1
|
Khuntong S, Samranrit T, Koedprasong P, Teeka J, Chiu CH, Srila W, Areesirisuk A. Synergistic effects of Tween 20 and ethephon on yeast oil and β-carotene co-production by Rhodosporidium toruloides using purified biodiesel-derived crude glycerol as an alternative carbon source. BIORESOURCE TECHNOLOGY 2025; 422:132211. [PMID: 39938602 DOI: 10.1016/j.biortech.2025.132211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/15/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
This study investigated the impact of chemical inducers on the co-production of yeast oil (YO) and β-carotene from purified biodiesel-derived crude glycerol. The objective was to enhance YO and β-carotene co-production in Rhodosporidium toruloides through the application of individual and combined inducers at both flask and bioreactor scales. Among the individual inducers, 1 % w/v Tween 20 (TW) and 10 ppm ethephon (EP) significantly increased total yeast oil (TO) and total β-carotene (TC) concentrations, respectively. When TW and EP were used together, TO and TC production increased by 2.0 and 2.6-fold, respectively in the bioreactor compared to the flask. The YO primarily consisted of C16 and C18 long-chain fatty acids, and the β-carotene produced showed functional similarities to commercial β-carotene. This research highlights the potential of biodiesel waste as a sustainable feedstock for co-producing YO and β-carotene, with the dual-inducer strategy providing a simple and effective method for enhancing production efficiency.
Collapse
Affiliation(s)
- Sasitorn Khuntong
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani 12110, Thailand
| | - Thidarat Samranrit
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani 12110, Thailand
| | - Parichat Koedprasong
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani 12110, Thailand
| | - Jantima Teeka
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani 12110, Thailand
| | - Chiu-Hsia Chiu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, ROC
| | - Witsanu Srila
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani 12110, Thailand
| | - Atsadawut Areesirisuk
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani 12110, Thailand.
| |
Collapse
|
2
|
Xu LY, Qiu YB, Zhang XM, Su C, Shi JS, Xu ZH, Li H. The efficient green bio-manufacturing of Vitamin K 2: design, production and applications. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39660648 DOI: 10.1080/10408398.2024.2439038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Vitamin K2, also known as methylnaphthoquinone, is a crucial fat-soluble nutrient necessary for the human body. The biological production of Vitamin K2 has received widespread attention due to its environmental friendliness and maneuverability in recent years. This review provides insights into the modular metabolic pathways of Vitamin K2, lays the foundation for microbial metabolic flow balancing, cofactor engineering and dynamic regulation, and realizes the production of Vitamin K2 by synthesizing artificial cells from scratch. With the intensive development of modern fermentation technology, methods for the preparation of Vitamin K2 using the fermentation strategies of co-culturing and biofilm reactors have emerged. In prokaryotes, the introduction of heptenyl pyrophosphate synthase (HepPPS) and mevalonate acid (MVA) pathway solved the problem of insufficient precursors for Vitamin K2 production but still did not meet the market demand. Therefore, enhancing expression through multi-combinatorial metabolic regulation and innovative membrane reactors is an entry point for future research. Due to the light-induced decomposition and water-insoluble nature of Vitamin K2, the secretion regulation and purification processing also need to be considered in the actual production. Also, it summarizes the research progress of Vitamin K2 in the food and pharmaceutical fields. Additionally, the future development trend and application prospect of Vitamin K2 are also discussed to provide guidance for Vitamin K2 biosynthesis and application.
Collapse
Affiliation(s)
- Li-Yang Xu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, PR China
| | - Yi-Bin Qiu
- School of Food and Light Industry, Nanjing University of Technology, Nanjing, PR China
| | - Xiao-Mei Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, PR China
| | - Chang Su
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, PR China
| | - Jing-Song Shi
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, PR China
| | - Zheng-Hong Xu
- School of Light Industry Science and Engineering, Sichuan University, Sichuan, PR China
| | - Hui Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, PR China
| |
Collapse
|
3
|
Yi Y, Jin X, Chen M, Coldea TE, Zhao H. Surfactant-mediated bio-manufacture: A unique strategy for promoting microbial biochemicals production. Biotechnol Adv 2024; 73:108373. [PMID: 38704106 DOI: 10.1016/j.biotechadv.2024.108373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/03/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Biochemicals are widely used in the medicine and food industries and are more efficient and safer than synthetic chemicals. The amphipathic surfactants can interact with the microorganisms and embed the extracellular metabolites, which induce microbial metabolites secretion and biosynthesis, performing an attractive prospect of promoting the biochemical production. However, the commonness and differences of surfactant-mediated bio-manufacture in various fields are largely unexplored. Accordingly, this review comprehensively summarized the properties of surfactants, different application scenarios of surfactant-meditated bio-manufacture, and the mechanism of surfactants increasing metabolites production. Various biochemical productions such as pigments, amino acids, and alcohols could be enhanced using the cloud point and the micelles of surfactants. Besides, the amphiphilicity of surfactants also promoted the utilization of fermentation substrates, especially lignocellulose and waste sludge, by microorganisms, indirectly increasing the metabolites production. The increase in target metabolites production was attributed to the surfactants changing the permeability and composition of the cell membrane, hence improving the secretion ability of microorganisms. Moreover, surfactants could regulate the energy metabolism, the redox state and metabolic flow in microorganisms, which induced target metabolites synthesis. This review aimed to broaden the application fields of surfactants and provide novel insights into the production of microbial biochemicals.
Collapse
Affiliation(s)
- Yunxin Yi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaofan Jin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca 400372, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China.
| |
Collapse
|
4
|
Manasa S, Tharak A, Venkata Mohan S. Biorefinery-centric ethanol and oleochemical production employing Yarrowia lipolytica and Pichia farinosa. BIORESOURCE TECHNOLOGY 2024; 394:130243. [PMID: 38142910 DOI: 10.1016/j.biortech.2023.130243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
The research examined the capabilities of Yarrowia lipolytica (YL) and Pichia farinosa (PF) in converting sugars to ethanol and oleochemicals. Lipid, ethanol, protein yield and gene-expressions were analysed at different substrate concentrations (3 to 30 g/L) with glucose, food waste, and fermentation-effluent. Optimal results were obtained at 20 g/L using both synthetic carbon with 4.6 % of total lipid yield. Lauric and Caprylic acid dominance was noted in total lipid fractions. Protein accumulation (6 g/L) was observed in glucose system (20 g/L) indicating yeast strains potential as single-cell proteins (SCP). Fatty-acid desaturase (FAD12) and alcohol dehydrogenase (ADH) expressions were higher at optimum condition of YL (1.15 × 10-1, 3.8 × 10-2) and PF (5.8 × 10-2, 3.8 × 10-2) respectively. Maximum carbon reduction of 87 % depicted at best condition, aligning with metabolic yield. These findings highlights promising role of yeast as biorefinery biocatalyst.
Collapse
Affiliation(s)
- Sravya Manasa
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Athmakuri Tharak
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Salvador López JM, Vandeputte M, Van Bogaert INA. Oleaginous yeasts: Time to rethink the definition? Yeast 2022; 39:553-606. [PMID: 36366783 DOI: 10.1002/yea.3827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Oleaginous yeasts are typically defined as those able to accumulate more than 20% of their cell dry weight as lipids or triacylglycerides. Research on these yeasts has increased lately fuelled by an interest to use biotechnology to produce lipids and oleochemicals that can substitute those coming from fossil fuels or offer sustainable alternatives to traditional extractions (e.g., palm oil). Some oleaginous yeasts are attracting attention both in research and industry, with Yarrowia lipolytica one of the best-known and studied ones. Oleaginous yeasts can be found across several clades and different metabolic adaptations have been found, affecting not only fatty acid and neutral lipid synthesis, but also lipid particle stability and degradation. Recently, many novel oleaginous yeasts are being discovered, including oleaginous strains of the traditionally considered non-oleaginous Saccharomyces cerevisiae. In the face of this boom, a closer analysis of the definition of "oleaginous yeast" reveals that this term has instrumental value for biotechnology, while it does not give information about distinct types of yeasts. Having this perspective in mind, we propose to expand the term "oleaginous yeast" to those able to produce either intracellular or extracellular lipids, not limited to triacylglycerides, in at least one growth condition (including ex novo lipid synthesis). Finally, a critical look at Y. lipolytica as a model for oleaginous yeasts shows that the term "oleaginous" should be reserved only for strains and not species and that in the case of Y. lipolytica, it is necessary to distinguish clearly between the lipophilic and oleaginous phenotype.
Collapse
Affiliation(s)
- José Manuel Salvador López
- BioPort Group, Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Meriam Vandeputte
- BioPort Group, Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Inge N A Van Bogaert
- BioPort Group, Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Li Y, Qi Z, Fan Y, Zhou R, Tang Y. Boosting concurrent lipid accumulation and secretion by Coccomyxa subellipsoidea with glucose coupling glycerol as accelerator. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
7
|
Sundaramahalingam MA, Sivashanmugam P, Rajeshbanu J, Ashokkumar M. A review on contemporary approaches in enhancing the innate lipid content of yeast cell. CHEMOSPHERE 2022; 293:133616. [PMID: 35033523 DOI: 10.1016/j.chemosphere.2022.133616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
For the past few decades, industrialization has made a huge environmental hazard to the world with its waste. The approach of waste to wealth in the recent era has made many Eco-economical suggestions for the industries. The valuable products in biorefinery aspects of the eco-economical suggestions include; energy products, high-value drugs and novel materials. Bio-lipids are found to be the major influencing eco-economical products in the process. Production of bio-lipid from microbial sources has paved the way for future research on lipid-bioproducts. The yeast cell is a unique organism with a large unicellular structure capable of accumulating a high amount of lipids. It constitutes 90% of neutral lipids. Various strategies enhance the lipid profile of yeast cells: usage of oleaginous yeast, usage of low cost (or) alternative substrates, developing stress conditions in the growth medium, using genetically modified yeast, altering metabolic pathways of yeast and by using the symbiotic cultures of yeast with other microbes. The metabolic alterations of lipid pathways such as lipid biosynthesis, lipid elongation, lipid accumulation and lipid degradation have been a striking feature of research in lipid-based microbial work. The lipid-bioproducts have also made a strong footprint in the history of alternative energy products. It includes partial acyl glycerol, oleochemicals, phospholipids and biofuels. This report comprises the recent approaches carried out in the yeast cell for enhancing its lipid content. The limitations, challenges and future scope of individual strategies were also highlighted in this article.
Collapse
Affiliation(s)
- M A Sundaramahalingam
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
| | - P Sivashanmugam
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India.
| | - J Rajeshbanu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India
| | | |
Collapse
|
8
|
Sánchez Muñoz S, Rocha Balbino T, Mier Alba E, Gonçalves Barbosa F, Tonet de Pier F, Lazuroz Moura de Almeida A, Helena Balan Zilla A, Antonio Fernandes Antunes F, Terán Hilares R, Balagurusamy N, César Dos Santos J, Silvério da Silva S. Surfactants in biorefineries: Role, challenges & perspectives. BIORESOURCE TECHNOLOGY 2022; 345:126477. [PMID: 34864172 DOI: 10.1016/j.biortech.2021.126477] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
The use of lignocellulosic biomass (LCB) as feedstock has received increasing attention as an alternative to fossil-based refineries. Initial steps such as pretreatment and enzymatic hydrolysis are essential to breakdown the complex structure of LCB to make the sugar molecules available to obtain bioproducts by fermentation. However, these steps increase the cost of the bioproduct and often reduces its competitiveness against synthetic products. Currently, the use of surfactants has shown considerable potential to enhance lignocellulosic biomass processing. This review addresses the main mechanisms and role of surfactants as key molecules in various steps of biorefinery processes, viz., increasing the removal of lignin and hemicellulose during the pretreatments, increasing enzymatic stability and enhancing the accessibility of enzymes to the polymeric fractions, and improving the downstream process during fermentation. Further, technical advances, challenges in application of surfactants, and future perspectives to augment the production of several high value-added bioproducts have been discussed.
Collapse
Affiliation(s)
- Salvador Sánchez Muñoz
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Thércia Rocha Balbino
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Edith Mier Alba
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Fernanda Gonçalves Barbosa
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Fernando Tonet de Pier
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Alexandra Lazuroz Moura de Almeida
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Ana Helena Balan Zilla
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Felipe Antonio Fernandes Antunes
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Ruly Terán Hilares
- Laboratório de Materiales, Universidad Católica de Santa María - UCSM. Urb. San José, San José s/n, Yanahuara, Arequipa, Perú
| | - Nagamani Balagurusamy
- Bioremediation laboratory. Faculty of Biological Sciences, Autonomous University of Coahuila (UA de C), Torreón Campus, 27000 Coah, México
| | - Júlio César Dos Santos
- Biopolymers, bioreactors, and process simulation laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Silvio Silvério da Silva
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil.
| |
Collapse
|
9
|
Watsuntorn W, Chuengcharoenphanich N, Niltaya P, Butkumchote C, Theerachat M, Glinwong C, Qi W, Wang Z, Chulalaksananukul W. A novel oleaginous yeast Saccharomyces cerevisiae CU-TPD4 for lipid and biodiesel production. CHEMOSPHERE 2021; 280:130782. [PMID: 34162092 DOI: 10.1016/j.chemosphere.2021.130782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 06/08/2023]
Abstract
This study reports on the novel Saccharomyces cerevisiae CU-TPD4 that was isolated from coconut waste residues obtained from a coconut factory in Thailand. The CU-TPD4 isolate was confirmed to be a S. cerevisiae by molecular analysis and to be an oleaginous yeast with more than 20% (w/w) of the cell dry weight (CDW) present in the form of lipids. The lipid content and lipid yield of CU-TPD4 (52.96 ± 1.15% of CDW and 1.78 ± 0.06 g/L, respectively) under optimized growth conditions were much higher than those under normal growth conditions (22.65 ± 1.32% of CDW and 1.24 ± 0.12 g/L, respectively). The major fatty acids produced by CU-TPD4 were oleic (C18:1), palmitoleic (C16:1), stearic (C18:0), and palmitic (C16:0) acids. Mathematical estimation of the physical properties of the biodiesel obtained by transesterification of the extracted lipid suggested it was suitable as biodiesel with respect to the ASTM D6751 and EN 14214 international standards. Consequently, S. cerevisiae CU-TPD4 is expected to emerge as a promising alternative for biodiesel production.
Collapse
Affiliation(s)
- Wannapawn Watsuntorn
- Biofuels by Biocatalysts Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nuttha Chuengcharoenphanich
- Biofuels by Biocatalysts Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Poompat Niltaya
- Biofuels by Biocatalysts Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Cheryanus Butkumchote
- Biofuels by Biocatalysts Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Monnat Theerachat
- Biofuels by Biocatalysts Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chompunuch Glinwong
- Biofuels by Biocatalysts Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wei Qi
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Warawut Chulalaksananukul
- Biofuels by Biocatalysts Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
10
|
de Castro ASB, de Paula HMC, Coelho YL, Hudson EA, Pires ACS, da Silva LHM. Kinetic and thermodynamic of lactoferrin - Ethoxylated-nonionic surfactants supramolecular complex formation. Int J Biol Macromol 2021; 187:325-331. [PMID: 34280448 DOI: 10.1016/j.ijbiomac.2021.07.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022]
Abstract
Understanding nonionic surfactant-protein interactions is fundamental from both technological and scientific points of view. However, there is a complete absence of kinetic data for such interactions. We employed surface plasmon resonance (SPR) to determine the kinetic and thermodynamic parameters of bovine lactoferrin-Brij58 interactions at various temperatures under physiological conditions (pH 7.4). The adsorption process was accelerated with increasing temperature, while the desorption rate decreased, resulting in a more thermodynamically stable complex. The kinetic energetic parameters obtained for the formation of the activated complex, [bLF-Brij58]‡, indicated that the potential energy barrier for [bLF-Brij58]‡ formation arises primarily from the reduction in system entropy. [bLF-Brij58]○ formation was entropically driven, indicating that hydrophobic interactions play a fundamental role in bLF interactions with Brij58.
Collapse
Affiliation(s)
- Alan Stampini Benhame de Castro
- Colloidal, macromolecular and Green Chemistry (QUIVECOM), Chemistry Department, Federal University of Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Hauster Maximiler Campos de Paula
- Colloidal, macromolecular and Green Chemistry (QUIVECOM), Chemistry Department, Federal University of Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Yara Luiza Coelho
- Colloidal, macromolecular and Green Chemistry (QUIVECOM), Chemistry Department, Federal University of Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil; Colloid Chemistry Group, Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700, 37130-000 Alfenas, MG, Brazil
| | - Eliara Acipreste Hudson
- Applied Molecular Thermodynamic (THERMA), Food Technology Department, Federal University of Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Ana Clarissa S Pires
- Applied Molecular Thermodynamic (THERMA), Food Technology Department, Federal University of Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Luis Henrique M da Silva
- Colloidal, macromolecular and Green Chemistry (QUIVECOM), Chemistry Department, Federal University of Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil.
| |
Collapse
|
11
|
Microbial lipid biosynthesis from lignocellulosic biomass pyrolysis products. Biotechnol Adv 2021; 54:107791. [PMID: 34192583 DOI: 10.1016/j.biotechadv.2021.107791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/18/2021] [Accepted: 06/24/2021] [Indexed: 01/08/2023]
Abstract
Lipids are a biorefinery platform to prepare fuel, food and health products. They are traditionally obtained from plants, but those of microbial origin allow for a better use of land and C resources, among other benefits. Several (thermo)chemical and biochemical strategies are used for the conversion of C contained in lignocellulosic biomass into lipids. In particular, pyrolysis can process virtually any biomass and is easy to scale up. Products offer cost-effective, renewable C in the form of readily fermentable molecules and other upgradable intermediates. Although the production of microbial lipids has been studied for 30 years, their incorporation into biorefineries was only described a few years ago. As pyrolysis becomes a profitable technology to depolymerize lignocellulosic biomass into assimilable C, the number of investigations on it raises significantly. This article describes the challenges and opportunities resulting from the combination of lignocellulosic biomass pyrolysis and lipid biosynthesis with oleaginous microorganisms. First, this work presents the basics of the individual processes, and then it shows state-of-the-art processes for the preparation of microbial lipids from biomass pyrolysis products. Advanced knowledge on separation techniques, structure analysis, and fermentability is detailed for each biomass pyrolysis fraction. Finally, the microbial fatty acid platform comprising biofuel, human food and animal feed products, and others, is presented. Literature shows that the microbial lipid production from anhydrosugars, like levoglucosan, and short-chain organic acids, like acetic acid, is straightforward. Indeed, processes achieving nearly theoretical yields form the latter have been described. Some authors have shown that lipid biosynthesis from different lignin sources is biochemically feasible. However, it still imposes major challenges regarding strain performance. No report on the fermentation of pyrolytic lignin is yet available. Research on the microbial uptake of pyrolytic humins remains vacant. Microorganisms that make use of methane show promising results at the proof-of-concept level. Overall, despite some issues need to be tackled, it is now possible to conceive new versatile biorefinery models by combining lignocellulosic biomass pyrolysis products and robust oleaginous microbial cell factories.
Collapse
|
12
|
Karamerou EE, Parsons S, McManus MC, Chuck CJ. Using techno-economic modelling to determine the minimum cost possible for a microbial palm oil substitute. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:57. [PMID: 33663577 PMCID: PMC7934523 DOI: 10.1186/s13068-021-01911-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/21/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Heterotrophic single-cell oils (SCOs) are one potential replacement to lipid-derived biofuels sourced from first-generation crops such as palm oil. However, despite a large experimental research effort in this area, there are only a handful of techno-economic modelling publications. As such, there is little understanding of whether SCOs are, or could ever be, a potential competitive replacement. To help address this question, we designed a detailed model that coupled a hypothetical heterotroph (using the very best possible biological lipid production) with the largest and most efficient chemical plant design possible. RESULTS Our base case gave a lipid selling price of $1.81/kg for ~ 8,000 tonnes/year production, that could be reduced to $1.20/kg on increasing production to ~ 48,000 tonnes of lipid a year. A range of scenarios to further reduce this cost were then assessed, including using a thermotolerant strain (reducing the cost from $1.20 to $1.15/kg), zero-cost electricity ($ 1.12/kg), using non-sterile conditions ($1.19/kg), wet extraction of lipids ($1.16/kg), continuous production of extracellular lipid ($0.99/kg) and selling the whole yeast cell, including recovering value for the protein and carbohydrate ($0.81/kg). If co-products were produced alongside the lipid then the price could be effectively reduced to $0, depending on the amount of carbon funnelled away from lipid production, as long as the co-product could be sold in excess of $1/kg. CONCLUSIONS The model presented here represents an ideal case that which while not achievable in reality, importantly would not be able to be improved on, irrespective of the scientific advances in this area. From the scenarios explored, it is possible to produce lower cost SCOs, but research must start to be applied in three key areas, firstly designing products where the whole cell is used. Secondly, further work on the product systems that produce lipids extracellularly in a continuous processing methodology or finally that create an effective biorefinery designed to produce a low molecular weight, bulk chemical, alongside the lipid. All other research areas will only ever give incremental gains rather than leading towards an economically competitive, sustainable, microbial oil.
Collapse
Affiliation(s)
- Eleni E Karamerou
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Sophie Parsons
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Marcelle C McManus
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | | |
Collapse
|
13
|
Pham N, Reijnders M, Suarez-Diez M, Nijsse B, Springer J, Eggink G, Schaap PJ. Genome-scale metabolic modeling underscores the potential of Cutaneotrichosporon oleaginosus ATCC 20509 as a cell factory for biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:2. [PMID: 33407779 PMCID: PMC7788717 DOI: 10.1186/s13068-020-01838-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/23/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Cutaneotrichosporon oleaginosus ATCC 20509 is a fast-growing oleaginous basidiomycete yeast that is able to grow in a wide range of low-cost carbon sources including crude glycerol, a byproduct of biodiesel production. When glycerol is used as a carbon source, this yeast can accumulate more than 50% lipids (w/w) with high concentrations of mono-unsaturated fatty acids. RESULTS To increase our understanding of this yeast and to provide a knowledge base for further industrial use, a FAIR re-annotated genome was used to build a genome-scale, constraint-based metabolic model containing 1553 reactions involving 1373 metabolites in 11 compartments. A new description of the biomass synthesis reaction was introduced to account for massive lipid accumulation in conditions with high carbon-to-nitrogen (C/N) ratio in the media. This condition-specific biomass objective function is shown to better predict conditions with high lipid accumulation using glucose, fructose, sucrose, xylose, and glycerol as sole carbon source. CONCLUSION Contributing to the economic viability of biodiesel as renewable fuel, C. oleaginosus ATCC 20509 can effectively convert crude glycerol waste streams in lipids as a potential bioenergy source. Performance simulations are essential to identify optimal production conditions and to develop and fine tune a cost-effective production process. Our model suggests ATP-citrate lyase as a possible target to further improve lipid production.
Collapse
Affiliation(s)
- Nhung Pham
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Maarten Reijnders
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
- Department of Ecology and Evolution, University of Lausanne, Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jan Springer
- Food and Biobased Research and AlgaePARC, Wageningen University and Research, Wageningen, the Netherlands
| | - Gerrit Eggink
- Food and Biobased Research and AlgaePARC, Wageningen University and Research, Wageningen, the Netherlands
- Bioprocess Engineering and AlgaePARC, Wageningen University and Research, Wageningen, the Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
14
|
Cho IJ, Choi KR, Lee SY. Microbial production of fatty acids and derivative chemicals. Curr Opin Biotechnol 2020; 65:129-141. [DOI: 10.1016/j.copbio.2020.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022]
|
15
|
Wang Z, Chen C, Liu H, Hrynshpan D, Savitskaya T, Chen J, Chen J. Effects of carbon nanotube on denitrification performance of Alcaligenes sp. TB: Promotion of electron generation, transportation and consumption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109507. [PMID: 31386942 DOI: 10.1016/j.ecoenv.2019.109507] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/14/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) promote biodegradation in water treatment, but the effect of MWCNT on denitrification under aerobic conditions is still unclear. This investigation focused on the denitrification performance of MWCNT and its toxic effects on Alcaligenes sp. TB which showed that 30 mg/L MWCNTs increased NO3- removal efficiency from 84% to 100% and decreased the NO2-and N2O accumulation rates by 36% and 17.5%, respectively. Nitrite reductase and nitrous oxide reductase activities were further increased by 19.5% and 7.5%, respectively. The mechanism demonstrated that electron generation (NADH yield) and electron transportation system activity increased by 14.5% and 104%, respectively. Cell membrane analysis found that MWCNT caused an increase in polyunsaturated fatty acids, which had positive effects on electron transportation and membrane fluidity at a low concentration of 96 mg/kg but caused membrane lipid peroxidation and impaired membrane integrity at a high concentration of 115 mg/L. These findings confirmed that MWCNT affects the activity of Alcaligenes sp. TB and consequently enhances denitrification performance.
Collapse
Affiliation(s)
- Zeyu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Cong Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Huan Liu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Dzmitry Hrynshpan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Tatsiana Savitskaya
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Jun Chen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310021, PR China.
| |
Collapse
|
16
|
Microbial production of vitamin K2: current status and future prospects. Biotechnol Adv 2019; 39:107453. [PMID: 31629792 DOI: 10.1016/j.biotechadv.2019.107453] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/24/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022]
Abstract
Vitamin K2, also called menaquinone, is an essential lipid-soluble vitamin that plays a critical role in blood clotting and prevention of osteoporosis. It has become a focus of research in recent years and has been widely used in the food and pharmaceutical industries. This review will briefly introduce the functions and applications of vitamin K2 first, after which the biosynthesis pathways and enzymes will be analyzed in-depth to highlight the bottlenecks facing the microbial vitamin K2 production on the industrial scale. Then, various strategies, including strain mutagenesis and genetic modification, different cultivation modes, fermentation and separation processes, will be summarized and discussed. The future prospects and perspectives of microbial menaquinone production will also be discussed finally.
Collapse
|