1
|
Yang Q, Liu H, Liu L, Yan Z, Chui C, Yang N, Wang C, Shen G, Chen Q. Enhancing Methane Production in Anaerobic Digestion of Food Waste Using Co-Pyrolysis Biochar Derived from Digestate and Rice Straw. Molecules 2025; 30:1766. [PMID: 40333788 PMCID: PMC12029908 DOI: 10.3390/molecules30081766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025] Open
Abstract
Anaerobic digestion (AD) is a preferred method for food waste (FW) treatment due to its sustainability and potential for production of renewable bioenergy. However, the accumulation of volatile fatty acids (VFAs) and ammonia often destabilizes the AD process, and managing the digestate byproduct poses additional challenges. This study investigates the use of co-pyrolysis biochar synthesized from digestate and rice straw (DRB) to enhance methane production and AD efficiency. DRB addition increased cumulative methane yield by 37.1%, improved VFA conversion efficiency, and achieved a 42.3% higher NH3-N-removal rate compared to the control group. The COD-removal rate was 68.7% throughout the process. Microbial analysis revealed that DRB selectively enriched Fastidiosipila and Methanosarcina, promoting direct interspecies electron transfer (DIET) and methane yield. These findings highlight DRB's potential to enhance AD efficiency and support closed-loop resource utilization.
Collapse
Affiliation(s)
- Qinyan Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Q.Y.); (H.L.); (L.L.); (C.W.)
| | - Huanran Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Q.Y.); (H.L.); (L.L.); (C.W.)
| | - Li Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Q.Y.); (H.L.); (L.L.); (C.W.)
| | - Zhen Yan
- Shanghai Pudong Development (Group) Co., Ltd., Shanghai 200127, China;
| | - Chunmeng Chui
- Shanghai Liming Resources Reuse Co., Ltd., Shanghai 201209, China; (C.C.); (N.Y.)
| | - Niannian Yang
- Shanghai Liming Resources Reuse Co., Ltd., Shanghai 201209, China; (C.C.); (N.Y.)
| | - Chen Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Q.Y.); (H.L.); (L.L.); (C.W.)
| | - Guoqing Shen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Q.Y.); (H.L.); (L.L.); (C.W.)
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station (Shanghai Urban Ecosystem Research Station), Ministry of Science and Technology, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| | - Qincheng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Q.Y.); (H.L.); (L.L.); (C.W.)
| |
Collapse
|
2
|
Frazier AN, Willis W, Robbe H, Ortiz A, Koziel JA. Characterization and Assembly Dynamics of the Microbiome Associated with Swine Anaerobic Lagoon Manure Treated with Biochar. Microorganisms 2025; 13:758. [PMID: 40284595 PMCID: PMC12029491 DOI: 10.3390/microorganisms13040758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Biochar has significant potential for livestock microbiomes and crop agriculture regarding greenhouse gas emissions reduction. Therefore, a pilot study was designed to investigate the effect of biochar application on the surface of swine manure from an open lagoon and the associated microbial communities. Samples were collected from four different treatment groups: control (n = 4), coarse biochar (n = 4), fine biochar (n = 4), and ultra-fine biochar (n = 4). Additionally, aged manure in bulk was collected (n = 4) to assess alterations from the control group. The method of 16S rRNA amplicon sequencing along with microbial analyses was performed. Diversity was significantly different between aged manure in bulk samples and all treatment groups (Kruskal-Wallis; p < 0.05). Additionally, distinct community compositions were seen using both weighted and unweighted UniFrac distance matrices (PERMANOVA; p < 0.01). Differential abundance analysis revealed four distinct features within all treatment groups that were enriched (q < 0.001): Idiomarina spp., Geovibrio thiophilus, Parapusillimonas granuli, and an uncultured Gammaproteobacteria species. Similarly, Comamonas spp. and Brumimicrobium aurantiacum (q-value < 0.001) were significantly depleted by all the treatments. Stochastic and functional analyses revealed that biochar treatments were not deterministically altering assembly patterns, and functional redundancy was evident regardless of compositional shifts.
Collapse
Affiliation(s)
- A. Nathan Frazier
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Bushland, TX 79012, USA; (W.W.); (H.R.); (A.O.)
| | - William Willis
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Bushland, TX 79012, USA; (W.W.); (H.R.); (A.O.)
| | - Heather Robbe
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Bushland, TX 79012, USA; (W.W.); (H.R.); (A.O.)
| | - Anna Ortiz
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Bushland, TX 79012, USA; (W.W.); (H.R.); (A.O.)
| | - Jacek A. Koziel
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Bushland, TX 79012, USA; (W.W.); (H.R.); (A.O.)
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
3
|
Odales-Bernal L, González LML, Ghysels S, Lobanov V, De Vrieze J, Barrera EL, Ronsse F. Optimized hydrothermal carbonization of chicken manure and anaerobic digestion of its process water for better energy management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124191. [PMID: 39848193 DOI: 10.1016/j.jenvman.2025.124191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/24/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Modern poultry production is faced with the challenge of properly managing its associated wastes, in particular chicken manure (CM). There is a need to improve the management of CM through conversion processes that allow the production of value-added products, particularly for energy purposes, such as hydrothermal carbonization (HTC) and anaerobic digestion (AD). The objectives of this study were: i) to optimize the CM-HTC, using response surface methodology with simultaneous optimization of mass yield and higher heating value (HHV), and ii) to evaluate the biomethane potential of the process water generated from hydrochar production under the optimized condition. An analysis of the overall energy potential was also performed. The optimal condition for HTC was 234 °C for 30 min, resulting in hydrochar with an HHV of 14.88 ± 0.22 MJ/kg and a mass yield of 50.00 ± 3.13 wt%. The cumulative methane yield was 179.2 ± 13.1 NmL CH₄/g VSadded and 255.5 ± 14.5 NmL CH₄/g VSadded for process water at 180 °C and 234 °C, respectively. The addition of hydrochar improved the methane yield by 49.6 ± 10.8%, indicating that this is a valuable option for energy recovery from CM. Overall, the HTC-AD integration approach achieved an energy recovery potential of more than 79%, offering an efficient strategy for CM valorization.
Collapse
Affiliation(s)
- Leyanet Odales-Bernal
- Centre for Energy and Industrial Processes Studies (CEEPI), University of Sancti Spíritus, Ave de Los Mártires 360, 60100, Sancti Spíritus, Cuba; Thermochemical Conversion of Biomass Research Group, Department of Green Chemistry & Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Gent, Belgium.
| | - Lisbet Mailin López González
- Centre for Energy and Industrial Processes Studies (CEEPI), University of Sancti Spíritus, Ave de Los Mártires 360, 60100, Sancti Spíritus, Cuba
| | - Stef Ghysels
- Thermochemical Conversion of Biomass Research Group, Department of Green Chemistry & Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Victor Lobanov
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Frieda Saeysstraat 1, B-9052, Gent, Belgium; University of Gothenburg, Department of Marine Sciences, Sweden
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Frieda Saeysstraat 1, B-9052, Gent, Belgium; Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, B-9052, Gent, Belgium
| | - Ernesto L Barrera
- Centre for Energy and Industrial Processes Studies (CEEPI), University of Sancti Spíritus, Ave de Los Mártires 360, 60100, Sancti Spíritus, Cuba
| | - Frederik Ronsse
- Thermochemical Conversion of Biomass Research Group, Department of Green Chemistry & Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| |
Collapse
|
4
|
Haroun B, El-Qelish M, Abdulazeez M, Khalil A, Kim M, Nakhla G. Overcoming ammonia inhibition via biochar-assisted anaerobic co-digestion of thermally-treated thickened waste activated sludge and food waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123909. [PMID: 39736230 DOI: 10.1016/j.jenvman.2024.123909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
The convergence of sustainability and climate change has catalyzed the pursuit of inventive strategies for waste management and sustainable energy production. Hereby, we explored the effect of coupling biochar addition and thermal pretreatment in anaerobic mono-digestion and co-digestion of thermally pretreated thickened waste activated sludge (PTWAS) with food waste (FW). Six semi-continuous lab-scale digesters were operated for 161 days at various organic loading rates (OLR of 2, 3, 4 and 8 kgCOD/m3/day) with and without biochar (BC) addition. Coupling biochar addition and co-digestion of 30%FW +70% PTWAS, increased methane yield (MY) by 87.5% to 0.15 LCH4/gCOD added, when the systems experienced high ammonia concentration of 2.4 g/L at OLR of 8 kgCOD/m3/d. The non-competitive ammonia inhibition constant (Ki) ranged from 0.250 g/L to 0.345 g/L. The maximum COD-to-BC ratio to overcome inhibition was 16.5 g COD substrate/g BC corresponding to TN-to-BC ratio of 0.84 g TN substrate/g BC. These results imply that biochar addition to the anaerobic co-digestion of thermally pretreated TWAS and FW can promote high-rate anaerobic digestion by relieving ammonia and VFA inhibition.
Collapse
Affiliation(s)
- Basem Haroun
- Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada.
| | - Mohamed El-Qelish
- Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada; Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622 Cairo, Egypt.
| | - Mariam Abdulazeez
- Civil and Environmental Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada.
| | - Ahmed Khalil
- Mechanical and Material Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada.
| | - Mingu Kim
- Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada; Lambton College, Sarnia, ON, Canada.
| | - George Nakhla
- Chemical and Biochemical Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada; Civil and Environmental Engineering Department, University of Western Ontario, London, ON, N6A 5B9, Canada.
| |
Collapse
|
5
|
Wang Y, Yang Y, Sun J, Wang Y, Liu X, Cao J, Zhang A, Shi C, Pan J. Partitioning Ganoderma lucidum residue biochar differentially boosts anaerobic fermentation performance of cow manure via mediation of anaerobic microbiota assembly. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123033. [PMID: 39486300 DOI: 10.1016/j.jenvman.2024.123033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024]
Abstract
Biochar is a promising strategy to solve the problem of low efficiency and ammonia inhibition during anaerobic digestion (AD). However, the correlation between biochar partitioning and its stimulatory effects on AD remains uncertain. Here, the effects of partitioned Ganoderma lucidum residue biochar (GLRB) on biogas and methane production were investigated. The GLRB produced at 450 °C, with richer functional groups on its surface, had the optimal enhancement effect on AD, resulting in a 20.59% increase in methane production compared with control. The doses of water-soluble GLRB (LZ450-W) and water-insoluble GLRB (LZ450-R) were not proportional to their enhancement effect on AD. However, the enhancement effect on AD by LZ450-R was better than that of LZ450-W. The optimal dosage of LZ450-W was 0.015 g, which increased methane production by 14.28%. Similarly, methane production increased by 26.91% with the addition of 0.603 g of LZ450-R. LZ450-R had more abundant functional groups on the surface and promoted the abundance of bacteria in the dominant phyla Bacteroidetes, Synergistetes, and Spirochaetes, increasing the rate of hydrolysis. Additionally, methanogens such as Methanobacterium and Methanospirillum were enriched, facilitating methane production by promoting the hydrogenotrophic pathway. Methanobacterium was also negatively correlated with most acid-producing bacteria, whereas Methanobrevibacter was positively correlated with Methanosphaera, Acetivibrio, and other acid-producing bacteria. These findings provide a basis for constructing synthetic microbial communities using biochar as a carrier of microbial inoculum.
Collapse
Affiliation(s)
- Yajing Wang
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, 014010, China; Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China.
| | - Yan Yang
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, 014010, China; Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China.
| | - Jiahui Sun
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, 014010, China; Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China.
| | - Yueqi Wang
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, 014010, China; Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China.
| | - Xiujie Liu
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, 014010, China; Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China.
| | - Jingyu Cao
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, 014010, China; Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China.
| | - Aiai Zhang
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, 014010, China; Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China.
| | - Chunfang Shi
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, 014010, China; Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China.
| | - Jiangang Pan
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou, 014010, China; Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China.
| |
Collapse
|
6
|
Zhang R, Oshita K, Takaoka M. Use of aqueous liquor from digested sludge pyrolysis for biogas production: characterization, toxicity assessment, and rate-limiting step determination. BIORESOURCE TECHNOLOGY 2024; 413:131434. [PMID: 39236905 DOI: 10.1016/j.biortech.2024.131434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
This study assessed the characteristics and toxicity of aqueous pyrolytic liquid (APL) derived from digested sewage sludge on anaerobic digestion (AD) and determined its rate-limiting step. Digested sewage sludge was pyrolyzed at multiple temperatures (350-650 °C) and moisture levels (0-40.4 %), resulting in APLs with varying AD toxicities. APL 350 °C-0 % showed the least toxicity, whereas APL 650 °C-40.4 % exhibited the greatest toxicity. Glucose (GL) and sodium acetate (SA) were introduced to elucidate the rate-limiting steps. SA, but not GL, enhanced APL conversion to CH4. And volatile fatty acid lack was observed in treatments without SA addition. This suggested that acidification was the primary rate-limiting step. This finding was confirmed using the modified Gompertz model: SA considerably improved the maximum methane production rate, whereas GL did not. Insights gained from this research clarified the feasibility and potential of AD for APL utilization and conversion.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University C-cluster, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Kazuyuki Oshita
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University C-cluster, Nishikyo-ku, Kyoto, 615-8540, Japan.
| | - Masaki Takaoka
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University C-cluster, Nishikyo-ku, Kyoto, 615-8540, Japan
| |
Collapse
|
7
|
Pei S, Fan X, Qiu C, Liu N, Li F, Li J, Qi L, Wang S. Effect of biochar addition on the anaerobic digestion of food waste: microbial community structure and methanogenic pathways. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:894-907. [PMID: 39141040 DOI: 10.2166/wst.2024.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/20/2024] [Indexed: 08/15/2024]
Abstract
This study assessed the effects of the addition of biochar prepared at 700 °C with different dosages on the anaerobic digestion of food waste. The biochar addition at a concentration of 10.0 g/L increased the cumulative methane yield by 128%, and daily methane production was also significantly promoted. The addition of biochar derived from poplar sawdust significantly increased the relative abundance of dominant bacteria for anaerobic digestion by 85.54-2530% and promoted the degradation of refractory organic matter and the transfer of materials between the hydrolysis and acid production stages. Further analysis has demonstrated that Bathyarchaeia and hydrogenotrophic methanogens were enriched by the biochar addition. Meanwhile, the relative abundances of functional genes, including C5-branched dibasic acid metabolism, and pyruvate metabolism, were increased by 11.38-26.27%. The relative abundances of genes related to major amino acid metabolism, including histidine metabolism, lysine biosynthesis, and phenylalanine, tyrosine, and tryptophan biosynthesis, were increased by 11.96-15.71%. Furthermore, the relative abundances of genes involved in major replication and repair were increased by 14.76-22.76%, and the major folding, sorting, degradation, and translation were increased by 14.47-19.95%, respectively. The relative abundances of genes related to major membrane transport and cell motility were increased by 10.02 and 83.09%, respectively.
Collapse
Affiliation(s)
- Siyao Pei
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiaodan Fan
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Nannan Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China E-mail:
| | - Fei Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Jiakang Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Li Qi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| | - Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aqueous Science and Technology, Tianjin 300384, China
| |
Collapse
|
8
|
K B, Pilli S, Rao PV, Tyagi RD. Predictive modelling of methane yield in biochar-amended cheese whey and septage co-digestion: Exploring synergistic effects using Gompertz and neural networks. CHEMOSPHERE 2024; 353:141558. [PMID: 38417486 DOI: 10.1016/j.chemosphere.2024.141558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/10/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
This study performed bench scale studies on anaerobic co-digestion of cheese whey and septage mixed with biochar (BC) as additive at various dosages (0.5 g, 1 g, 2 g and 4 g) and total solids (TS) concentrations (5%, 7.5%, 10%,12.5% and 15%). The experimental results revealed 29.58% increase in methane yield (486 ± 11.32 mL/gVS) with 27% reduction in lag phase time at 10% TS concentration and 50 g/L of BC loading. The mechanistic investigations revealed that BC improved process stability by virtue of its robust buffering capacity and mitigated ammonia inhibition. Statistical analysis indicates BC dosage had a more pronounced effect (P < 0.0001) compared to the impact of TS concentrations. Additionally, the results were modelled using Gompertz model (GM) and artificial neural network (ANN) algorithm, which revealed the outperformance of ANN over GM with MSE 17.96, R2 value 0.9942 and error 0.27%. These findings validated the practicality of utilizing a high dosage of BC in semi-solid anaerobic digestion conditions.
Collapse
Affiliation(s)
- Bella K
- Department of Civil Engineering, National Institute of Technology Warangal, Quebec City, QC, Canada
| | - Sridhar Pilli
- Department of Civil Engineering, National Institute of Technology Warangal, Quebec City, QC, Canada
| | - P Venkateswara Rao
- Department of Civil Engineering, National Institute of Technology Warangal, Quebec City, QC, Canada.
| | - R D Tyagi
- BOSK Bio Products, Quebec City, QC, Canada
| |
Collapse
|
9
|
Amalina F, Krishnan S, Zularisam AW, Nasrullah M. Pristine and modified biochar applications as multifunctional component towards sustainable future: Recent advances and new insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169608. [PMID: 38157898 DOI: 10.1016/j.scitotenv.2023.169608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Employing biomass for environmental conservation is regarded as a successful and environmentally friendly technique since they are cost-effective, renewable, and abundant. Biochar (BC), a thermochemically converted biomass, has a considerably lower production cost than the other conventional activated carbons. This material's distinctive properties, including a high carbon content, good electrical conductivity (EC), high stability, and a large surface area, can be utilized in various research fields. BC is feasible as a renewable source for potential applications that may achieve a comprehensive economic niche. Despite being an inexpensive and environmentally sustainable product, research has indicated that pristine BC possesses restricted properties that prevent it from fulfilling the intended remediation objectives. Consequently, modifications must be made to BC to strengthen its physicochemical properties and, thereby, its efficacy in decontaminating the environment. Modified BC, an enhanced iteration of BC, has garnered considerable interest within academia. Many modification techniques have been suggested to augment BC's functionality, including its adsorption and immobilization reliability. Modified BC is overviewed in its production, functionality, applications, and regeneration. This work provides a holistic review of the recent advances in synthesizing modified BC through physical, chemical, or biological methods to achieve enhanced performance in a specific application, which has generated considerable research interest. Surface chemistry modifications require the initiation of surface functional groups, which can be accomplished through various techniques. Therefore, the fundamental objective of these modification techniques is to improve the efficacy of BC contaminant removal, typically through adjustments in its physical or chemical characteristics, including surface area or functionality. In addition, this article summarized and discussed the applications and related mechanisms of modified BC in environmental decontamination, focusing on applying it as an ideal adsorbent, soil amendment, catalyst, electrochemical device, and anaerobic digestion (AD) promoter. Current research trends, future directions, and academic demands were available in this study.
Collapse
Affiliation(s)
- Farah Amalina
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Santhana Krishnan
- Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Songkhla 90110, Thailand
| | - A W Zularisam
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Mohd Nasrullah
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia.
| |
Collapse
|
10
|
Fu Z, Zhao J, Guan D, Wang Y, Xie J, Zhang H, Sun Y, Zhu J, Guo L. A comprehensive review on the preparation of biochar from digestate sources and its application in environmental pollution remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168822. [PMID: 38043821 DOI: 10.1016/j.scitotenv.2023.168822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
The preparation of biochar from digestate is one of the effective ways to achieve the safe disposal and resource utilization of digestate. Nevertheless, up to now, a comprehensive review encompassing the factors influencing anaerobic digestate-derived biochar production and its applications is scarce in the literature. Therefore, to fill this gap, the present work first outlined the research hotspots of digestate in the last decade using bibliometric statistical analysis with the help of VOSviewer. Then, the characteristics of the different sources of digestate were summarized. Furthermore, the influencing factors of biochar preparation from digestate and the modification methods of digestate-derived biochar and associated mechanisms were analyzed. Notably, a comprehensive synthesis of anaerobic digestate-derived biochar applications is provided, encompassing enhanced anaerobic digestion, heavy metal remediation, aerobic composting, antibiotic/antibiotic resistance gene removal, and phosphorus recovery from digestate liquor. The economic and environmental impacts of digestate-derived biochar were also analyzed. Finally, the development prospect and challenges of using biochar from digestate to combat environmental pollution are foreseen. The aim is to not only address digestate management challenges at the source but also offer a novel path for the resourceful utilization of digestate.
Collapse
Affiliation(s)
- Zhou Fu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| | - Dezheng Guan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yuxin Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jingliang Xie
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Huawei Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
11
|
Pan C, Yang H, Gao W, Wei Z, Song C, Mi J. Optimization of organic solid waste composting process through iron-related additives: A systematic review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119952. [PMID: 38171126 DOI: 10.1016/j.jenvman.2023.119952] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Composting is an environmentally friendly method that facilitates the biodegradation of organic solid waste, ultimately transforming it into stable end-products suitable for various applications. The element iron (Fe) exhibits flexibility in form and valence. The typical Fe-related additives include zero-valent-iron, iron oxides, ferric and ferrous ion salts, which can be targeted to drive composting process through different mechanisms and are of keen interest to academics. Therefore, this review integrated relevant literature from recent years to provide more comprehensive overview about the influence and mechanisms of various Fe-related additives on composting process, including organic components conversion, humus formation and sequestration, changes in biological factors, stability and safety of composting end-products. Meanwhile, it was recommended that further research be conducted on the deep action mechanisms, biochemical pathways, budget balance analysis, products stability and application during organic solid waste composting with Fe-related additives. This review provided guidance for the subsequent targeted application of Fe-related additives in compost, thereby facilitating cost reduction and promoting circular economy objectives.
Collapse
Affiliation(s)
- Chaonan Pan
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Hongyu Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Jiaying Mi
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
12
|
Nie W, He S, Lin Y, Cheng JJ, Yang C. Functional biochar in enhanced anaerobic digestion: Synthesis, performances, and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167681. [PMID: 37839485 DOI: 10.1016/j.scitotenv.2023.167681] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Anaerobic digestion technology is crucial in bioenergy recovery and organic waste management. At the same time, it often encounters challenges such as low organic digestibility and inhibition of toxic substances, resulting in low biomethane yields. Biochar has recently been used in anaerobic digestion to alleviate toxicity inhibition, improve the stability of anaerobic digestion processes, and increase methane yields. However, the practical application of biochar is limited, for the properties of pristine biochar significantly affect its application in anaerobic digestion. Although much research focuses on understanding original biochar's fundamental properties and functionalization, there are few reviews on the applications of functional biochar and the effects of critical properties of pristine biochar on anaerobic digestion. This review systematically reviewed functionalization strategies, key performances, and applications of functional biochar in anaerobic digestion. The properties determining the role of biochar were reviewed, the synthesis methods of functional biochar were summarized and compared, the mechanism of functional biochar was discussed, and the factors affecting the function of functional biochar were reviewed. This review provided a comprehensive understanding of functional biochar in anaerobic digestion processes, which would be helpful for the development and applications of engineered biochar.
Collapse
Affiliation(s)
- Wenkai Nie
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China; College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China.
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jay J Cheng
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
13
|
Ma J, Yao Z, Zhao L. Comprehensive study of the combined effects of biochar and iron-based conductive materials on alleviating long chain fatty acids inhibition in anaerobic digestion. ENVIRONMENTAL RESEARCH 2023; 239:117446. [PMID: 37858695 DOI: 10.1016/j.envres.2023.117446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
This study investigated the feasibility of alleviating the negative influence of long-chain fatty acids (LCFAs) on anaerobic digestion by biochar, micron zero-valent iron, micron-magnetite (mFe3O4) and their combination. The results demonstrate that co-addition of biochar and 6 g/L mFe3O4 (BC+6 g/L mFe3O4) increased cumulative methane production by 50% as suffered from LCFAs inhibition exerted by 2 g/L glycerol trioleate. The BC+6 g/L mFe3O4 did best in accelerating total organic carbon degradation and volatile fatty acids conversion, through successively enriching Bacteroides, Corynebacterium, and DMER64 to dominant the bacterial community. The proportion of acetotrophic Methanothrix that could alternatively reduce CO2 to methane by accepting electrons via direct interspecies electron transfer (DIET) was 0.09% with BC+6 g/L mFe3O4, nine times more than the proportion in control. Prediction of functional genes revealed the enrichment of the bacterial secretion system, indicating that BC+6 g/L mFe3O4 promoted DIET by stimulating the secretion of extracellular polymeric substances. This study provided novel insights into combining biochar and iron-based conductive materials to enhance AD performance under LCFAs inhibition.
Collapse
Affiliation(s)
- Junyi Ma
- Key Laboratory of Low-carbon Green Agriculture in North China of Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zonglu Yao
- Key Laboratory of Low-carbon Green Agriculture in North China of Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lixin Zhao
- Key Laboratory of Low-carbon Green Agriculture in North China of Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
14
|
Xin D, Li W, Choi J, Yu YH, Chiu PC. Pyrogenic Black Carbon Suppresses Microbial Methane Production by Serving as a Terminal Electron Acceptor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20605-20614. [PMID: 38038997 PMCID: PMC10720376 DOI: 10.1021/acs.est.3c05830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Methane (CH4) is the second most important greenhouse gas, 27 times as potent as CO2 and responsible for >30% of the current anthropogenic warming. Globally, more than half of CH4 is produced microbially through methanogenesis. Pyrogenic black carbon possesses a considerable electron storage capacity (ESC) and can be an electron donor or acceptor for abiotic and microbial redox transformation. Using wood-derived biochar as a model black carbon, we demonstrated that air-oxidized black carbon served as an electron acceptor to support anaerobic oxidation of organic substrates, thereby suppressing CH4 production. Black carbon-respiring bacteria were immediately active and outcompeted methanogens. Significant CH4 did not form until the bioavailable electron-accepting capacity of the biochar was exhausted. An experiment with labeled acetate (13CH3COO-) yielded 1:1 13CH4 and 12CO2 without biochar and predominantly 13CO2 with biochar, indicating that biochar enabled anaerobic acetate oxidation at the expense of methanogenesis. Methanogens were enriched following acetate fermentation but only in the absence of biochar. The electron balance shows that approximately half (∼2.4 mmol/g) of biochar's ESC was utilized by the culture, corresponding to the portion of the ESC > +0.173 V (vs SHE). These results provide a mechanistic basis for quantifying the climate impact of black carbon and developing ESC-based applications to reduce CH4 emissions from biogenic sources.
Collapse
Affiliation(s)
| | | | - Jiwon Choi
- Department of Civil and Environmental
Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Yu-Han Yu
- Department of Civil and Environmental
Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Pei C. Chiu
- Department of Civil and Environmental
Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
15
|
Ngo T, Khudur LS, Krohn C, Hassan S, Jansriphibul K, Hakeem IG, Shah K, Surapaneni A, Ball AS. Wood biochar enhances methanogenesis in the anaerobic digestion of chicken manure under ammonia inhibition conditions. Heliyon 2023; 9:e21100. [PMID: 37920507 PMCID: PMC10618790 DOI: 10.1016/j.heliyon.2023.e21100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
The process of breaking down chicken manure through anaerobic digestion is an effective waste management technology. However, chicken manure can be a challenging feedstock, causing ammonia stress and digester instability. This study examined the impacts of adding wood biochar and acid-alkali-treated wood biochar to anaerobically digest chicken manure under conditions of ammonia inhibition. The results highlighted that only the addition of 5 % acid-alkali-treated wood biochar by volume can achieve cumulative methane production close to the typical methane potential range of chicken manure. The treated wood biochar also exhibited highest total ammonia nitrogen removal compared to the Control treatment. Scanning Electron Microscope revealed growing interactions between biochar and methanogens over time. Real-time polymerase chain reaction showed that treated wood biochar produced the highest number of bacterial biomass. In addition, 16S amplicon-based sequencing identified a more robust archaeal community from treated biochar addition. Overall, the acid-alkali treatment of biochar represents an effective method of modifying biochar to improve its performance in anaerobic digestion.
Collapse
Affiliation(s)
- Tien Ngo
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Leadin S. Khudur
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Christian Krohn
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Soulayma Hassan
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Kraiwut Jansriphibul
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| | - Ibrahim Gbolahan Hakeem
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Kalpit Shah
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Aravind Surapaneni
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
- South East Water, 101 Wells Street, Frankston, VIC 3199, Australia
| | - Andrew S. Ball
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
16
|
Zhu H, An Q, Syafika Mohd Nasir A, Babin A, Lucero Saucedo S, Vallenas A, Li L, Baldwin SA, Lau A, Bi X. Emerging applications of biochar: A review on techno-environmental-economic aspects. BIORESOURCE TECHNOLOGY 2023; 388:129745. [PMID: 37690489 DOI: 10.1016/j.biortech.2023.129745] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Biomass fast pyrolysis produces bio-oil and biochar achieving circular economy. This review explored the emerging applications of biochar. Biochar possesses the unique properties for removing emerging contaminants and for mine remediation, owing to its negative charge surface, high specific surface area, large pore size distribution and surface functional groups. Additionally, biochar could adsorb impurities such as CO2, moisture, and H2S to upgrade the biogas. Customizing pyrolysis treatments, optimizing the feedstock and pyrolysis operating conditions enhance biochar production and improve its surface properties for the emerging applications. Life cycle assessment and techno-economic assessment indicated the benefits of replacing conventional activated carbon with biochar.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Qing An
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Thermal and Environmental Engineering Institute, Mechanical Engineering College, Tongji University, Shanghai 201800, China
| | - Amirah Syafika Mohd Nasir
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Alexandre Babin
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Sofia Lucero Saucedo
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Amzy Vallenas
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Loretta Li
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Susan Anne Baldwin
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Anthony Lau
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Xiaotao Bi
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
17
|
Kundu R, Kunnoth B, Pilli S, Polisetty VR, Tyagi RD. Biochar symbiosis in anaerobic digestion to enhance biogas production: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118743. [PMID: 37572403 DOI: 10.1016/j.jenvman.2023.118743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
In recent years, anaerobic digestion (AD) has gained popularity as a practical method for generating clean energy and efficiently managing organic waste. However, the effectiveness of the reactor is compromised by the accumulation of ammonia, acids, and nutrients, leading to inhibition and instability. Because of its adaptability, biochar (BC) has sparked a substantial interest in biogas production and can be created by charring biomass and waste materials. Adding BC to the AD process could yield the following benefits: mitigating toxic inhibition, reducing the duration of the methanogenic lag phase, immobilising functional bacteria, and enhancing the rate of electron transfer between methanogenic and acetogenic microorganisms. Nonetheless, there remains to be more comprehensive knowledge regarding the multifaceted function of BC and its intricate mechanisms in the generation of biogas in AD. The research summarises scattered information from the literature on BC production from various feedstocks and factors affecting its characteristics. Additionally, a comprehensive analysis of the utilisation of BC as an additive within AD is presented here, emphasising how BC characteristics impact AD processes and how they effectively engage key challenges.
Collapse
Affiliation(s)
- Ranarup Kundu
- Water and Environment Division, Department of Civil Engineering, National Institute of Technology, Warangal, Telangana, India
| | - Bella Kunnoth
- Water and Environment Division, Department of Civil Engineering, National Institute of Technology, Warangal, Telangana, India
| | - Sridhar Pilli
- Water and Environment Division, Department of Civil Engineering, National Institute of Technology, Warangal, Telangana, India.
| | - Venkateswara Rao Polisetty
- Water and Environment Division, Department of Civil Engineering, National Institute of Technology, Warangal, Telangana, India.
| | - R D Tyagi
- BOSK Bioproducts, Quebec City, QC, Canada
| |
Collapse
|
18
|
Valentin MT, Świechowski K, Białowiec A. Influence of Pre-Incubation of Inoculum with Biochar on Anaerobic Digestion Performance. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6655. [PMID: 37895637 PMCID: PMC10608094 DOI: 10.3390/ma16206655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
The application of biochar as an additive to enhance the anaerobic digestion (AD) of biomass has been extensively studied from various perspectives. This study reported, for the first time, the influence of biochar incubation in the inoculum on the anaerobic fermentation of glucose in a batch-type reactor over 20 days. Three groups of inoculum with the same characteristics were pre-mixed once with biochar for different durations: 21 days (D21), 10 days (D10), and 0 days (D0). The BC was mixed in the inoculum at a concentration of 8.0 g/L. The proportion of the inoculum and substrate was adjusted to an inoculum-to-substrate ratio of 2.0 based on the volatile solids. The results of the experiment revealed that D21 had the highest cumulative methane yield, of 348.98 mL, compared to 322.66, 290.05, and 25.15 mL obtained from D10, D0, and the control, respectively. Three models-modified Gompertz, first-order, and Autoregressive Integrated Moving Average (ARIMA)-were used to interpret the biomethane production. All models showed promising fitting of the cumulative biomethane production, as indicated by high R2 and low RMSE values. Among these models, the ARIMA model exhibited the closest fit to the actual data. The biomethane production rate, derived from the modified Gompertz Model, increased as the incubation period increased, with D21 yielding the highest rate of 31.13 mL/gVS. This study suggests that the application of biochar in the anaerobic fermentation of glucose, particularly considering the short incubation period, holds significant potential for improving the overall performance of anaerobic digestion.
Collapse
Affiliation(s)
- Marvin T. Valentin
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland or (M.T.V.); (K.Ś.)
- Benguet State University, Km. 5, La Trinidad, Benguet 2601, Philippines
| | - Kacper Świechowski
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland or (M.T.V.); (K.Ś.)
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland or (M.T.V.); (K.Ś.)
| |
Collapse
|
19
|
Valentin MT, Luo G, Zhang S, Białowiec A. Direct interspecies electron transfer mechanisms of a biochar-amended anaerobic digestion: a review. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:146. [PMID: 37784139 PMCID: PMC10546780 DOI: 10.1186/s13068-023-02391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/09/2023] [Indexed: 10/04/2023]
Abstract
This paper explores the mechanisms of biochar that facilitate direct interspecies electron transfer (DIET) among syntrophic microorganisms leading to improved anaerobic digestion. Properties such as specific surface area (SSA), cation exchange capacity (CEC), presence of functional groups (FG), and electrical conductivity (EC) were found favorable for increased methane production, reduction of lag phase, and adsorption of inhibitors. It is revealed that these properties can be modified and are greatly affected by the synthesizing temperature, biomass types, and residence time. Additionally, suitable biochar concentration has to be observed since dosage beyond the optimal range can create inhibitions. High organic loading rate (OLR), pH shocks, quick accumulation and relatively low degradation of VFAs, and the presence of heavy metals and toxins are the major inhibitors identified. Summaries of microbial community analysis show fermentative bacteria and methanogens that are known to participate in DIET. These are Methanosaeta, Methanobacterium, Methanospirillum, and Methanosarcina for the archaeal community; whereas, Firmicutes, Proteobacteria, Synergistetes, Spirochetes, and Bacteroidetes are relatively for bacterial analyses. However, the number of defined cocultures promoting DIET is very limited, and there is still a large percentage of unknown bacteria that are believed to support DIET. Moreover, the instantaneous growth of participating microorganisms has to be validated throughout the process.
Collapse
Affiliation(s)
- Marvin T. Valentin
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
- Department of Science and Technology, Engineering and Industrial Research, National Research Council of the Philippines, Taguig, Philippines
- Benguet State University, Km. 5, La Trinidad, 2601 Benguet, Philippines
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
- Department of Agricultural and Biosystems Engineering, Iowa State University, 605 Bissell Road, Ames, IA 50011 USA
| |
Collapse
|
20
|
Wystalska K, Malińska K, Sobik-Szołtysek J, Dróżdż D, Meers E. Properties of Poultry-Manure-Derived Biochar for Peat Substitution in Growing Media. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6392. [PMID: 37834529 PMCID: PMC10573505 DOI: 10.3390/ma16196392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Peat is considered a contentious input in horticulture. Therefore, there is a search for suitable alternatives with similar properties that can be used for partial or complete peat substitution in growing media. Poultry-manure-derived biochar (PMB) is considered such an alternative. This study aimed at determining the properties of PMBs obtained through pyrolysis at selected temperatures and assessing their potentials to substitute peat in growing media based on the selected properties. The scope included the laboratory-scale pyrolysis of poultry manure at the temperatures of 425-725 °C; the determination of selected physico-chemical and physical properties of the obtained biochars, including the contaminants; and the assessment of the potentials of produced biochars to be used as peat substitutes. PMBs contained less than 36% of total organic carbon (TOC). The contents of P and K were about 2.03-3.91% and 2.74-5.13%, respectively. PMBs did not retain N. They can be safely used as the concentrations of heavy metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinatd biphenyls (PCBs), dioxins, and furans are within the permissible values (except for Cr). Due to high pH (9.24-12.35), they can have a liming effect. High water holding capacity (WHC) in the range of 158-232% w/w could allow for the maintenance of moisture in the growing media. PMBs obtained at 525 °C, 625 °C, and 725 °C showed required stability (H/Corg < 0.7).
Collapse
Affiliation(s)
- Katarzyna Wystalska
- Faculty of Infrastructure and Environment, Czestochowa University of Technology, Brzeźnicka 60A, 42-200 Częstochowa, Poland; (K.W.); (J.S.-S.); (D.D.)
| | - Krystyna Malińska
- Faculty of Infrastructure and Environment, Czestochowa University of Technology, Brzeźnicka 60A, 42-200 Częstochowa, Poland; (K.W.); (J.S.-S.); (D.D.)
| | - Jolanta Sobik-Szołtysek
- Faculty of Infrastructure and Environment, Czestochowa University of Technology, Brzeźnicka 60A, 42-200 Częstochowa, Poland; (K.W.); (J.S.-S.); (D.D.)
| | - Danuta Dróżdż
- Faculty of Infrastructure and Environment, Czestochowa University of Technology, Brzeźnicka 60A, 42-200 Częstochowa, Poland; (K.W.); (J.S.-S.); (D.D.)
| | - Erik Meers
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
| |
Collapse
|
21
|
Gao Q, Li L, Wang K, Zhao Q. Mass Transfer Enhancement in High-Solids Anaerobic Digestion of Organic Fraction of Municipal Solid Wastes: A Review. Bioengineering (Basel) 2023; 10:1084. [PMID: 37760186 PMCID: PMC10525600 DOI: 10.3390/bioengineering10091084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The increasing global population and urbanization have led to a pressing need for effective solutions to manage the organic fraction of municipal solid waste (OFMSW). High-solids anaerobic digestion (HS-AD) has garnered attention as a sustainable technology that offers reduced water demand and energy consumption, and an increased biogas production rate. However, challenges such as rheology complexities and slow mass transfer hinder its widespread application. To address these limitations, this review emphasizes the importance of process optimization and the mass transfer enhancement of HS-AD, and summarizes various strategies for enhancing mass transfer in the field of HS-AD for the OFMSW, including substrate pretreatments, mixing strategies, and the addition of biochar. Additionally, the incorporation of innovative reactor designs, substrate pretreatment, the use of advanced modeling and simulation techniques, and the novel conductive materials need to be investigated in future studies to promote a better coupling between mass transfer and methane production. This review provides support and guidance to promote HS-AD technology as a more viable solution for sustainable waste management and resource recovery.
Collapse
Affiliation(s)
| | | | | | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
22
|
Li H, Wang B, Siri M, Liu C, Feng C, Shao X, Liu K. Calcium-modified biochar rather than original biochar decreases salinization indexes of saline-alkaline soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27701-y. [PMID: 37209335 DOI: 10.1007/s11356-023-27701-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
We investigated the improvement effects of herbaceous (corn) and woody (oak sawdust) biochar with their calcium modification on saline alkali soil. The addition of unmodified biochar regardless of types had no significant effect on the soluble cations (Na+, Ca2+, and Mg2+) and the main indicators of soil salinity and alkalinity (pH, sodium adsorption ratio (SAR), exchangeable sodium percentage (ESP), and total alkalinity (TA)), but the addition of calcium modified biochar decreased these soluble cations and indicators, especially the addition of modified woody biochar (PBM). Compared to CK, TA decreased by 70.02% and 89.25% in PBM with 2% and 4% addition, respectively. Soil ESP and SAR showed a significantly positive correlation with pH and TA, which indicated that soil salinization and alkalization were synchronized. These results showed that the calcium modified biochar, especially the modified woody biochar, instead of the original biochar could be potential soil amendments for the improvement of saline-alkali soil.
Collapse
Affiliation(s)
- Hui Li
- College of Grass Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Baojie Wang
- College of Grass Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Muji Siri
- College of Grass Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Cheng Liu
- College of Grass Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Changliang Feng
- College of Grass Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xinqing Shao
- College of Grass Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Kesi Liu
- College of Grass Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
- National Field Scientific Observation and Research Station of Grassland Ecosystem in Guyuan, Guyuan, 076550, Hebei, China.
| |
Collapse
|
23
|
Yang X, Li R, Li Y, Mazarji M, Wang J, Zhang X, Song D, Wang Y, Zhang Z, Yang Y, Pan J. Composting pig manure with nano-zero-valent iron amendment: Insights into the carbon cycle and balance. BIORESOURCE TECHNOLOGY 2023; 371:128615. [PMID: 36640823 DOI: 10.1016/j.biortech.2023.128615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The effectiveness of nano-zero-valent-iron (NZVI) addition during composting of pig manure (PM) was investigated. Different dosages of NZVI were mixed with PM substrate during a 50 days composting process. The results revealed that the higher share of NZVI addition, the higher OM degradation rate is. On contrary, it was observed that the higher share of NZVI addition, the lower the fulvic acid and the humin degradation rate is. Meanwhile, NZVI amendment increased the CO2 and CH4 emissions by 29-47 % and 53-57 %, respectively. The in-depth analysis showed that NZVI addition increased the activity of Sphaerobacter and Luteimonas, which eventually led to the degradation of hard-to-degrade OM faster. Additionally, NZVI was found to increase the filtration of microorganisms, reducing the toxicity and hygiene of compost products. No significant improvement in humic substance enhancement was observed during composting with NZVI addition but improved OM degradation.
Collapse
Affiliation(s)
- Xu Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - You Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Mahmoud Mazarji
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingwen Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Dan Song
- Chongqing Academy of Ecology and Environmental Sciences, Chongqing 401147, China
| | - Yajing Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yadong Yang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
24
|
Faisal S, Ebaid R, Xiong M, Huang J, Wang Q, El-Hefnawy M, Abomohra A. Maximizing the energy recovery from rice straw through two-step conversion using eggshell-catalytic pyrolysis followed by enhanced anaerobic digestion using calcium-rich biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159984. [PMID: 36356751 DOI: 10.1016/j.scitotenv.2022.159984] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic digestion of lignocelluloses for biogas production is greatly restricted by the poor biomass degradability. Herein, a novel approach is suggested to enhance the energy recovery from rice straw through a two-step conversion using eggshell-based catalytic pyrolysis followed by biochar-based anaerobic co-digestion. Pyrolysis with eggshell significantly enhanced the crude bio-oil yield by 4.6 %. Anaerobic digestion of rice straw using 4 g L-1 of rice straw biochar (RB) showed the highest recorded biogas yield of 503.7 L kg-1 VS, with 268.6 L kg-1 VS biomethane yield. However, 4 g L-1 of calcium-enriched eggshell rice straw biochar (ERB) enhanced the biomethane yield to 281.8 L kg-1 VS, which represented 95.6 % higher than the control. It was attributed to enhancement of biomethanation, which resulted in 74.5 % maximum recorded biomethane content at the 7th day of anaerobic digestion. Microbial analysis confirmed that Methanosarciniales was the most dominant Archael group in the control (14.84 %), which increased sharply to 73.91 % and 91.66 % after addition of 4 g L-1 RB and ERB, respectively. The suggested route enhanced the energy recovery in the form of bio-oil and biomethane by 41.6 %.
Collapse
Affiliation(s)
- Shah Faisal
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, PR China; Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610065, PR China
| | - Reham Ebaid
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610065, PR China
| | - Min Xiong
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, PR China
| | - Jin Huang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, PR China
| | - Qingyuan Wang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, PR China; Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610065, PR China.
| | - Mohamed El-Hefnawy
- Department of Chemistry, Rabigh College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia; Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Abdelfatah Abomohra
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
25
|
Başar İA, Eskicioglu C, Perendeci NA. Biochar and wood ash amended anaerobic digestion of hydrothermally pretreated lignocellulosic biomass for biorefinery applications. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 154:350-360. [PMID: 36323224 DOI: 10.1016/j.wasman.2022.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/10/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the effect of biochar and wood ash amendment on the anaerobic digestion of hydrothermally pretreated lignocellulosic biomass. Hydrothermal pretreatment was performed on switchgrass at 200, 250, and 300 °C with 0, 30, and 60 min of retention times. The pretreatment method was optimized using the response surface method for enhanced methane production. At the optimum pretreatment (200 °C/0 min retention time), a specific methane yield of 256.9 mL CH4/g volatile solids (VS), corresponding to an increase of 32.8% with respect to the untreated substrate, was obtained. Hydrothermal pretreatment was beneficial for methane production at temperatures lower than 220 °C and retention times shorter than 20 min. At more severe pretreatment conditions than 220°-20 min, sugars were degraded into other products, causing a decrease in the methane yield. The hydrothermal degradation products, i.e., acetic acid, lactic acid, furfural, and hydroxymethylfurfural concentrations, were also measured and modeled. The addition of biochar and wood ash to BMP assays were tested at 2, 9, 16 g/g VSinoculum ratios and <63, 63-125, 125-250 μm particle sizes. A decline in methane production was observed for all tested doses and particle sizes of both additives. The decline in the methane potential was proportional to the doses and particle sizes. Kinetic modeling of BMP test results also supported that using the additives was not beneficial. Based on the result of this study, it was found that the use of biochar and wood ash in a pretreated lignocellulosic biomass processing biorefinery would not be beneficial.
Collapse
Affiliation(s)
- İbrahim Alper Başar
- Department of Environmental Engineering, Akdeniz University, Antalya, Turkey; UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, Canada
| | - Cigdem Eskicioglu
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, Canada
| | | |
Collapse
|
26
|
Li Y, Zhong W, Ning Z, Feng J, Niu J, Li Z. Effect of biochar on antibiotic resistance genes in the anaerobic digestion system of antibiotic mycelial dreg. BIORESOURCE TECHNOLOGY 2022; 364:128052. [PMID: 36191748 DOI: 10.1016/j.biortech.2022.128052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
To address the problem of antibiotic mycelial dreg (AMD) treatment and removal of antibiotic resistance genes (ARGs), this study adopted anaerobic digestion (AD) technology, and added biochar (BC) and biochar loaded with nanosized zero-valent iron (nZVI-BC) to promote the AD of AMD and enhance the removal of ARGs. Results showed that nZVI-BC was better than BC in promoting AD due to the hydrogen evolution corrosion and the synergistic effect of nZVI and BC. In addition, BC and nZVI-BC can enhance the oxidative stress response and reduce ammonia stress phenomenon, which significantly reduces the abundance of aadA, ant(2″)-Ⅰ, qacEdelta1 and sul1. In conclusion, the enhance effect of nZVI-BC is greater than BC. The removal efficiency rates of nZVI-BC on the above-mentioned four ARGs were improved by 33%, 9%, 24% and 11%.
Collapse
Affiliation(s)
- Yue Li
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Weizhang Zhong
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China.
| | - Zhifang Ning
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Jing Feng
- Key Laboratory of Energy Resource Utilization from Agricultural Residues, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chinese Academy of Agricultural Planning and Engineering, Beijing 100125, China
| | - Jianrui Niu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Zaixing Li
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| |
Collapse
|
27
|
Hoang AT, Goldfarb JL, Foley AM, Lichtfouse E, Kumar M, Xiao L, Ahmed SF, Said Z, Luque R, Bui VG, Nguyen XP. Production of biochar from crop residues and its application for anaerobic digestion. BIORESOURCE TECHNOLOGY 2022; 363:127970. [PMID: 36122843 DOI: 10.1016/j.biortech.2022.127970] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestion (AD) is a viable and cost-effective method for converting organic waste into usable renewable energy. The efficiency of organic waste digestion, nonetheless, is limited due to inhibition and instability. Accordingly, biochar is an effective method for improving the efficiency of AD by adsorbing inhibitors, promoting biogas generation and methane concentration, maintaining process stability, colonizing microorganisms selectively, and mitigating the inhibition of volatile fatty acids and ammonia. This paper reviews the features of crop waste-derived biochar and its application in AD systems. Four critical roles of biochar in AD systems were identified: maintaining pH stability, promoting hydrolysis, enhancing the direct interspecies electron transfer pathway, and supporting microbial development. This work also highlights that the interaction between biochar dose, amount of organic component in the substrate, and inoculum-to-substrate ratio should be the focus of future research before deploying commercial applications.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Vietnam.
| | - Jillian L Goldfarb
- Cornell University Department of Biological and Environmental Engineering, Ithaca, NY, United States of America
| | - Aoife M Foley
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Ashby Building, Belfast BT9 5AH, United Kingdom; Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRAE, CEREGE, Avenue Louis Philibert, Aix en Provence 13100, France
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, India
| | - Leilei Xiao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Zafar Said
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates; U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Cordoba, Campus de Rabanales, Edificio Marie Curie, Ctra. Nnal. IV-A, Km. 396, E-14014 Cordoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russian Federation
| | - Van Ga Bui
- University of Science and Technology, The University of Da Nang, Da Nang, Viet Nam
| | - Xuan Phuong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Vietnam
| |
Collapse
|
28
|
El Nemr A, Hassaan MA, Elkatory MR, Ragab S, El-Nemr MA, Tedone L, De Mastro G, Pantaleo A. Enhancement of biogas production from individually or co-digested green algae Cheatomorpha linum using ultrasound and ozonation treated biochar. ULTRASONICS SONOCHEMISTRY 2022; 90:106197. [PMID: 36242791 PMCID: PMC9568882 DOI: 10.1016/j.ultsonch.2022.106197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
This paper proposes the use of modified biochar, derived from Sawdust (SD) biomass using sonication (SSDB) and Ozonation (OSDB) processes, as an additive for biogas production from green algae Cheatomorpha linum (C. linum) either individually or co-digested with natural diet for rotifer culture (S. parkel). Brunauer-Emmett-Teller (BET), Fourier-Transform Infrared (FTIR), thermal-gravimetric (TGA), and X-ray diffraction (XRD) analyses were used to characterize the generated biochar. Ultrasound (US) specific energy, dose, intensity and dissolved ozone (O3) concentration were also calculated. FTIR analyses proved the capability of US and ozonation treatment of biochar to enhance the biogas production process. The kinetic model proposed fits successfully with the data of the experimental work and the modified Gompertz models that had the maximum R2 value of 0.993 for 150 mg/L of OSDB. The results of this work confirmed the significant impact of US and ozonation processes on the use of biochar as an additive in biogas production. The highest biogas outputs 1059 mL/g VS and 1054 mL/g VS) were achieved when 50 mg of SSDB and 150 mg of OSDB were added to C. linum co-digested with S. parkle.
Collapse
Affiliation(s)
- Ahmed El Nemr
- National Institute of Oceanography and Fisheries (NIOF), Marine Pollution Department, Environment Division, Alexandria 21556, Egypt.
| | - Mohamed Aly Hassaan
- National Institute of Oceanography and Fisheries (NIOF), Marine Pollution Department, Environment Division, Alexandria 21556, Egypt.
| | - Marwa Ramadan Elkatory
- Advanced Technology and New Materials Research Institute, City for Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Safaa Ragab
- National Institute of Oceanography and Fisheries (NIOF), Marine Pollution Department, Environment Division, Alexandria 21556, Egypt
| | - Mohamed Ahmed El-Nemr
- Department of Chemical Engineering, Faculty of Engineering, Minia University, Minia 61519, Egypt
| | - Luigi Tedone
- Bari University, Department of Agriculture and Environmental Sciences, Bari 70121, Italy.
| | - Guisepe De Mastro
- Bari University, Department of Agriculture and Environmental Sciences, Bari 70121, Italy.
| | - Antonio Pantaleo
- Bari University, Department of Agriculture and Environmental Sciences, Bari 70121, Italy.
| |
Collapse
|
29
|
de Quadros TCF, Mangerino Sicchieri I, Fernandes F, Kiyomi Kuroda E. Selection of additive materials for anaerobic co-digestion of fruit and vegetable waste and layer chicken manure. BIORESOURCE TECHNOLOGY 2022; 361:127659. [PMID: 35872273 DOI: 10.1016/j.biortech.2022.127659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to assess the potential of different additive materials in enhancing the stability and methane production of anaerobic co-digestion of fruit and vegetable waste and layer chicken manure. A biochemical methane potential assay was conducted to evaluate the co-digestion of substrates with the addition of additive materials (10 g L-1): biochars produced (450 and 550 °C) (from fruit and vegetable waste, layer chicken manure, and wood pruning waste), powdered activated carbon, and zeolites. All additive materials increased methane production. Biochars showed better results regarding methane production (increments of 17 to 28 %). The surface of biochars favored the adhesion of microorganisms, this was confirmed by spectra after co-digestion. Furthermore, the redox-active groups in the biochars may have contributed to the microbiological syntrophism, increasing methane rates. These materials are viable for application in co-digestion systems, and the use of waste for their production is an option for solid waste management.
Collapse
Affiliation(s)
- Thainara Camila Fernandes de Quadros
- Department of Civil Engineering, Center for Technology and Urbanism, State University of Londrina, Rodovia Celso Garcia Cid (PR-445), km 380, Londrina, Paraná 86057-970, Brazil.
| | - Isabela Mangerino Sicchieri
- Department of Civil Engineering, Center for Technology and Urbanism, State University of Londrina, Rodovia Celso Garcia Cid (PR-445), km 380, Londrina, Paraná 86057-970, Brazil
| | - Fernando Fernandes
- Department of Civil Engineering, Center for Technology and Urbanism, State University of Londrina, Rodovia Celso Garcia Cid (PR-445), km 380, Londrina, Paraná 86057-970, Brazil
| | - Emília Kiyomi Kuroda
- Department of Civil Engineering, Center for Technology and Urbanism, State University of Londrina, Rodovia Celso Garcia Cid (PR-445), km 380, Londrina, Paraná 86057-970, Brazil
| |
Collapse
|
30
|
Jang HM, Kan E. Enhanced removal of antibiotic resistance genes and human bacterial pathogens during anaerobic digestion of dairy manure via addition of manure biochar. CHEMOSPHERE 2022; 304:135178. [PMID: 35660057 DOI: 10.1016/j.chemosphere.2022.135178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
In this study, the response of antibiotic resistance genes (ARGs), mobile gene elements (intI1), and human bacterial pathogens (HBPs) to addition of manure biochar (1-10 g/L) was studied in anaerobic digestion (AD) at 20-55 °C for treating dairy manure. Twelve ARGs comprising five tetracycline resistance genes, two sulfonamide resistance genes, two macrolide resistance genes, three β-lactam antibiotic resistance genes, and intI1 were analyzed by quantitative PCR. High-throughput sequencing data were matched against a database of putative 538 HBPs. Significant removal of ARGs (except for tetO and ermB) and intI1 was observed in all the samples. Manure biochar resulted in significant removal of ARGs and HBPs; however, negative effects were also observed in some conditions. This is the first study to provide to explore the fates of ARGs and HBPs by adding manure biochar to AD.
Collapse
Affiliation(s)
- Hyun Min Jang
- Department of Environmental and Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Department of Environmental Engineering, Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Eunsung Kan
- Department of Biological and Agricultural Engineering & Texas A&M AgriLife Research Center, Texas A&M University, Stephenville, TX, 76401, USA; Department of Wildlife, Sustainability, and Ecosystem Sciences, Tarleton State University, Stephenville, TX, 76401, USA.
| |
Collapse
|
31
|
Jiao Y, Zhang N, He C, Ma X, Liu X, Liu L, Hou T, Wang Z, Pan X. Preparation of sludge-corn stalk biochar and its enhanced anaerobic fermentation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Xu J, Kumar Khanal S, Kang Y, Zhu J, Huang X, Zong Y, Pang W, Surendra KC, Xie L. Role of interspecies electron transfer stimulation in enhancing anaerobic digestion under ammonia stress: Mechanisms, advances, and perspectives. BIORESOURCE TECHNOLOGY 2022; 360:127558. [PMID: 35780934 DOI: 10.1016/j.biortech.2022.127558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Ammonia stress is a commonly encountered issue in anaerobic digestion (AD) process when treating proteinaceous substrates. The enhanced relationship between syntrophic bacteria and methanogens triggered by interspecies electron transfer (IET) stimulation is one of the potential mechanisms for an improved methane yield from the AD plant under ammonia-stressed condition. There is, however, lack of synthesized information on the mechanistic understanding of IET facilitation in the ammonia-stressed AD processes. This review critically discusses recovery of AD system from ammonia-stressed condition, focusing on H2 transfer, redox compound-mediated IET, and conductive material-induced direct IET. The effects and the associated mechanisms of IET stimulation on mitigating ammonia stress and promoting methanogenesis were elucidated. Finally, prospects and challenges of IET stimulation were critically discussed. This review highlights, for the first time, the critical role of IET stimulation in enhancing AD process under ammonia-stressed condition.
Collapse
Affiliation(s)
- Jun Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, 1955 East-West Road, Agricultural Science Building 218, Honolulu, HI 96822, USA
| | - Yurui Kang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jiaxin Zhu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xia Huang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yang Zong
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Weihai Pang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, 1955 East-West Road, Agricultural Science Building 218, Honolulu, HI 96822, USA; Global Institute for Interdisciplinary Studies, 44600 Kathmandu, Nepal
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
33
|
Singh R, Paritosh K, Pareek N, Vivekanand V. Integrated system of anaerobic digestion and pyrolysis for valorization of agricultural and food waste towards circular bioeconomy: Review. BIORESOURCE TECHNOLOGY 2022; 360:127596. [PMID: 35809870 DOI: 10.1016/j.biortech.2022.127596] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Agricultural and food waste have become major issue affecting the environment and climate owing to growing population. However, such wastes have potential to produce renewable fuels which will help to meet energy demands. Numerous valorization pathways like anaerobic digestion, pyrolysis, composting and landfilling have been employed for treating such wastes. However, it requires integrated system that could utilize waste and promote circular bioeconomy. This review explores integration of anaerobic digestion and pyrolysis for treating agricultural and food waste. Proposed system examines the production of biochar and pyro-oil by pyrolysis of digestate. The use of this biochar for stabilizing anaerobic digestion process, biogas purification and soil amendment will promote the circular bioeconomy. Kinetic models and framework of techno-economic analysis of system were discussed and knowledge gaps have been identified for future research. This system will provide sustainable approach and offer carbon capture and storage in form of biochar in soil.
Collapse
Affiliation(s)
- Rickwinder Singh
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India
| | - Kunwar Paritosh
- Hybred Energy Solutions Private Limited, Gift City, Gandhinagar 382007, Gujarat, India
| | - Nidhi Pareek
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305 817, Rajasthan, India
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur 302017, Rajasthan, India.
| |
Collapse
|
34
|
Linsong H, Lianhua L, Ying L, Changrui W, Yongming S. Bioaugmentation with methanogenic culture to improve methane production from chicken manure in batch anaerobic digestion. CHEMOSPHERE 2022; 303:135127. [PMID: 35654231 DOI: 10.1016/j.chemosphere.2022.135127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
This study sought to investigate the effect of bioaugmentation on batch anaerobic digestion of chicken manure. The digestion performance with and without bioaugmentation and bioaugmented efficiency under different dosages were compared. The results demonstrated that bioaugmentation increased the methane yield and shortened the methane production time in batch reactors. Compared to the un-bioaugmented control, the methane yield of bioaugmented digesters was increased by 1.2-, 1.7-, 2.2-, 3.4-, and 3.6-fold at addition ratios of 0.07, 0.14, 0.21, 0.27, and 0.34 g VS bioaugmentation seed (BS)/g VSCM, respectively. However, higher bioaugmentation doses (0.34 g VSBS/g VSCM) did not exhibit significantly improved bioaugmentation efficiency, thus, the recommended dose is 0.27 g VSBS/g VSCM for biomethane conversion of CM. Moreover, whole genome pyrosequencing revealed that Methanoculleus and Methanobrevibacter predominated the non-bioaugmentation digesters, whereas Methanothrix, Methanobacterium, and Methanomassiliicoccus were the dominant methanogens in bioaugmentation digesters. The increased methane may be explained by an increase in the Methanothrix population, which accelerated acetic acid degradation. With bioaugmentation the mainly methanogenic pathways have become more diverse. From gene function perspective, bioaugmentation enhanced metabolic activities in digestor which function better in metabolism.
Collapse
Affiliation(s)
- He Linsong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510006, China; Laboratory of Biomass Bio-chemical Conversion, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Li Lianhua
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510006, China; Laboratory of Biomass Bio-chemical Conversion, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| | - Li Ying
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510006, China; Laboratory of Biomass Bio-chemical Conversion, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China.
| | - Wang Changrui
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510006, China; Laboratory of Biomass Bio-chemical Conversion, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China; Key Laboratory of Complementary Energy System of Biomass and Solar Energy, Gansu Province, Lanzhou, 730050, China
| | - Sun Yongming
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510006, China; Laboratory of Biomass Bio-chemical Conversion, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China
| |
Collapse
|
35
|
Zheng X, Zou D, Wu Q, Wang H, Li S, Liu F, Xiao Z. Review on fate and bioavailability of heavy metals during anaerobic digestion and composting of animal manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:75-89. [PMID: 35809372 DOI: 10.1016/j.wasman.2022.06.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 05/16/2023]
Abstract
Anaerobic digestion and composting are attracting increasing attention due to the increased production of animal manure. It is essential to know about the fate and bioavailability of heavy metals (HMs) for further utilisation of animal manure. This review has systematically summarised the migration of HMs and the transformation of several typical HMs (Cu, Zn, Cd, As, and Pb) during anaerobic digestion and composting. The results showed that organic matter degradation increased the HMs content in biogas residue and compost (with the exception of As in compost). HMs migrated into biogas residue during anaerobic digestion through various mechanisms. Most of HMs in biogas residue and compost exceeded relevant standards. Then, anaerobic digestion increased the bioavailable fractions proportion in Zn and Cd, decreased the F4 proportion, and raised them more than moderate environmental risks. As (III) was the main species in the digester, which extremely increased As toxicity. The increase of F3 proportion in Cu and Pb was due to sulphide formation in biogas residue. Whereas, the high humus content in compost greatly increased the F3 proportion in Cu. The F1 proportion in Zn decreased, but the plant availability of Zn in compost did not reduce significantly. Cd and As mainly converted the bioavailable fractions into stable fractions during composting, but As (V) toxicity needs to be concerned. Moreover, additives are only suitable for animal manure treated with slightly HM contaminated. Therefore, it is necessary to combine more comprehensive methods to improve the manure treatment and make product utilisation safer.
Collapse
Affiliation(s)
- Xiaochen Zheng
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Dongsheng Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Qingdan Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Hua Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| | - Shuhui Li
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Fen Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Zhihua Xiao
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| |
Collapse
|
36
|
Kizito S, Jjagwe J, Mdondo SW, Nagawa CB, Bah H, Tumutegyereize P. Synergetic effects of biochar addition on mesophilic and high total solids anaerobic digestion of chicken manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115192. [PMID: 35550972 DOI: 10.1016/j.jenvman.2022.115192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/09/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
High solids anaerobic digestion (AD) of chicken manure (CM) is often challenging due to ammonia-N inhibition and accumulation of volatile fatty acids (VFAs). This study evaluated the effect of adding biochars from different feedstock to ameliorate semi-dry AD of fresh CM during batch fermentation. Experiments were performed in 300 mL at two total solid (TS) levels (12% and 15%) under mesophilic (36 ±1ᵒC) conditions for 55 d, using activated sludge as inoculum. Treatments included: fresh CM (at 12% or 15% TS) mixed separately with rice husks char (RB), wood char (WB) and bamboo char (BB) at biochar dosages of 2.5%, 5% and 10% of TS in the CM, inoculum only and inoculum plus CM without addition of char as the control. Results indicated that addition of biochar reduced the lag phases to 4-5.4 d and AD performances were significantly improved with total volatile solids removal of 53-67% and 62-71%, and cumulative methane of 277-380 mL/gVS (CH4 content ≈ 51-63%) and 297-438 mL/gVS (CH4 content ≈ 49-67%) at 12% and 15% TS, respectively. Biochar buffered over acidification and stabilized pH in the range of 6.5-7.8 but mild ammonia inhibition still occurred in all biochar treatments due to the high residual total ammonia-N (4.3 g-5.6 g/L). For all the investigated parameters, WB amended digesters exhibited the best results owing to its high specific surface area, porosity, cationic exchange capacity, and elemental composition which were superior to those of RB and BB. At 10% dosage of all tested biochars, the AD process was more stable and methane content neared optimal of >65% CH4. Therefore, addition of biochar from lignocellulosic materials at a given threshold dosage could promote semi-dry and dry biogas production from chicken manure and thus add value to this waste which in most cases is improperly managed.
Collapse
Affiliation(s)
- Simon Kizito
- Department of Forestry, Biodiversity and Tourism, School of Forestry, Environmental and Geographical Sciences, Makerere University, P.O.Box 7062, Kampala, Uganda.
| | - Joseph Jjagwe
- Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O.Box.7062, Kampala, Uganda
| | - Simon Wandera Mdondo
- Department of Civil, Construction and Environmental Engineering, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 43844-00100, Nairobi, Kenya
| | - Christine Betty Nagawa
- Department of Forestry, Biodiversity and Tourism, School of Forestry, Environmental and Geographical Sciences, Makerere University, P.O.Box 7062, Kampala, Uganda
| | - Hamidou Bah
- Institute Superior Agronomy and Veterinary of Faranah (ISAV/F), Faranah 131, Guinea
| | - Peter Tumutegyereize
- Department of Agricultural and Biosystems Engineering, School of Food Technology, Nutrition and Bioengineering, Makerere University, P.O. Box 7062, Kampala, Uganda
| |
Collapse
|
37
|
Lin T, Meng F, Zhang M, Liu Q. Effects of different low temperature pretreatments on properties of corn stover biochar for precursors of sulfonated solid acid catalysts. BIORESOURCE TECHNOLOGY 2022; 357:127342. [PMID: 35605770 DOI: 10.1016/j.biortech.2022.127342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
In this study, the effects of different pretreatment methods including phosphoric acid (PA), freeze drying (FD) and phosphoric acid-freeze drying combined (PA-FD) pretreatment on corn stover characteristics and pyrolysis of corn stover samples was investigated. The results demonstrated that the physiochemical properties of biochars varied significantly. In comparison, PA pretreatment could effectively remove a large portion of inorganics and improve the fuel characteristics. PA-CSB-600 had a greater HHV, lower O/C and H/C ratios, and a lower biochar energy yield (Ye), indicating the possibility for an attractive fuel source. PA-FD pretreatment would significantly affected cell volume and caused mechanical damage to corn stover structure. As a sulfonated solid acid catalyst precursor, the results of cellulose catalytic hydrolysis indicated that the density of -SO3H in FD-CSA was much higher than PA-FD-CSA, but lower surface special area. Specifically, PA-FD-CSB prepared at 600 °C resulted in the maximum increase of cellulose conversion by 34.7-81.3%.
Collapse
Affiliation(s)
- Tianchi Lin
- Faculty of Engineering, Shenyang Agricultural University, Shenyang 110866, China
| | - Fanbin Meng
- Faculty of Engineering, Shenyang Agricultural University, Shenyang 110866, China
| | - Min Zhang
- Faculty of Engineering, Shenyang Agricultural University, Shenyang 110866, China
| | - Qingyu Liu
- Faculty of Engineering, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
38
|
Ziganshina EE, Ziganshin AM. Anaerobic Digestion of Chicken Manure in the Presence of Magnetite, Granular Activated Carbon, and Biochar: Operation of Anaerobic Reactors and Microbial Community Structure. Microorganisms 2022; 10:microorganisms10071422. [PMID: 35889142 PMCID: PMC9323702 DOI: 10.3390/microorganisms10071422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023] Open
Abstract
The influence of magnetite nanoparticles, granular activated carbon (GAC), and biochar, as well as their combinations on the anaerobic digestion of chicken manure and the structure of microbial communities was studied. The addition of magnetite, GAC, and biochar increased the rate of methane production and the total methane yield. It has been observed that these additives stimulated anaerobic microorganisms to reduce the concentration of accumulated volatile organic acids. Various bacterial species within the classes Bacteroidia and Clostridia were found at higher levels in the anaerobic reactors but in different proportions depending on the experiment. Members of the genera Methanosarcina, Methanobacterium, Methanothrix, and Methanoculleus were mainly detected within the archaeal communities in the anaerobic reactors. Compared to the 16S rRNA gene-based study, the mcrA gene approach allowed a higher level of Methanosarcina in the system with GAC + magnetite to be detected. Based on our findings, the combined use of granular activated carbon and magnetite at appropriate dosages will improve biomethane production.
Collapse
|
39
|
Pan X, Zhang Y, He C, Li G, Ma X, Zhang Q, Liu L, Lan M, Jiao Y. Enhancement of anaerobic fermentation with corn straw by pig bone-derived biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154326. [PMID: 35257750 DOI: 10.1016/j.scitotenv.2022.154326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/11/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Different sources of biochar exhibit different effects on anaerobic fermentation. Here, the effects of activation temperature, activation time, impregnation ratio, and pickling times on the properties of pig bone-derived biochar additives were explored by orthogonal experiments. The pig bone-derived biochar with better performance was optimized to enhance the anaerobic fermentation. The results showed that when the preparation conditions of biochar were as follows: activation temperature of 700 °C, impregnation ratio of 2, activation time of 90 min, and pickling times of 2, the cumulative methane production of corn stalk by anaerobic fermentation exhibited the highest value of 164.54 mL/g VS, which was 68% higher than the control group. The correlation between the characteristics of biochar for promoting anaerobic fermentation and the performance of anaerobic fermentation was established. Interestingly, the pig bone-derived biochar can buffer pH value in straw anaerobic fermentation.
Collapse
Affiliation(s)
- Xiaohui Pan
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yun Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao He
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Gang Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoran Ma
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Liang Liu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Mingming Lan
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Youzhou Jiao
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
40
|
Awasthi SK, Sarsaiya S, Kumar V, Chaturvedi P, Sindhu R, Binod P, Zhang Z, Pandey A, Awasthi MK. Processing of municipal solid waste resources for a circular economy in China: An overview. FUEL 2022; 317:123478. [DOI: 10.1016/j.fuel.2022.123478] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
41
|
Cavali M, Libardi Junior N, Mohedano RDA, Belli Filho P, da Costa RHR, de Castilhos Junior AB. Biochar and hydrochar in the context of anaerobic digestion for a circular approach: An overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153614. [PMID: 35124030 DOI: 10.1016/j.scitotenv.2022.153614] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Biochar and hydrochar are carbonaceous materials with valuable applications. They can be synthesized from a wide range of organic wastes, including digestate. Digestate is the byproduct of anaerobic digestion (AD), which is performed for bioenergy (biogas) production from organic residues. Through a thermochemical process, such as pyrolysis, gasification, and hydrothermal carbonization - HTC, digestate can be converted into biochar or hydrochar. The addition of either biochar or hydrochar in AD has been reported to improve biochemical reactions and microbial growth, increasing the buffer capacity, and facilitating direct interspecies electrons transfer (DIET), resulting in higher methane (CH4) yields. Both biochar and hydrochar can adsorb undesired compounds present in biogas, such as carbon dioxide (CO2), hydrogen sulfide (H2S), ammonia (NH3), and even siloxanes. However, an integrated understanding of biochar and hydrochar produced from digestate through their return to the AD process, as additives or as adsorbents for biogas purification, is yet to be attained to close the material flow loop in a circular economy model. Therefore, this overview aimed at addressing the integration of biochar and hydrochar production from digestate, their utilization as additives and effects on AD, and their potential to adsorb biogas contaminants. This integration is supported by life cycle assessment (LCA) studies, showing positive results when combining AD and the aforementioned thermochemical processes, although more LCA is still necessary. Techno-economic assessment (TEA) studies of the processes considered are also presented, and despite an expanding market of biochar and hydrochar, further TEA is required to verify the profitability of the proposed integration, given the specificities of each process design. Overall, the synthesis of biochar and hydrochar from digestate can contribute to improving the AD process, establishing a cyclic process that is in agreement with the circular economy concept.
Collapse
Affiliation(s)
- Matheus Cavali
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970, Florianópolis, Santa Catarina, Brazil.
| | - Nelson Libardi Junior
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970, Florianópolis, Santa Catarina, Brazil
| | - Rodrigo de Almeida Mohedano
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970, Florianópolis, Santa Catarina, Brazil
| | - Paulo Belli Filho
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970, Florianópolis, Santa Catarina, Brazil
| | - Rejane Helena Ribeiro da Costa
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970, Florianópolis, Santa Catarina, Brazil
| | - Armando Borges de Castilhos Junior
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-970, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
42
|
Wood Biochar Enhances the Valorisation of the Anaerobic Digestion of Chicken Manure. CLEAN TECHNOLOGIES 2022. [DOI: 10.3390/cleantechnol4020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, the efficacy of biochar to mitigate ammonia stress and improve methane production is investigated. Chicken manure (CM) was subjected to high-solid mesophilic anaerobic digestion (15% total solid content) with wood biochar (BC). Wood biochar was further treated using HNO3 and NaOH to produce acid–alkali-treated wood biochar (TBC), with an improvement in its overall ammonium adsorption capacity and porosity. Three treatments were loaded in triplicate into the digesters, without biochar, with biochar and with acid–alkali-treated biochar and maintained at 37 °C for 110 days. The study found a significant improvement in CH4 formation kinetics via enhanced substrate degradation, leading to CH4 production of 74.7 mL g−1 VS and 70.1 mL g−1 VS by BC and TBC treatments, compared to 39.5 mL g−1 VS by control treatments on the 28th day, respectively. However, only the use of TBC was able to prolong methane production during the semi-inhibition phase. The use of TBC also resulted in the highest removal of total ammonia nitrogen (TAN) of 86.3%. In addition, the treatment with TBC preserved the highest microbial biomass at day 110. The presence of TBC also resulted in an increase in electrical conductivity, possibly promoting DIET-mediated methanogenesis. Overall, the acid–alkali treatment of biochar can be a novel approach to improve biochar’s existing characteristics for its utilisation as an additive in anaerobic digestion.
Collapse
|
43
|
Wang S, Shi F, Li P, Yang F, Pei Z, Yu Q, Zuo X, Liu J. Effects of rice straw biochar on methanogenic bacteria and metabolic function in anaerobic digestion. Sci Rep 2022; 12:6971. [PMID: 35484383 PMCID: PMC9050691 DOI: 10.1038/s41598-022-10682-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
Anaerobic digestion technology mitigates agricultural organic waste pollution, thereby alleviating the energy crisis. Biochar materials increase the utilisation rate of biomass resources and promote the enrichment and growth of microorganisms. Biochar is an effective exogenous additive that stabilises the anaerobic digestion, improves anaerobic digestion efficiency and gas production. Herein, biochar materials were prepared from rice straw utilising the sequencing batch anaerobic digestion process. The biochar microstructure was characterised by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis, and microbial succession and metabolic pathways were analysed using 16S rRNA sequencing to reveal the molecular mechanisms. Rice straw biochar addition increased gas production during anaerobic fermentation. SEM revealed that numerous cocci and microbacteria became agglomerated and attached to the surface and pores of biochar, which was revealed by BET analysis to be a good habitat for microorganisms. After anaerobic digestion, the specific surface area and total pore volume of biochar decreased. 16S rRNA gene sequencing showed that biochar affected the abundance of certain bacteria and archaea. Biochar had no obvious effect on the function of bacterial flora but inhibited carbohydrate metabolism by bacteria and glycan biosynthesis and metabolism by archaea in the anaerobic fermentation system while promoting lipid metabolism by archaea. Biochar addition inhibited acetic acid production in the anaerobic fermentation system and promoted methane production based on hydrogen and carbon dioxide levels.
Collapse
Affiliation(s)
- Su Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, 150086, China
- Key Laboratory of Energy Utilization of Main Crop Stalk Resources, Harbin, 150086, China
| | - Fengmei Shi
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, 150086, China
- Key Laboratory of Energy Utilization of Main Crop Stalk Resources, Harbin, 150086, China
| | - Pengfei Li
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, 150086, China
| | - Fengshan Yang
- School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Zhanjiang Pei
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, 150086, China
- Key Laboratory of Energy Utilization of Main Crop Stalk Resources, Harbin, 150086, China
| | - Qiuyue Yu
- Key Laboratory of Energy Utilization of Main Crop Stalk Resources, Harbin, 150086, China
| | - Xin Zuo
- Key Laboratory of Energy Utilization of Main Crop Stalk Resources, Harbin, 150086, China
| | - Jie Liu
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, 150086, China.
- Key Laboratory of Energy Utilization of Main Crop Stalk Resources, Harbin, 150086, China.
| |
Collapse
|
44
|
Ning Z, Xu B, Zhong W, Liu C, Qin X, Feng W, Zhu L. Preparation of phosphoric acid modified antibiotic mycelial residues biochar: Loading of nano zero-valent iron and promotion on biogas production. BIORESOURCE TECHNOLOGY 2022; 348:126801. [PMID: 35124216 DOI: 10.1016/j.biortech.2022.126801] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic mycelial residues (AMRs), as recyclable hazardous waste, can realize efficient utilization by reasonable treatment. To solve the problems of undeveloped pore structure and low specific surface area existed in AMR biochar, this study first modified biochar by phosphoric acid (H3PO4) to prepare PBC (H3PO4-modified biochar). Then, PBC was used as carrier to load nano zero-valent iron (nZVI) for preparation of nZVI/PBC. Finally, the biochar materials were used to promote anaerobic digestion (AD) of corn straw. The results showed that H3PO4-modification can effectively improve the specific surface area, pore structure, and electron donating capacity of AMRs biochar. The using of PBC as carrier to load nZVI attenuated the agglomeration of nZVI particles. Both PBC and nZVI/PBC improved the AD process, with biogas yield enhanced by 29.63% and 29.26%, respectively. The nZVI/PBC exhibited higher ability in maintaining the stability of AD system and promotion of fiber degradation than PBC.
Collapse
Affiliation(s)
- Zhifang Ning
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Bin Xu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Weizhang Zhong
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China.
| | - Chun Liu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Xue Qin
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Weibo Feng
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| | - Lin Zhu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
| |
Collapse
|
45
|
Wang Z, Wang S, Xie S, Jiang Y, Meng J, Wu G, Hu Y, Zhan X. Stimulatory effects of biochar addition on dry anaerobic co-digestion of pig manure and food waste under mesophilic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19212-19223. [PMID: 34714478 DOI: 10.1007/s11356-021-17129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
The stimulatory effect of biochar addition on dry anaerobic digestion (AD) has been rarely investigated. In this study, the effects of commonly used biochars (bamboo, rice husk, and pecan shell) on dry co-AD were investigated using mesophilic batch digesters fed with pig manure and food waste as substrates. The results show that the specific methane yield was mildly elevated with the addition of biochars by 7.9%, 9.4%, and 12.0% for bamboo, rice husk, and pecan shell-derived biochar additions, respectively. Biochar did facilitate the degradation of poorly biodegradable organics. In comparison, there was no significant effect on the peak methane production rate by the supplementation of the selected biochars. Among the three mechanisms of enhancing methanogenesis by biochar (buffering, providing supporting surface, and enhancing electron transfer), the first two mechanisms did not function significantly in dry co-AD, while the third mechanism (i.e., enhancing electron transfer) might play an important part in dry AD process. It is recommended that the utilization of biochar for the enhancement of biomethanation in dry AD should be more focused on mono digestion in future studies.
Collapse
Affiliation(s)
- Zhongzhong Wang
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland
- Ryan Institute, National University of Ireland, Galway, Ireland
- MaREI Centre for Marine and Renewable Energy, National University of Ireland, Galway, Ireland
| | - Shun Wang
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland
- Ryan Institute, National University of Ireland, Galway, Ireland
- MaREI Centre for Marine and Renewable Energy, National University of Ireland, Galway, Ireland
| | - Sihuang Xie
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Yan Jiang
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland
- Ryan Institute, National University of Ireland, Galway, Ireland
- MaREI Centre for Marine and Renewable Energy, National University of Ireland, Galway, Ireland
| | - Jizhong Meng
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland
| | - Guangxue Wu
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland
| | - Yuansheng Hu
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland.
- Ryan Institute, National University of Ireland, Galway, Ireland.
| | - Xinmin Zhan
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland
- Ryan Institute, National University of Ireland, Galway, Ireland
- MaREI Centre for Marine and Renewable Energy, National University of Ireland, Galway, Ireland
| |
Collapse
|
46
|
Li P, Wang Q, He X, Yu R, He C, Shen D, Jiao Y. Investigation on the effect of different additives on anaerobic co-digestion of corn straw and sewage sludge: Comparison of biochar, Fe 3O 4, and magnetic biochar. BIORESOURCE TECHNOLOGY 2022; 345:126532. [PMID: 34896538 DOI: 10.1016/j.biortech.2021.126532] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The co-digestion of corn straw and sewage sludge with different additives (biochar, magnetic biochar, Fe3O4) were investigated. The highest cumulative methane yield of 245.15 mL/g VSadded was obtained with the Fe3O4 addition ratio of 5 g/kg, which was 60.47% higher than that of the control run (without additives). The lag phase time was shortened from 5.46 to 3.82 days with a biochar dosage of 5 g/kg. The performance of Fe3O4 on methane production from the co-digestion process was better than that of the biochar and magnetic biochar. The direct interspecies electron transfer (DIET) was enhanced with regard to the increased concentration of acetic acid and decreased concentration of propionic acid. Microbial community analysis showed that the Geobacter and Methanosarcina were selectively enriched on the surface of Fe3O4, promoting the DIET and acetoclastic methanogenesis pathway. The cost-benefit analysis proved that the strategy of recycling Fe3O4 additive has the best economic benefit.
Collapse
Affiliation(s)
- Pengfei Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Qi Wang
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310087, Zhejiang, PR China
| | - Xiaoman He
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Ran Yu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Chao He
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Nongye Road 63, Zhengzhou, Henan 450002, PR China
| | - Dekui Shen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China.
| | - Youzhou Jiao
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Nongye Road 63, Zhengzhou, Henan 450002, PR China
| |
Collapse
|
47
|
Yadav M, Joshi C, Paritosh K, Thakur J, Pareek N, Masakapalli SK, Vivekanand V. Reprint of:Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metab Eng 2022; 71:62-76. [DOI: 10.1016/j.ymben.2022.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 12/25/2022]
|
48
|
Impact of Granular Activated Carbon on Anaerobic Process and Microbial Community Structure during Mesophilic and Thermophilic Anaerobic Digestion of Chicken Manure. SUSTAINABILITY 2022. [DOI: 10.3390/su14010447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this work, the impact of granular activated carbon (GAC) on the mesophilic and thermophilic anaerobic digestion of chicken manure and the structure of microbial communities was investigated. These results demonstrated that GAC supplementation effectively enhanced the consumption of produced organic acids in the mesophilic and thermophilic batch tests, accompanied by faster biomethane production in the presence of GAC than from reactors without GAC. However, since the free ammonia level was 3–6 times higher in the thermophilic reactors, this led to the instability of the anaerobic digestion process of the nitrogen-rich substrate at thermophilic temperatures. Bacteroidia and Clostridia were the two main bacterial classes in the mesophilic reactors, whereas the class Clostridia had a competitive advantage over other groups in the thermophilic systems. The archaeal communities in the mesophilic reactors were mainly represented by representatives of the genera Methanosarcina, Methanobacterium, and Methanotrix, whereas the archaeal communities in the thermophilic reactors were mainly represented by members of the genera Methanosarcina, Methanoculleus, and Methanothermobacter. New data obtained in this research will help control and manage biogas reactors in the presence of GAC at different temperatures.
Collapse
|
49
|
Osman AI, Fawzy S, Farghali M, El-Azazy M, Elgarahy AM, Fahim RA, Maksoud MIAA, Ajlan AA, Yousry M, Saleem Y, Rooney DW. Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:2385-2485. [PMID: 35571983 PMCID: PMC9077033 DOI: 10.1007/s10311-022-01424-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/22/2022] [Indexed: 05/06/2023]
Abstract
In the context of climate change and the circular economy, biochar has recently found many applications in various sectors as a versatile and recycled material. Here, we review application of biochar-based for carbon sink, covering agronomy, animal farming, anaerobic digestion, composting, environmental remediation, construction, and energy storage. The ultimate storage reservoirs for biochar are soils, civil infrastructure, and landfills. Biochar-based fertilisers, which combine traditional fertilisers with biochar as a nutrient carrier, are promising in agronomy. The use of biochar as a feed additive for animals shows benefits in terms of animal growth, gut microbiota, reduced enteric methane production, egg yield, and endo-toxicant mitigation. Biochar enhances anaerobic digestion operations, primarily for biogas generation and upgrading, performance and sustainability, and the mitigation of inhibitory impurities. In composts, biochar controls the release of greenhouse gases and enhances microbial activity. Co-composted biochar improves soil properties and enhances crop productivity. Pristine and engineered biochar can also be employed for water and soil remediation to remove pollutants. In construction, biochar can be added to cement or asphalt, thus conferring structural and functional advantages. Incorporating biochar in biocomposites improves insulation, electromagnetic radiation protection and moisture control. Finally, synthesising biochar-based materials for energy storage applications requires additional functionalisation.
Collapse
Affiliation(s)
- Ahmed I. Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG Northern Ireland UK
| | - Samer Fawzy
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG Northern Ireland UK
| | - Mohamed Farghali
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
- Department of Animal and Poultry Hygiene and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Marwa El-Azazy
- Department of Chemistry, Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Ahmed M. Elgarahy
- Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
| | - Ramy Amer Fahim
- National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - M. I. A. Abdel Maksoud
- National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Abbas Abdullah Ajlan
- Department of Chemistry -Faculty of Applied Science, Taiz University, P.O.Box 6803, Taiz, Yemen
| | - Mahmoud Yousry
- Faculty of Engineering, Al-Azhar University, Cairo, 11651 Egypt
- Cemart for Building Materials and Insulation, postcode 11765, Cairo, Egypt
| | - Yasmeen Saleem
- Institute of Food and Agricultural Sciences, Soil and Water Science, The University of Florida, Gainesville, FL 32611 USA
| | - David W. Rooney
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG Northern Ireland UK
| |
Collapse
|
50
|
Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metab Eng 2021; 69:323-337. [PMID: 34864213 DOI: 10.1016/j.ymben.2021.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022]
Abstract
Anaerobic digestion is a promising method for energy recovery through conversion of organic waste to biogas and other industrial valuables. However, to tap the full potential of anaerobic digestion, deciphering the microbial metabolic pathway activities and their underlying bioenergetics is required. In addition, the behavior of organisms in consortia along with the analytical abilities to kinetically measure their metabolic interactions will allow rational optimization of the process. This review aims to explore the metabolic bottlenecks of the microbial communities adopting latest advances of profiling and 13C tracer-based analysis using state of the art analytical platforms (GC, GC-MS, LC-MS, NMR). The review summarizes the phases of anaerobic digestion, the role of microbial communities, key process parameters of significance, syntrophic microbial interactions and the bottlenecks that are critical for optimal bioenergetics and enhanced production of valuables. Considerations into the designing of efficient synthetic microbial communities as well as the latest advances in capturing their metabolic cross talk will be highlighted. The review further explores how the presence of additives and inhibiting factors affect the metabolic pathways. The critical insight into the reaction mechanism covered in this review may be helpful to optimize and upgrade the anaerobic digestion system.
Collapse
|