1
|
Ge F, Xia H, Wang Y, Yang X, Jiang J, Zhou M. Catalytic transfer hydrogenolysis of lignin derived aromatic ethers over MOF derived porous carbon spheres anchored by Ni species. Int J Biol Macromol 2025; 284:138125. [PMID: 39617223 DOI: 10.1016/j.ijbiomac.2024.138125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
The efficient hydrogenolysis of CO ether bonds in lignin is the key for producing bio-oil and high-value chemicals. In this work, we synthesized a series of Ni-MOF-derived porous carbon spheres anchored Ni catalysts (Ni/C-x-T) with different metal/ligand molar ratios and calcination temperatures through solvothermal and carbothermal reduction method, and evaluated their catalytic transfer hydrogenolysis (CTH) performance for lignin model compounds using isopropanol as H-donor. The Ni/C-2-400 catalyst exhibited the excellent CTH performance, affording almost 100 % conversion of 2-phenoxy-1-phenylethanol even at a low reaction temperature of 120 °C. It was worth noting that the further hydrogenation of hydrogenolysis products phenol and ethylbenzene could be controlled by adjusting the reaction conditions, achieving phenol and ethylbenzene as main products at 120 °C, cyclohexanol and ethylbenzene at 140 °C, and cyclohexanol and ethylcyclohexane at 200 °C for 4 h. Based on the characterization results, the high catalytic activity of Ni/C-2-400 was attributed to the good dispersion and small particle size of metal Ni particles. Mechanistic studies showed that the cleavage of CO ether bonds was the main reaction pathway, and high temperature helped accelerate hydrogenolysis and subsequent hydrogenation. Moreover, the Ni/C-2-400 catalyst had good stability and applicability to other model compounds. This work could provide some help for the upgrading of lignin and its derivative.
Collapse
Affiliation(s)
- Fei Ge
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Haihong Xia
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Yanrong Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Xiaohui Yang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China.
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Minghao Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
2
|
Liu Z, Yang Y, Xie M, Cheng M, Yang R, Huang Z, Zhou T, Zhao Y, Yang J, Die Q, Li B. TG-FTIR-Py-GCMS analysis and catalytic pyrolysis mechanism of textile waste by red mud catalyst for liquid fuel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175874. [PMID: 39218112 DOI: 10.1016/j.scitotenv.2024.175874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/17/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The substantial generation of textile waste (TW) and red mud (RM) has resulted in significant resource wastage and environmental challenges. Co-utilization technology of solid waste is an effective approach to improve waste utilization efficiency. In this study, RM catalytic pyrolysis experiments of TW were conducted using TG-FTIR and Py-GC-MS for liquid fuel production, and TW and RM were recycled simultaneously. At the optimal experimental conditions (temperature of 600 °C and feed catalyst ratio of 2:1), the tar yield and higher heating value (HHV) of TW pyrolysis catalyzed by RM were 73.43 wt% and 32.34 kJ/g, respectively. Additionally, experiments on the pyrolysis of various TW types revealed that LDPE and PP are suitable for tar production, while cotton, nylon, and PET are more suitable as feedstock for syngas production. The RM catalytic pyrolysis mechanism of textile waste is that Fe2O3 in RM exhibits significant catalytic activity in enhancing tar and syngas yields. However, during the catalytic process, Fe2O3 undergoes reduction to Fe3O4, resulting in diminished catalytic performance of the RM. After five cycles of use, the RM essentially lost its catalytic activity due to the accumulation of char and tar. All experimental findings of this study could offer an effective guideline for TW recycle and promoting RM utilization toward the waste-to-energy circular economy.
Collapse
Affiliation(s)
- Zewei Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yanyu Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ming Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Mingqian Cheng
- Yunnan Land Resources Vocational College, Kunming 652501, China
| | - Ruihao Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zechun Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tao Zhou
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Youcai Zhao
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jinzhong Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qingqi Die
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Bin Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
3
|
Zhang L, Yang X, Wu Q, Fan L, Xu C, Zou R, Liu Y, Cobb K, Ruan R, Wang Y. ZSM-5@ceramic foam composite catalyst derived from spent bleaching clay for continuous pyrolysis of waste oil to produce monocyclic aromatic hydrocarbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171887. [PMID: 38522533 DOI: 10.1016/j.scitotenv.2024.171887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Spent bleaching clay, a solid waste generated during the refining process of vegetable oils, lacks an efficient treatment solution. In this study, spent bleaching clay was innovatively employed to fabricate ceramic foams. The thermal stability analysis, microstructure, and crystal phase composition of the ceramic foams were characterized by TG-DSC, SEM, and XRD. An investigation into the influence of Al2O3 content on the ceramic foams was conducted. Results showed that, as the Al2O3 content increased from 15 wt% to 30 wt%, there was a noticeable decrease in bulk density and linear shrinkage, accompanied by an increase in compressive strength. Additionally, the ceramic foams were used as catalyst supports, to synthesize ZSM-5@ceramic foam composite catalysts for pyrolysis of waste oil. The open pores of the ZSCF catalyst not only reduced diffusion path length but also facilitated the exposure of more acid sites, thereby increasing the utilization efficiency of ZSM-5 zeolite. This, in turn, engendered a significant enhancement in monocyclic aromatic hydrocarbons content from 39.15 % (ZSM-5 powder catalyst) to 78.96 %. Besides, a larger support pore size and a thicker ZSM-5 zeolite coating layer led to an increase in monocyclic aromatic hydrocarbons content. As the time on stream was extended to 56 min, the monocyclic aromatic hydrocarbon content obtained with the composite catalyst remained 12.41 % higher than that of the ZSM-5 powder catalyst. These findings validate the potential of the composite catalyst. In essence, this study advances the utilization of spent bleaching clay and introduces a novel concept for ceramic foam fabrication. Furthermore, it contributes to the scaling up of catalytic pyrolysis technology.
Collapse
Affiliation(s)
- Letian Zhang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Xiuhua Yang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Qiuhao Wu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Liangliang Fan
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education and School of Resources & Environment, Nanchang University, Nanchang 330031, China
| | - Chuangxin Xu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Rongge Zou
- Department of Biological Systems Engineering, Washington State University, Richland, WA 99354-1671, USA
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Krik Cobb
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55112, USA
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55112, USA
| | - Yunpu Wang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
4
|
Biswas B, Sakhakarmy M, Rahman T, Jahromi H, Adhikari S, Krishna BB, Bhaskar T, Baltrusaitis J, Eisa M, Kouzehkanan SMT, Oh TS. Selective production of phenolic monomer via catalytic depolymerization of lignin over cobalt-nickel-zirconium dioxide catalyst. BIORESOURCE TECHNOLOGY 2024; 398:130517. [PMID: 38437961 DOI: 10.1016/j.biortech.2024.130517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
The utilization of lignin, an abundant and renewable bio-aromatic source, is of significant importance. In this study, lignin oxidation was examined at different temperatures with zirconium oxide (ZrO2)-supported nickel (Ni), cobalt (Co) and bimetallic Ni-Co metal catalysts under different solvents and oxygen pressure. Non-catalytic oxidation reaction produced maximum bio-oil (35.3 wt%), while catalytic oxidation significantly increased the bio-oil yield. The bimetallic catalyst Ni-Co/ZrO2 produced the highest bio-oil yield (67.4 wt%) compared to the monometallic catalyst Ni/ZrO2 (59.3 wt%) and Co/ZrO2 (54.0 wt%). The selectively higher percentage of vanillin, 2-methoxy phenol, acetovanillone, acetosyringone and vanillic acid compounds are found in the catalytic bio-oil. Moreover, it has been observed that the bimetallic Co-Ni/ZrO2 produced a higher amount of vanillin (43.7% and 13.30 wt%) compound. These results demonstrate that the bimetallic Ni-Co/ZrO2 catalyst promotes the selective cleavage of the ether β-O-4 bond in lignin, leading to a higher yield of phenolic monomer compounds.
Collapse
Affiliation(s)
- Bijoy Biswas
- Biosystems Engineering Department, 200 Corley Building, Auburn University, Auburn, AL 36849, USA
| | - Manish Sakhakarmy
- Biosystems Engineering Department, 200 Corley Building, Auburn University, Auburn, AL 36849, USA
| | - Tawsif Rahman
- Biosystems Engineering Department, 200 Corley Building, Auburn University, Auburn, AL 36849, USA
| | - Hossein Jahromi
- Biosystems Engineering Department, 200 Corley Building, Auburn University, Auburn, AL 36849, USA
| | - Sushil Adhikari
- Biosystems Engineering Department, 200 Corley Building, Auburn University, Auburn, AL 36849, USA.
| | - Bhavya B Krishna
- Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India
| | - Thallada Bhaskar
- Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India
| | - Jonas Baltrusaitis
- Department of Chemical and Biomolecular Engineering, Lehigh University, Pennsylvania 18015, USA
| | - Mohamed Eisa
- Department of Chemical and Biomolecular Engineering, Lehigh University, Pennsylvania 18015, USA
| | | | - Tae-Sik Oh
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
5
|
Marques JDAO, Alves JLF, de Oliveira GP, Melo DMDA, de Melo Viana GAC, Braga RM. Catalytic flash pyrolysis of Scenedesmus sp. post-extraction residue using low-cost HZSM-5 catalyst with the perspective to produce renewable aromatic hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18785-18796. [PMID: 38349495 DOI: 10.1007/s11356-024-32336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024]
Abstract
Recovering renewable chemicals from de-fatted microalgal residue derived from lipid extraction within the algal-derived biofuel sector is crucial, given the rising significance of microalgal-derived biodiesel as a potential substitute for petroleum-based liquid fuels. As a circular economy strategy, effective valorization of de-fatted biomass significantly improves the energetic and economic facets of establishing a sustainable algal-derived biofuel industry. In this scenario, this study investigates flash catalytic pyrolysis as a sustainable pathway for valorizing Scenedesmus sp. post-extraction residue (SPR), potentially yielding a bio-oil enriched with upgraded characteristics, especially renewable aromatic hydrocarbons. In the scope of this study, volatile products from catalytic and non-catalytic flash pyrolysis were characterized using a micro-furnace type temperature programmable pyrolyzer coupled with gas chromatographic separation and mass spectrometry detection (Py-GC/MS). Flash pyrolysis of SPR resulted in volatile products with elevated oxygen and nitrogen compounds with concentrations of 46.4% and 26.4%, respectively. In contrast, flash pyrolysis of lyophilized microalgal biomass resulted in lower concentrations of these compounds, with 40.9% oxygen and 17.3% nitrogen. Upgrading volatile pyrolysis products from SPR led to volatile products comprised of only hydrocarbons, while completely removing oxygen and nitrogen-containing compounds. This was achieved by utilizing a low-cost HZSM-5 catalyst within a catalytic bed at 500 °C. Catalytic experiments also indicate the potential conversion of SPR into a bio-oil rich in monocyclic aromatic hydrocarbons, primarily BETX, with toluene comprising over one-third of its composition, thus presenting a sustainable pathway for producing an aromatic hydrocarbon-rich bio-oil derived from SPR. Another significant finding was that 97.8% of the hydrocarbon fraction fell within the gasoline range (C5-C12), and 35.5% fell within the jet fuel range (C8-C16). Thus, flash catalytic pyrolysis of SPR exhibits significant promise for application in drop-in biofuel production, including green gasoline and bio-jet fuel, aligning with the principles of the circular economy, green chemistry, and bio-refinery.
Collapse
Affiliation(s)
| | - José Luiz Francisco Alves
- Department of Renewable Energy Engineering, Federal University of Paraíba, João Pessoa, Paraíba, 58051-900, Brazil.
- Environmental Technology Laboratory (LabTam), Primary Processing and Reuse of Produced Water and Residues Center (NUPPRAR), Federal University of Rio Grande Do Norte, Natal, Rio Grande Do Norte, 59075-000, Brazil.
| | - Gislane Pinho de Oliveira
- Environmental Technology Laboratory (LabTam), Primary Processing and Reuse of Produced Water and Residues Center (NUPPRAR), Federal University of Rio Grande Do Norte, Natal, Rio Grande Do Norte, 59075-000, Brazil
| | - Dulce Maria de Araújo Melo
- Environmental Technology Laboratory (LabTam), Primary Processing and Reuse of Produced Water and Residues Center (NUPPRAR), Federal University of Rio Grande Do Norte, Natal, Rio Grande Do Norte, 59075-000, Brazil
- Institute of Chemistry (IQ), Federal University of Rio Grande Do Norte, Natal, Rio Grande Do Norte, 59078-970, Brazil
| | | | - Renata Martins Braga
- Agricultural School of Jundiaí (EAJ), Federal University of Rio Grande Do Norte, Macaíba, Rio Grande Do Norte, 59280-000, Brazil
- Environmental Technology Laboratory (LabTam), Primary Processing and Reuse of Produced Water and Residues Center (NUPPRAR), Federal University of Rio Grande Do Norte, Natal, Rio Grande Do Norte, 59075-000, Brazil
| |
Collapse
|
6
|
Nganda A, Srivastava P, Lamba BY, Pandey A, Kumar M. Advances in the fabrication, modification, and performance of biochar, red mud, calcium oxide, and bentonite catalysts in waste-to-fuel conversion. ENVIRONMENTAL RESEARCH 2023:116284. [PMID: 37270078 DOI: 10.1016/j.envres.2023.116284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
Various catalysts are being used in fuel production from biomass and polymeric waste for the obtention of an alternative energy source with both environmental friendliness and economic viability. Biochar, red mud bentonite, and calcium oxide have been shown to play a pertinent role as catalysts in waste-to-fuel conversion processes, such as transesterification and pyrolysis. In this line of thought, this paper has provided a compendium of the fabrication and modification technologies of bentonite, red mud calcium oxide, and biochar, together with their various performances in their application in the waste-to-fuel processes. Additionally, an overview of the structural and chemical attributes of these components is discussed regarding their efficiency. Ultimately, research trends and future points of focus are evaluated, and it is observed that techno-economic optimization of catalyst synthetic routes and investigation of new catalytic formulations, such as biochar and red mud-based nanocatalysts, are potential prospects. This report also offers future research directions that are anticipated to contribute to the development of sustainable green fuel generation systems.
Collapse
Affiliation(s)
- Armel Nganda
- School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Pankaj Srivastava
- Energy Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Bhawna Yadav Lamba
- Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Ashok Pandey
- CSIR-Indian Institute for Toxicology Research, Lucknow, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico.
| |
Collapse
|
7
|
Wan Z, Li Z, Yi W, Zhang A, Li G, Wang S. Lignin and spent bleaching clay into mono-aromatic hydrocarbons by a cascade dual catalytic pyrolysis system: Critical role of spent bleaching clay. Int J Biol Macromol 2023; 236:123879. [PMID: 36870660 DOI: 10.1016/j.ijbiomac.2023.123879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/15/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
In the present study, a cascade dual catalytic system was used for the co-pyrolysis of lignin with spent bleaching clay (SBC) to efficiently produce mono-aromatic hydrocarbon (MAHs). The cascade dual catalytic system is composed of calcined SBC (CSBC) and HZSM-5. In this system, SBC not only acts as a hydrogen donor and catalyst in the co-pyrolysis process, but is also used as a primary catalyst in the cascade dual catalytic system after recycling the pyrolysis residues. The effects of different influencing factors (i.e., temperature, CSBC-to-HZSM-5 ratio, and raw materials-to-catalyst ratio) on the system were explored. It was observed that, when the temperature was 550 °C, the CSBC-to-HZSM-5 ratio was 1:1, and when the raw materials-to-catalyst ratio was 1:2, the highest bio-oil yield was 21.35 wt%. The relative MAHs content in bio-oil was 73.34 %, whereas the relative polycyclic aromatic hydrocarbons (PAHs) content was 23.01 %. Meanwhile, the introduction of CSBC inhibited the generation of graphite-like coke as indicated by HZSM-5. This study realizes the full resource utilization of spent bleaching clay and reveals the environmental hazards caused by spent bleaching clay and lignin waste.
Collapse
Affiliation(s)
- Zhen Wan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Shandong University of Technology, Zibo 255000, China
| | - Zhihe Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Shandong University of Technology, Zibo 255000, China.
| | - Weiming Yi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Shandong University of Technology, Zibo 255000, China
| | - Andong Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Shandong University of Technology, Zibo 255000, China
| | - Guo Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Shandong University of Technology, Zibo 255000, China
| | - Shaoqing Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Shandong Research Center of Engineering and Technology for Clean Energy, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
8
|
Hikmah Zulkafli A, Hassan H, Azmier Ahmad M, Taufik Mohd Din A, Maryam Wasli S. Co-pyrolysis of biomass and waste plastics for production of chemicals and liquid fuel: A review on the role of plastics and catalyst types. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
9
|
Evaluation of Behavior of 13X Zeolite Modified with Transition Metals for Catalytic Applications. Bioinorg Chem Appl 2022; 2022:7352074. [PMID: 36340969 PMCID: PMC9629948 DOI: 10.1155/2022/7352074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
This work was intended to develop catalysts based on 13X zeolite modified with transition metals for catalytic applications. In this regard, 13X zeolite was modified by loading of transition metals such as Fe, Co, Cu and various types of catalysts such as Fe-, Co-, Cu-, Fe-Co-, Fe-Cu-, and Co-Cu/13X zeolite were obtained. To prepare these catalysts, the wet impregnation method and metallic precursors were used. The catalysts were characterized by SEM, XRD, BET, and ammonia adsorption. Then the catalytic performance was investigated during upgrading of rapeseed residual biomass pyrolysis vapors using this catalysts and a fixed-bed reactor in two stages. Experimental results showed that the addition of transition metals improved the catalytic selectivity towards aromatic hydrocarbons and Fe-Cu/13X zeolite catalyst was the best and had a high deoxygenation activity (from 62.45% to 20.56%), produced maximum monoaromatic hydrocarbons (of 27.45%), the oxygen content in bio-oil was reduced from 34.98 wt% to 16.06 wt%, the calorific value increased and thus the bio-oil quality was improved.
Collapse
|
10
|
Jiang L, Xu G, Fu Y. Catalytic Cleavage of the C–O Bond in Lignin and Lignin-Derived Aryl Ethers over Ni/AlP yO x Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liang Jiang
- Anhui Province Key Laboratory of Biomass Clean Energy, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| | - Guangyue Xu
- Anhui Province Key Laboratory of Biomass Clean Energy, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| | - Yao Fu
- Anhui Province Key Laboratory of Biomass Clean Energy, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| |
Collapse
|
11
|
Bu J, Wan Q, Deng Z, Liu H, Li T, Zhou C, Zhong S. High-efficient degradation of sulfamethazine by electro-enhanced peroxymonosulfate activation with bimetallic modified Mud sphere catalyst. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Zhang S, Xiong J, Lu J, Zhou N, Li H, Cui X, Zhang Q, Liu Y, Ruan R, Wang Y. Synthesis of CaO from waste shells for microwave-assisted catalytic pyrolysis of waste cooking oil to produce aromatic-rich bio-oil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154186. [PMID: 35231512 DOI: 10.1016/j.scitotenv.2022.154186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Energy shortage and environmental pollution have attracted long-term attention. In this study, CaO were prepared from waste eggshell (EGC), preserved egg shell (PEC), clam shell (CLC) and crab shell (CRC), which were then compared with commercial CaO (CMC) to catalyze microwave-assisted pyrolysis of waste cooking oil (WCO) for enrichment of aromatics in bio-oil. The characterization results indicated that EGC and CLC contained 95.54% and 95.61% CaO respectively, which were higher than that of CMC (95.11%), and the pore properties of EGC were the best. In addition, the effects of CaO type and catalytic mode on pyrolysis were studied. In CaO catalytic pyrolysis, CMC and CLC in-situ catalysis produced more aromatics than ex-situ catalysis, and PEC and CRC were more conducive to aromatics formation in ex-situ condition. EGC was conducive to produce benzene, toluene and xylene (BTX) both in in-situ (19.04%) and ex-situ (20.76%) catalytic pyrolysis. In CaO/HZSM-5 catalysis, the optimal dual catalytic mode for generating monocyclic aromatic hydrocarbons (MAHs) was Mode A (CaO separated from HZSM-5 for ex-situ catalysis), and EGC/HZSM-5 performed well in benzene, toluene and xylene (BTX) production.
Collapse
Affiliation(s)
- Shumei Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Jianyun Xiong
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Jiaxin Lu
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Nan Zhou
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55112, USA
| | - Hui Li
- School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Xian Cui
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55112, USA
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
13
|
Cr/13X Zeolite and Zn/13X Zeolite Nanocatalysts Used in Pyrolysis of Pretreated Residual Biomass to Produce Bio-Oil with Improved Quality. NANOMATERIALS 2022; 12:nano12121960. [PMID: 35745299 PMCID: PMC9231322 DOI: 10.3390/nano12121960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
By loading Cr and Zn on 13X zeolite, efficient nanocatalysts were prepared; they were characterized by different techniques and used for corn cobs pyrolysis to produce bio-oil. The corn cobs biomass (CCB) was washed with sulfuric acid 0.1 M, and the characteristics of the pretreated biomass (PTCCB) were analyzed. Pyrolysis was performed at different catalyst-to-biomass ratios (C/B), and the composition of the obtained bio-oil was determined. The results showed that the crystallinity of the nanocatalysts was slightly lower than that of the pattern 13X zeolite. The surface observation of the nanocatalysts showed the presence of pores and particles, which are quite evenly dispersed on the surface, and no difference was observed in the morphology of the Zn/13X zeolite and Cr /13X zeolite nanocatalysts. In comparison to 13X zeolite, the morphological changes, metal dispersion, and surface area decrease of both Zn/13X and Cr/13X zeolite nanocatalysts could be observed. Pyrolysis tests demonstrated that the use of Zn/13X zeolite and Cr/13X zeolite nanocatalysts could be very profitable to obtain a high conversion to hydrocarbons of the compounds containing oxygen, and consequently, the quality of the bio-oil was improved.
Collapse
|
14
|
Wang Y, Akbarzadeh A, Chong L, Du J, Tahir N, Awasthi MK. Catalytic pyrolysis of lignocellulosic biomass for bio-oil production: A review. CHEMOSPHERE 2022; 297:134181. [PMID: 35248592 DOI: 10.1016/j.chemosphere.2022.134181] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/19/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Catalytic pyrolysis has been widely explored for bio-oil production from lignocellulosic biomass owing to its high feasibility and large-scale production potential. The aim of this review was to summarize recent findings on bio-oil production through catalytic pyrolysis using lignocellulosic biomass as feedstock. Lignocellulosic biomass, structural components and fundamentals of biomass catalytic pyrolysis were explored and summarized. The current status of bio-oil yield and quality from catalytic fast pyrolysis was reviewed and presented in the current review. The potential effects of pyrolysis process parameters, including catalysts, pyrolysis conditions, reactor types and reaction modes on bio-oil production are also presented. Techno-economic analysis of full-scale commercialization of bio-oil production through the catalytic pyrolysis pathway was reviewed. Further, limitations associated with current practices and future prospects of catalytic pyrolysis for production of high-quality bio-oils were summarized. This review summarizes the process of bio-oil production from catalytic pyrolysis and provides a general scientific reference for further studies.
Collapse
Affiliation(s)
- Yi Wang
- MOA Key Laboratory of New Materials and Facilities for Rural Renewable Energy, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Zhengzhou, 450002, China
| | - Abdolhamid Akbarzadeh
- Department of Bioresource Engineering, McGill University, Montreal, QC, H9X 3V9, Canada
| | - Li Chong
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinyu Du
- School of Energy and Power Engineering, Henan University of Animal Husbandry and Economy, Henan Province, Zhengzhou, 450011, China
| | - Nadeem Tahir
- MOA Key Laboratory of New Materials and Facilities for Rural Renewable Energy, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Zhengzhou, 450002, China.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
15
|
Fan Y, Lei M, Han Y, Zhang Z, Kong X, Xu W, Li M, Zhang H, Xiao R, Liu C. Elucidating radical-mediated pyrolysis behaviors of preoxidized lignins. BIORESOURCE TECHNOLOGY 2022; 350:126908. [PMID: 35227917 DOI: 10.1016/j.biortech.2022.126908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Effect of lignin preoxidation on subsequent radical-mediated pyrolysis was discussed in this study. Technical hot-water-extracted lignin was preoxidized by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone in diverse degrees and pyrolyzed under different temperatures. Characterizations indicated that preoxidation increased lignin oxygen contents and converted α-hydroxyls to α-carbonyls. These structural modifications caused by preoxidation reduced the thermal stability and pyrolysis reactivity of lignin, shifting lignin thermal decomposition to the low temperature region and inhibiting lignin pyrolysis into bio-oil fractions. However, recognition of species and yields of specific compounds via analytical pyrolysis declared that although preoxidation reduced product yields, it did not alter the reaction pathways. The fixed bed experiments proved the above findings and gave the gas compositions, mainly CO2 derived through decarbonylation. Both radicals in chars and bio-oils were monitored, and char radical concentrations were proportional to the preoxidation degrees. This work sorted out the performances of lignin pyrolysis after preoxidation and determined their negative effects.
Collapse
Affiliation(s)
- Yuyang Fan
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Ming Lei
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Yue Han
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China; China Energy Engineering Group Jiangsu Power Design Institute Co., Ltd, Nanjing 211102, PR China
| | - Zhengxue Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Xiangchen Kong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Weicong Xu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Ming Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Huiyan Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Rui Xiao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Chao Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|
16
|
Pan Y, Sima J, Wang X, Zhou Y, Huang Q. BTEX recovery from waste rubbers by catalytic pyrolysis over Zn loaded tire derived char. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 131:214-225. [PMID: 34167041 DOI: 10.1016/j.wasman.2021.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/20/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Recovering valuable chemicals (BTEX: Benzene, toluene, ethylbenzene, and xylene) via catalytic pyrolysis of waste tires is a promising and sustainable approach. Zinc loaded tire derived char (TDC) was used as cheap catalyst for recovering valuable BTEX products from waste tire through pyrolysis in this study. The catalytic capability of TDC on BTEX production were experimentally investigated with respect to Zn content, catalytic temperature, and catalyst-to-tire ratio. Due to the abundant acid sites on the surface, the TDC showed notable catalytic capability for improving BTEX yield which was 2.4 times higher than that from uncatalyzed case. The loading of additional Zn increased the acid sites on the TDC and the catalytic performance was further improved. The increase of catalytic temperature and catalyst-to-tire ratio favored the formation of BTEX, but it also brought undesirable consequences, such as the mass loss of tire pyrolysis oil (TPO) and the formation of polycyclic aromatic hydrocarbons. The optimal TPO products were obtained at 600 °C with catalyst-to-tire ratio of 20. At this condition, the relative content of BTEX reached 54.70% and the cumulative BTEX yield was 10.13 wt%, increasing by 5.95 times compared to that of non-catalytic condition. This work provided a novel strategy of replacing traditional expensive catalysts with low-cost and effective carbon-based materials in the field of catalytic pyrolysis of waste tires.
Collapse
Affiliation(s)
- Yuhan Pan
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingyuan Sima
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinwen Wang
- Hangzhou Zhongce Rubber Cycle Technology Company Limited, Hangzhou 310000, Zhejiang, China
| | - Yonggang Zhou
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qunxing Huang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
17
|
Ly HV, Tran QK, Kim SS, Kim J, Choi SS, Oh C. Catalytic upgrade for pyrolysis of food waste in a bubbling fluidized-bed reactor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116023. [PMID: 33582642 DOI: 10.1016/j.envpol.2020.116023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/29/2020] [Accepted: 09/13/2020] [Indexed: 06/12/2023]
Abstract
Biofuel production via pyrolysis has received increasing interest as a promising solution for utilization of now wasted food residue. In this study, the fast pyrolysis of mixed food waste (MFW) was performed in a bubbling fluidized-bed reactor. This was done under different operating conditions (reaction temperatures and carrier gas flow rate) that influence product distribution and bio-oil composition. The highest liquid yield (49.05 wt%) was observed at a pyrolysis temperature of 475 °C. It was also found that the quality of pyrolysis bio-oils (POs) could be improved using catalysts. The catalytic fast pyrolysis of MFW was studied to upgrade the pyrolysis vapor, using dolomite, red mud, and HZSM-5. The higher heating values (HHVs) of the catalytic pyrolysis bio-oils (CPOs) ranged between 30.47 and 35.69 MJ/kg, which are higher than the HHVs of non-catalytic pyrolysis bio-oils (27.69-31.58 MJ/kg). The major components of the bio-oils were fatty acids, N-containing compounds, and derivatives of phenol. The selectivity for bio-oil components varied depending on the catalysts. In the presence of the catalysts, the oxygen was removed from oxygenates via moisture, CO2, and CO. The CPOs contained aliphatic hydrocarbons, polycyclic aromatic compounds (such as naphthalene), pyridine derivatives, and light oxygenates (cyclic alkenes and ketones).
Collapse
Affiliation(s)
- Hoang Vu Ly
- Department of Chemical Engineering, Kangwon National University, 346, Joongang-ro, Samcheok, Gangwon-do, 25913, Republic of Korea; Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, 1732 Daegyeong-daero, Giheung-gu, Yongin, Gyeonggi-do, 17104, Republic of Korea
| | - Quoc Khanh Tran
- Department of Chemical Engineering, Kangwon National University, 346, Joongang-ro, Samcheok, Gangwon-do, 25913, Republic of Korea
| | - Seung-Soo Kim
- Department of Chemical Engineering, Kangwon National University, 346, Joongang-ro, Samcheok, Gangwon-do, 25913, Republic of Korea.
| | - Jinsoo Kim
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, 1732 Daegyeong-daero, Giheung-gu, Yongin, Gyeonggi-do, 17104, Republic of Korea.
| | - Suk Soon Choi
- Department of Biological and Environmental Engineering, Semyung University, 65, Semyung-ro, Jecheon, Chungcheongbuk-do, 27136, Republic of Korea
| | - Changho Oh
- Daekyung Esco, M-1903, 32, Songdowahak-ro, Yeonsu-gu, Incheon, 21984, Republic of Korea
| |
Collapse
|
18
|
Feng L, Li X, Wang Z, Liu B. Catalytic hydrothermal liquefaction of lignin for production of aromatic hydrocarbon over metal supported mesoporous catalyst. BIORESOURCE TECHNOLOGY 2021; 323:124569. [PMID: 33360949 DOI: 10.1016/j.biortech.2020.124569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Catalytic hydrothermal liquefaction (HTL) of lignin was examined at various temperature (250-310 °C) and reaction time in the presence of different solvents (water, methanol and ethanol) with different metal supported on MCM-41 mesoporous catalyst. In case of ethanol solvent, the maximum bio-oil yield of 56.2 wt% was obtained with Ni-Al/MCM-41. However in case of water, bio-oil yield was (44.3 wt%); while significantly improves bio-oil yield for methanol solvent (48.1 wt%). It is indicated that alcoholic solvents promoted the lignin decomposition, while in the presence of catalyst; water solvent significantly improves lignin degradation. Loading of Ni and Al on MCM-41, the acid strength of the catalyst increased, which enhanced lignin degradation. From the GC-MS analysis, the main G-type (ca.54%) phenolic compounds were produced with higher percentage of aromatic hydrocarbon compounds. CHNS and GPC analysis showed that catalytic liquefaction encouraged hydrodeoxygenation, which produced lower oxygen content bio-oil with lower molecular weight.
Collapse
Affiliation(s)
- Li Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| | - Xuhao Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Zizeng Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Bingzhi Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
19
|
Hendry A, Åhlén M, Fernandes T, Cheung O, Sanna A. Catalytic cracking of Etek lignin with zirconia supported metal-oxides for alkyl and alkoxy phenols recovery. BIORESOURCE TECHNOLOGY 2020; 317:124008. [PMID: 32818909 DOI: 10.1016/j.biortech.2020.124008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Alkyl and alkoxy phenols are desirable products from the catalytic depolymerisation of lignin. In this work, ex-situ catalytic pyrolysis of Etek lignin in presence of Na, Ce, NiCe, MgCe, Fe and FePd on ZrO2 was studied. The largest combined yield of monomeric phenolics and alkylphenols was produced by Na/ZrO2 catalysts. A parametric study of the most promising Na/ZrO2 then resulted in using a catalyst:lignin ratio of 3:1 at 500 °C as the best option, enhancing at 17.5 wt% the recovery of total phenolics including 6 wt% alkyl phenols, which is equivalent to 27.8 wt% and 9.5 wt% of the starting lignin in Etek lignin waste. The study of the catalyst basicity indicates that the mild basicity of Na/ZrO2 was mostly responsible for the enhanced mono phenols recovery. Due to formation of thermally stable Na2CO3 during pyrolysis, successful Na/ZrO2 regeneration requires temperature of 900 °C or higher.
Collapse
Affiliation(s)
- Abbie Hendry
- Advanced Biofuels Lab, Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Michelle Åhlén
- Nanotechnology and Functional Materials Division, Department of Materials Science and Engineering, The Ångström Laboratory, Uppsala University, Uppsala 534 751 21, Sweden
| | - Tony Fernandes
- Advanced Biofuels Lab, Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; Polytech Montpellier, Département MAT, Place Eugène Bataillon, 34095 Montpellier, CEDEX 5, France
| | - Ocean Cheung
- Nanotechnology and Functional Materials Division, Department of Materials Science and Engineering, The Ångström Laboratory, Uppsala University, Uppsala 534 751 21, Sweden
| | - Aimaro Sanna
- Advanced Biofuels Lab, Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
20
|
Zhu J, Yang H, Hu H, Zhou Y, Li J, Jin L. Novel insight into pyrolysis behaviors of lignin using in-situ pyrolysis-double ionization time-of-flight mass spectrometry combined with electron paramagnetic resonance spectroscopy. BIORESOURCE TECHNOLOGY 2020; 312:123555. [PMID: 32447123 DOI: 10.1016/j.biortech.2020.123555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
In-situ detection on primary volatiles and stable radicals is of great importance for better understanding of lignin pyrolysis mechanisms and utilization. In this study, a novel in-situ pyrolysis time-of-flight mass spectrometry with double ionization sources was taken to in-situ detect primary volatiles and gas products, and the evolution of stable radicals in lignin pyrolysis residues was explored by EPR spectroscopy. The results show that the cleavage of β-O-4 linkage is mainly responsible for lignin depolymerization at 100-300 °C, releasing the G-type compounds. And these G-type compounds can further undergo O-CH3, Car-OCH3 and Car-OH bonds cleavage to form biphenolic hydroxyl compounds, phenols and aromatic hydrocarbons. According to the EPR analysis, the radical concentration increased from 1017 to 1019 spins/g with the temperature, and stable free-radical species are mainly composed of the o-methoxy and hydroxyl substituted phenoxy radicals and carbon-centered aromatic radicals, which can well interpret the demethylation, demethoxylation and dehydroxylation mechanisms.
Collapse
Affiliation(s)
- Jialong Zhu
- State Key Laboratory of Fine Chemicals, Institute of Coal Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - He Yang
- State Key Laboratory of Fine Chemicals, Institute of Coal Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Haoquan Hu
- State Key Laboratory of Fine Chemicals, Institute of Coal Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Zhou
- State Key Laboratory of Fine Chemicals, Institute of Coal Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiangang Li
- State Key Laboratory of Fine Chemicals, Institute of Coal Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Lijun Jin
- State Key Laboratory of Fine Chemicals, Institute of Coal Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
21
|
Cao Y, Chen SS, Zhang S, Ok YS, Matsagar BM, Wu KCW, Tsang DCW. Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery. BIORESOURCE TECHNOLOGY 2019; 291:121878. [PMID: 31377047 DOI: 10.1016/j.biortech.2019.121878] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 05/13/2023]
Abstract
Lignin is one of the most promising renewable sources for aromatic hydrocarbons, while effective depolymerization towards its constituent monomers is a particular challenge because of the structural complexity and stability. Intensive research efforts have been directed towards exploiting effective valorization of lignin for the production of bio-based platform chemicals and fuels. The present contribution aims to provide a critical review of key advances in the identification of exact lignin structure subjected to various fractionation technologies and demonstrate the key roles of lignin structures in depolymerization for unique functionalized products. Various technologies (e.g., thermocatalytic approaches, photocatalytic conversion, and mechanochemical depolymerization) are reviewed and evaluated in terms of feasibility and potential for further upgrading. Overall, advances in pristine lignin structure analysis and conversion technologies can facilitate recovery and subsequent utilization of lignin towards tailored commodity chemicals and fungible fuels.
Collapse
Affiliation(s)
- Yang Cao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Season S Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Babasaheb M Matsagar
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
22
|
Ma Z, Wang J, Li C, Yang Y, Liu X, Zhao C, Chen D. New sight on the lignin torrefaction pretreatment: Relevance between the evolution of chemical structure and the properties of torrefied gaseous, liquid, and solid products. BIORESOURCE TECHNOLOGY 2019; 288:121528. [PMID: 31150968 DOI: 10.1016/j.biortech.2019.121528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
In order to reveal the deoxygenation mechanism of lignin torrefaction, the relevance between evolution of chemical structure of torrefied lignin and the properties of torrefied gaseous, liquid, and solid products was established in this study. Results showed that the contents of oxygen element, βO4 linkages, oxygen-containing functional groups (aliphatic OH, aliphatic COOH, aromatic OCH3) in lignin decreased with the increase of the torrefaction temperature from 210 to 300 °C. The oxygen removal efficiency of lignin torrefaction reached the maximum value of 25.53% at 300 °C. The removed oxygen in the torrefied lignin was transferred into the torrefied gaseous product (e.g. CO2, H2O, and CO) and torrefied liquid product (e.g. G-type and P-type phenols, acids). Among the torrefied gaseous products, CO2 was the dominant oxygen carrier, followed by CO and H2O. Among the torrefied liquid products, G-type phenols were the dominant oxygen carrier, followed by P-type phenols and acids.
Collapse
Affiliation(s)
- Zhongqing Ma
- School of Engineering, Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China.
| | - Junhao Wang
- School of Engineering, Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Cong Li
- School of Engineering, Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Youyou Yang
- School of Engineering, Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Xiaohuan Liu
- School of Engineering, Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Chao Zhao
- School of Engineering, Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Dengyu Chen
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
23
|
Wang F, Yu YZ, Chen Y, Yang CY, Yang YY. One-step alcoholysis of lignin into small-molecular aromatics: Influence of temperature, solvent, and catalyst. ACTA ACUST UNITED AC 2019; 24:e00363. [PMID: 31440458 PMCID: PMC6698935 DOI: 10.1016/j.btre.2019.e00363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/04/2019] [Accepted: 07/26/2019] [Indexed: 12/30/2022]
Abstract
The reactant suspension mode is an effective strategy to deoxy-liquefaction of lignin. The catalyst Cu-C has the optimal catalytic activity and selectivity in methanol. The catalyst Fe-SiC possesses the optimal catalytic deoxygenation in ethanol. The cleavages of C—O ether bonds and C—C bonds directly promote the formation of small-molecular aromatics.
Lignin valorization is a challenge because of its complex structure and high thermal stability. Supercritical alcoholysis of lignin without external hydrogen in a self-made high-pressure reactor is investigated under different temperatures (450–500 °C) and solvents as well as catalysts by using a reactant suspension mode. Small-molecular arenes and mono-phenols (C7-C12) are generated under short residence time of 30 min. High temperature (500 °C) favors efficient deoxy-liquefaction of lignin (70%) and formation of small-molecular arenes (C6-C9). Solvents methanol and ethanol demonstrate much more synergistic effect on efficient deoxy-liquefaction of lignin than propanol. The catalyst Cu-C has the optimal activity and selectivity in methanol (70% of conversion, 83.93% of arenes), whereas Fe-SiC possesses the optimal catalytic deoxygenation in ethanol, resulting in the formation of arenes other than phenols. Further analysis indicates that lignin is converted into arenes by efficient cleavages of C—O ether bonds and C—C bonds under high temperature and pressure.
Collapse
Affiliation(s)
- Fang Wang
- Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - You-Zhu Yu
- Key Laboratory of Magnetic Molecules and Magnetic Information Material of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China
| | - Yigang Chen
- Key Laboratory of Magnetic Molecules and Magnetic Information Material of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China
| | - Chun-Yu Yang
- Key Laboratory of Magnetic Molecules and Magnetic Information Material of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China
| | - Yuan-Yu Yang
- Key Laboratory of Magnetic Molecules and Magnetic Information Material of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China
| |
Collapse
|