, China
| | - S Sathiskumar
- Department of Microbial Biotechnology, Biopharmacy Lab, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - S Poorna Chandrika
- Department of Food Science and Engineering, Jiangsu University, Zhenjiang, China
| | - G Sivarasan
- Department of Applied Medical Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - S S Arumugam
- Department of Food Science and Engineering, Jiangsu University, Zhenjiang, China
| | - K Preethi
- Department of Microbial Biotechnology, Biopharmacy Lab, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - H Li
- Department of Food Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Q Chen
- Department of Food Science and Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Carvalho RS, Cruz IA, Américo-Pinheiro JHP, Soriano RN, de Souza RL, Bilal M, Iqbal HM, Bharagava RN, Romanholo Ferreira LF. Interaction between Saccharomyces cerevisiae and Lactobacillus fermentum during co-culture fermentation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020; 29:101756. [DOI: 10.1016/j.bcab.2020.101756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Aho VTE, Tolonen T, Haverinen J, Jaakkola M, Paulin L, Auvinen P, Laine MM. Survey of microbes in industrial-scale second-generation bioethanol production for better process knowledge and operation. Appl Microbiol Biotechnol 2020; 104:8049-8064. [PMID: 32785760 DOI: 10.1007/s00253-020-10818-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/30/2020] [Accepted: 08/05/2020] [Indexed: 11/24/2022]
Abstract
The microbes present in bioethanol production processes have been previously studied in laboratory-scale experiments, but there is a lack of information on full-scale industrial processes. In this study, the microbial communities of three industrial bioethanol production processes were characterized using several methods. The samples originated from second-generation bioethanol plants that produce fuel ethanol from biowaste, food industry side streams, or sawdust. Amplicon sequencing targeting bacteria, archaea, and fungi was used to explore the microbes present in biofuel production and anaerobic digestion of wastewater and sludge. Biofilm-forming lactic acid bacteria and wild yeasts were identified in fermentation samples of a full-scale plant that uses biowaste as feedstock. During the 20-month monitoring period, the anaerobic digester adapted to the bioethanol process waste with a shift in methanogen profile indicating acclimatization to high concentrations of ammonia. Amplicon sequencing does not specifically target living microbes. The same is true for indirect parameters, such as low pH, metabolites, or genes of lactic acid bacteria. Since rapid identification of living microbes would be indispensable for process management, a commercial method was tested that detects them by measuring the rRNA of selected microbial groups. Small-scale testing indicated that the method gives results comparable with plate counts and microscopic counting, especially for bacterial quantification. The applicability of the method was verified in an industrial bioethanol plant, inspecting the clean-in-place process quality and detecting viability during yeast separation. The results supported it as a fast and promising tool for monitoring microbes throughout industrial bioethanol processes.
Collapse
Affiliation(s)
- Velma T E Aho
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Tiina Tolonen
- Unit of Measurement Technology, Kajaani University Consortium, University of Oulu, Kajaani, Finland
| | - Jasmiina Haverinen
- Unit of Measurement Technology, Kajaani University Consortium, University of Oulu, Kajaani, Finland
| | - Mari Jaakkola
- Unit of Measurement Technology, Kajaani University Consortium, University of Oulu, Kajaani, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
6
|
Leathers TD, Saunders LP, Bowman MJ, Price NPJ, Bischoff KM, Rich JO, Skory CD, Nunnally MS. Inhibition of Erwinia amylovora by Bacillus nakamurai. Curr Microbiol 2020; 77:875-881. [PMID: 31938805 DOI: 10.1007/s00284-019-01845-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/11/2019] [Indexed: 11/29/2022]
Abstract
A variety of potential inhibitors were tested for the first time for the suppression of Erwinia amylovora, the causal agent of fire blight in apples and pears. Strain variability was evident in susceptibility to inhibitors among five independently isolated virulent strains of E. amylovora. However, most strains were susceptible to culture supernatants from strains of Bacillus spp., and particularly to the recently described species B. nakamurai. Minimal inhibitory concentrations (MICs) were 5-20% (vol/vol) of culture supernatant from B. nakamurai against all five strains of E. amylovora. Although Bacillus species have been previously reported to produce lipopeptide inhibitors of E. amylovora, matrix-assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) and column chromatography indicated that the inhibitor from B. nakamurai was not a lipopeptide, but rather a novel inhibitor.
Collapse
Affiliation(s)
- Timothy D Leathers
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL, 61604, USA.
| | - Lauren P Saunders
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL, 61604, USA
| | - Michael J Bowman
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL, 61604, USA
| | - Neil P J Price
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL, 61604, USA
| | - Kenneth M Bischoff
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL, 61604, USA
| | - Joseph O Rich
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL, 61604, USA
| | - Christopher D Skory
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL, 61604, USA
| | - Melinda S Nunnally
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL, 61604, USA
| |
Collapse
|