1
|
Li D, Wei W, Xu W, Li C, Yang Y, Chu Z, Zheng B. The interactive application and impacts of iron/nitrogen biogeochemical cycling in distributed ponds for non-point source pollution control in a watershed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124797. [PMID: 40058038 DOI: 10.1016/j.jenvman.2025.124797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
The linkages of distributed ponds are utilized in conjunction with one another to remediate non-point source (NPS) pollution in a water-scarce basin. This study provides an overview of a state-of-the-art thorough evaluation of ponds, which offers insight into the majority of topics covered by the ongoing scientific studies, including their various functions and factors affecting their functioning on the hydrological, physicochemical, and biological processes, such as environmental climate factors and basin-specific landscape configuration parameters, as well as process parameters for design, operation and management aspects. The linkages of ponds provide a variety of sustainable services (6R functions), such as resources, restoration, reduction, reuse, recycling, and recovery. The significance of regional environmental geochemical substrates in the ponds, such as red soil, as a hotspot for microbial reaction is emphasized to demonstrate the significant contribution of the migration and transformation of Fe/N cycles to the pollution removal process. In this review, 178 original research publications were thoroughly analyzed to improve our knowledge of the iron-nitrogen cycle in wetlands. From a molecular biology standpoint, the identification of functional microbe species and genes linked to microbially driven iron-nitrogen cycle activities is delved. Reliable data and homogeneous datasets from 42 studies were collected. The correlation analysis results demonstrated Feammox rates contributed to the N loss amount (r = 0.871; p < 0.01), and they had a positive correlation with Fe(III) concentration (r = 0.965; p < 0.01). The proposal for the treatment of NPS pollution by large-scale linkages of ponds in a basin involves optimizing Fe/N microbial processes to promote iron crystallization and efficient circulation of Fe(II) and Fe(III). The co-benefits of geochemistry, biotechnology, and environmental science should be considered when managing contamination in engineering applications. The linkages framework for integrated ponds, which incorporates macro (watershed management) and micro (biogeochemical cycle mechanism) investigations, provides a systematic approach to the application of integrated ponds and sustainable water management for NPS pollution control.
Collapse
Affiliation(s)
- Dan Li
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China.
| | - Weiwei Wei
- State Environmental Protection Key Laboratory of Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenyi Xu
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Lennart Hjelms väg 9, 75007, Uppsala, Sweden
| | - Chunhua Li
- State Environmental Protection Key Laboratory of Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yinchuan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhaosheng Chu
- State Environmental Protection Key Laboratory of Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Binghui Zheng
- State Environmental Protection Key Laboratory of Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
2
|
Zhu F, Yuan J, Hou Z, Guo X, Liao W, Yang S, Chu Z. Seasonal water level changes affect plant diversity and littoral widths at different elevation zones in the Erhai Lake. FRONTIERS IN PLANT SCIENCE 2025; 16:1503627. [PMID: 40182541 PMCID: PMC11965605 DOI: 10.3389/fpls.2025.1503627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025]
Abstract
The littoral width of lakeshores is crucial for maintaining and promoting plant diversity. However, it remains unclear how changes in seasonal water level affect littoral widths by regulating plant diversity and soil nutrient content. This study selected three elevation ranges in the lakeshore of Erhai: supralittoral, eulittoral, and infralittoral. We explored the effects of hydrological changes on littoral widths and their potential relationships by analyzing seasonal differences in plant communities and soil physicochemical properties during an extremely drought year. Our results indicated that the most significant seasonal differences in diversity indices, biomass, and soil physicochemical properties were observed in the eulittoral, followed by the infralittoral and supralittoral. The niche breadths of perennials was significantly decreased by 44.4% and the width of the eulittoral was significantly decreased by 48.6% during the winter. Generalized Additive Models (GAMs) were applied to analyze the elevation distribution ranges of dominant species. The results revealed that species with monotonically increasing distributions had the widest niche breadths, followed by symmetric unimodal species, while monotonically decreasing species exhibited the narrowest. Structural equation modeling revealed a positive and significant correlation between flooding days and soil water content and pH, and a negative correlation with plant parameters (species number, biomass, and coverage). Moreover, plant parameters showed a significant positive correlation with plant diversity. Importantly, plant diversity and soil nutrients were significantly positively correlated with littoral widths, suggesting their key roles in influencing littoral widths. This study highlights the significant impact of hydrological seasonal changes on the littoral widths of lakeshore zones, providing valuable guidance for managing wetland water levels in response to extreme drought events.
Collapse
Affiliation(s)
- Feng Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- College of Water Sciences, Beijing Normal University, Beijing, China
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Jing Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zeying Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xia Guo
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, China
- Construction Project Environmental Impact Assessment and Audit Center of Dali Bai Autonomous Prefecture, Dali, Yunnan, China
| | - Wanxue Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Shenglin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- College of Water Sciences, Beijing Normal University, Beijing, China
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhaosheng Chu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- College of Water Sciences, Beijing Normal University, Beijing, China
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
3
|
Kushwaha A, Goswami L, Kim BS, Lee SS, Pandey SK, Kim KH. Constructed wetlands for the removal of organic micropollutants from wastewater: Current status, progress, and challenges. CHEMOSPHERE 2024; 360:142364. [PMID: 38768790 DOI: 10.1016/j.chemosphere.2024.142364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
In this work, the practical utility of constructed wetlands (CWs) is described as a promising treatment option for micropollutants (MPs) in wastewater with the aid of their eco-friendly, low-energy, economically feasible, and ecologically sustainable nature. This paper offers a comprehensive review on CW technology with respect to the key strategies for MP removal such as phytoremediation, substrate adsorption, and microbial degradation. It explores the important factors controlling the performance of CWs (e.g., in terms of configurations, substrates, plant-microbe interactions, temperature, pH, oxygen levels, hydraulic loading rate, and retention time) along with the discussions on the pivotal role of microbial populations in CWs and plant-microbe cooperative remediation dynamics, particularly in relation to diverse organic MP patterns in CWs. As such, this review aims to provide valuable insights into the key strategies for optimizing MP treatment and for enhancing the efficacy of CW systems. In addition, the process-based models of constructed wetlands along with the numerical simulations based on the artificial neural network (ANN) method are also described in association with the data exploratory techniques. This work is thus expected to help open up new possibilities for the application of plant-microbe cooperative remediation approaches against diverse patterns of organic MPs present in CWs.
Collapse
Affiliation(s)
- Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sang Soo Lee
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Sudhir Kumar Pandey
- Department of Botany, Guru Ghasidas Vishwavidyalaya (a central University) Bilaspur, Chhattisgarh, 495009, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
4
|
Aragão FB, Galter IN, Grecco KD, Coelho EJR, da Silva TT, Bonomo MM, Fernandes MN, Matsumoto ST. Toxic risk evaluation of effluents from a swine biodigester in the plant models Lactuca sativa and Allium cepa. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:64. [PMID: 38112861 DOI: 10.1007/s10661-023-12173-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
Pig farming is recognized as an activity with great polluting potential. The aim was to investigate possible environmental risks of effluents from the stabilization pond (SP) and the raw effluent (RE) from the biodigestion process of swine residues, in different concentrations in the models Lactuca sativa and Allium cepa. Seeds were germinated in different dilutions, 100% (C1), 50% (C2), 25% (C3), 12.5% (C4), 6.25% (C5), 3.12% (C6), 0.78% (C7), and 0.39% (C8). Distilled water was used as the negative control (CN) and trifluralin (0.84 g/L-1) as the positive control. Germination (GR), root growth (RG), cell cycle, and oxidative stress (OS) were analyzed. To assess OS, the activity of the enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) and the quantification of glutathione (GSH) and lipid peroxidation (LPO) were analyzed. Data were submitted to ANOVA (one way), followed by the Kruskal-Wallis mean test (P ≤ 0.05). Chemical analysis showed high values of Cu, Fe, Mn, and Zn. Dilutions (C1, C2, C3 RE) and (C1 and C2 SP) inhibited GR and RG of L. sativa and A. cepa than other concentrations. The mitotic index showed a reduction in C5 (RE), C6, and C7 (SP) of L. sativa and C3 and C4 (SP) of A. cepa in relation to CN and higher frequencies of chromosomal alterations. Regarding the OS, only the concentrations of SP treatment showed statistical difference in relation to the NC: in L. sativa model, GSH at (C5 and C8) concentrations and LPO (C7); in A. cepa model, SOD (C3 and C4), GST (C4, C5 and C6), GSH (C5 and C8), and CAT (C3 and C7). The alterations in metabolism are possibly related to the metals, such as zinc and copper, observed in high amounts in the raw waste. The results allowed us to conclude that the raw and stabilization pond effluents offer environmental risks, requiring caution and monitoring in the use of these effluents.
Collapse
Affiliation(s)
- Francielen Barroso Aragão
- Biology Department, Center of Human and Natural Sciences, Federal University of Espírito Santo, 29.075-910, Vitoria, ES, Brazil.
| | - Iasmini Nicoli Galter
- Biology Department, Center of Human and Natural Sciences, Federal University of Espírito Santo, 29.075-910, Vitoria, ES, Brazil
| | - Kalia Dável Grecco
- Biology Department, Center of Human and Natural Sciences, Federal University of Espírito Santo, 29.075-910, Vitoria, ES, Brazil
| | - Edvar Junior Roncetti Coelho
- Biology Department, Center of Human and Natural Sciences, Federal University of Espírito Santo, 29.075-910, Vitoria, ES, Brazil
| | - Tainá Turial da Silva
- Biology Department, Center of Human and Natural Sciences, Federal University of Espírito Santo, 29.075-910, Vitoria, ES, Brazil
| | - Marina Marques Bonomo
- Physiological Sciences Department, Center of Human and Health, Federal University of São Carlos, Sao Carlos, SP, 13565-905, Brazil
| | - Marisa Narciso Fernandes
- Physiological Sciences Department, Center of Human and Health, Federal University of São Carlos, Sao Carlos, SP, 13565-905, Brazil
| | - Silvia Tamie Matsumoto
- Biology Department, Center of Human and Natural Sciences, Federal University of Espírito Santo, 29.075-910, Vitoria, ES, Brazil
| |
Collapse
|
5
|
Pu Y, Li Y, Zhu L, Cheng Y, Nuamah LA, Zhang H, Chen H, Du G, Wang L, Song C. Long-term assessment on performance and seasonal optimal operation of a full-scale integrated multiple constructed wetland-pond system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:161219. [PMID: 36584951 DOI: 10.1016/j.scitotenv.2022.161219] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Constructed wetlands as natural process-based water treatment technologies are popular globally. However, lack of detailed long-term assessment on the impact of seasonal variations on their performance with focus on optimal seasonal adjustments of controllable operating parameters significantly limits their efficient and sustainable long-term operation. To address this, a full-scale integrated multiple surface flow constructed wetlands-pond system situated between slightly polluted river water and outflow-receiving waterworks in a subtropical monsoon climate area of middle-eastern China was seasonally assessed over a period of six years. During this period, the removal rate (R) and mass removal rate (MRR) of total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD) possessed strong seasonality (p < 0.05). The highest R (%) and MRR (mg/m2/d) were in summer for TN (51.53 %, 114.35), COD (16.30 %, 143.85) and TP (62.39 %, 23.89) and least in spring for TN (23.88 %, 39.36) and COD. Whereas for TP, the least R was in autumn (37.82 %) and least MRR was in winter (9.35). Applying a first-order kinetics model coupled with Spearman's rank correlation analysis, purification efficiency exhibited significant dependence on temperature as nutrient reaction rates constant, k generally increased with temperature and was highest in summer. Meanwhile, the R of TN, TP and COD were positively correlated with influent concentration whiles MRR of TP was negatively correlated with hydraulic retention time but positively correlated with hydraulic loading rate (HLR) (p < 0.05). Also, MRR of COD and TN were positively correlated with mass loading rates (MLR) in summer and autumn. Through linear optimization, the best operating parameters according to the compliance rate were determined and a set of guidelines were proposed to determine the optimal operational change of hydrological index in each season (Spring, 0.1-0.12 m/d; Summer, 0.14-0.16 m/d; Autumn, 0.15-0.17 m/d; Winter, 0.1-0.11 m/d) for efficient and sustainable long-term operation.
Collapse
Affiliation(s)
- Yashuai Pu
- College of Environment, Hohai University, Nanjing 210098, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yiping Li
- College of Environment, Hohai University, Nanjing 210098, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Liqin Zhu
- College of Marxism, Hohai University, Nanjing 210098, PR China
| | - Yu Cheng
- College of Environment, Hohai University, Nanjing 210098, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Linda A Nuamah
- College of Environment, Hohai University, Nanjing 210098, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Haikuo Zhang
- College of Environment, Hohai University, Nanjing 210098, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hongwei Chen
- Water Conservancy Bureau of Jiangsu Province, Yancheng 224002, PR China
| | - Guanchao Du
- Yanlong Lake Drinking Water Source Management Office, Yancheng 224002, PR China
| | - Ling Wang
- Yancheng Water Affairs Group Co., Ltd, Yancheng 224007, China
| | - Congqing Song
- Yancheng Water Affairs Group Co., Ltd, Yancheng 224007, China
| |
Collapse
|
6
|
Yang B, Xiao Z, Meng Q, Yuan Y, Wang W, Wang H, Wang Y, Feng X. Deep learning-based prediction of effluent quality of a constructed wetland. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 13:100207. [PMID: 36203649 PMCID: PMC9529666 DOI: 10.1016/j.ese.2022.100207] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Data-driven approaches that make timely predictions about pollutant concentrations in the effluent of constructed wetlands are essential for improving the treatment performance of constructed wetlands. However, the effect of the meteorological condition and flow changes in a real scenario are generally neglected in water quality prediction. To address this problem, in this study, we propose an approach based on multi-source data fusion that considers the following indicators: water quality indicators, water quantity indicators, and meteorological indicators. In this study, we establish four representative methods to simultaneously predict the concentrations of three representative pollutants in the effluent of a practical large-scale constructed wetland: (1) multiple linear regression; (2) backpropagation neural network (BPNN); (3) genetic algorithm combined with the BPNN to solve the local minima problem; and (4) long short-term memory (LSTM) neural network to consider the influence of past results on the present. The results suggest that the LSTM-predicting model performed considerably better than the other deep neural network-based model or linear method, with a satisfactory R2. Additionally, given the huge fluctuation of different pollutant concentrations in the effluent, we used a moving average method to smooth the original data, which successfully improved the accuracy of traditional neural networks and hybrid neural networks. The results of this study indicate that the hybrid modeling concept that combines intelligent and scientific data preprocessing methods with deep learning algorithms is a feasible approach for forecasting water quality in the effluent of actual engineering.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Zijie Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Qingjie Meng
- Shenzhen Shenshui Water Resources Consulting CO, LTD, Shenzhen, Guangdong, 518022, PR China
| | - Yuan Yuan
- College of Biological Engineering, Beijing Polytechnic, Beijing, 10076, PR China
| | - Wenqian Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Haoyu Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yongmei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Xiaochi Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| |
Collapse
|
7
|
Wang Z, Zhang Y, Li X, Li J, Zhao Z, Hou X. Mixed culture of plants improved nutrient removal in constructed wetlands: response of microbes and root exudates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5861-5872. [PMID: 35986110 DOI: 10.1007/s11356-022-22305-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Root exudates are determined by plant species configuration and affect microbial community, which in turn affect purification efficiency of constructed wetlands (CWs). However, it is not well understood how plant configuration affects CW purification efficiency through specific root exudates. Herein, four mixed culture CWs were constructed; CW-G3 with Iris pseudacorus, Iris sibirica, Juncus effusus, and Hydrocotyle vulgaris showed the optimal diversity nutrients removal efficiency (TN: 94.2%, TP: 82.9%, COD: 74.7%). Highly increased antioxidant enzymes (peroxidase and catalase) reduced photosynthesis-negative enzyme (malondialdehyde) activity of plants in CW-G3, which ensured oxygen (O2) and organic carbon (OC) production and successfully released to rhizosphere by well-developed root aeration tissues. Further, CW-G3 enriched higher abundance of genus Saccharimonadales and Flavobacterium, which benefited nitrogen removal. Moreover, as OC, higher contents of maltose in CW-G3 (6.6 ~ 11.1-fold of that in other three CWs), as well as lauramide, choline, triethylamine and urocanic acid contributed to microbial denitrifying. Differently, higher contents of unsaturated fatty acids (linoleic acid and oleic acid) in other three CWs inhibited microbial nitrifying as inhibitors, which also proved by co-occurrent network. Thereby, plant configuration in CW-G3 provided higher O2 and OC contents for bacteria and reduced nitrifying inhibitors, which contributed to higher purifying efficiency. The study promoted the understanding about root exudates' effects on bacteria through plant configurations and improved the purification efficiency of CWs.
Collapse
Affiliation(s)
- Zhufang Wang
- College of Marine Ecology and Environment, Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai Ocean University, Shanghai, 201306, China
| | - Yinjing Zhang
- College of Marine Ecology and Environment, Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiao Li
- College of Marine Ecology and Environment, Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinkun Li
- College of Marine Ecology and Environment, Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhimiao Zhao
- College of Marine Ecology and Environment, Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai Ocean University, Shanghai, 201306, China.
| | - Xin Hou
- Chongqing Water Resources and Electric Engineering College, Chongqing, 402160, China
| |
Collapse
|
8
|
Long Y, Zhou Z, Wen X, Wang J, Xiao R, Wang W, Li X, Lai X, Zhang Y, Deng C, Cao J, Yin L. Microplastics removal and characteristics of a typical multi-combination and multi-stage constructed wetlands wastewater treatment plant in Changsha, China. CHEMOSPHERE 2023; 312:137199. [PMID: 36372338 DOI: 10.1016/j.chemosphere.2022.137199] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Wastewater treatment plants (WWTPs) are an important source of microplastics (MPs) entering the aquatic environment. As environmental awareness increases, WWTPs are gradually using constructed wetlands (CWs) in the depth treatment stage. There were few studies related to MPs removal efficiency of CWs, especially in multi-stage and multi-combinations CWs. Therefore, we studied MPs characteristics and removal in a typical CWs WWTP in Changsha, comparing the MPs removal efficiencies of different processes in a WWTP, focusing on the MPs abundance variation in different stages CWs. Result showed that the MPs removal efficiency of Phase Ⅰ was 87.72% and that of Phase II was 80.65%. Approximate estimates showed that the daily discharge of MPs reached 7.20 * 108 items. The MPs removal efficiency of vertical flow CWs was 25.71%. The MPs removal efficiencies of secondary and tertiary horizontal subsurface flow CWs (HSSFCWs) were 32.00% and 21.43%. The MPs removal efficiencies of secondary and tertiary surface flow CWs were 23.53% and 12.50%. The MPs removal efficiencies of three bio-ponds were -23.08%, -12.90%, and -27.27%. Combined system of bio-pond + CWs reduced the MPs removal efficiency. The most dominant shape of MPs in wastewater was fibers. The most common MPs were polyethylene and polystyrene. The primary treatment in the Changsha WWTP had the highest MPs removal efficiency. Results of this investigation showed the multi-combination and multi-stage CWs WWTP can remove most of MPs in influent, which greatly reduced the amount of MPs discharged into the aquatic environment through WWTP and provided data for analyzing the distribution of MPs in the aquatic environment.
Collapse
Affiliation(s)
- Yuannan Long
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Zhenyu Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Xiaofeng Wen
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China.
| | - Jianwu Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wenming Wang
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha, 410006, China
| | - Xiwei Li
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha, 410006, China
| | - Xu Lai
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha, 410006, China
| | - You Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Chaoping Deng
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Jinsong Cao
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Lingshi Yin
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China.
| |
Collapse
|
9
|
Guo C, Cui Y. Machine learning exhibited excellent advantages in the performance simulation and prediction of free water surface constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114694. [PMID: 35182978 DOI: 10.1016/j.jenvman.2022.114694] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/19/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Optimizing the design and operation parameters of free water surface constructed wetlands (FWS CWs) in runoff regulation and wastewater treatment is necessary to improve the comprehensive performance. In this study, nine machine learning (ML) algorithms were successfully developed to optimize the parameter combinations for FWS CWs. The scale effect of surface area on wetland performance was determined based on consistently smaller predictions (-6.2% to -28.9%) of the nine well-established ML algorithms. The models most suitable for FWS CW performance simulation and prediction were random forest and extra trees algorithms because of their high R2 values (0.818 in both) with the training set and low mean absolute relative errors (4.7% and 3.8%, respectively) with the test set. Results from feature analysis of the six tree-based algorithms emphasized the importance of water depth and layout of inlet and outlet, and revealed the negligible effect of the aspect ratio. Feature importance and partial dependence analysis enhanced the interpretability of the tree-based algorithms. The proposed ML algorithms enabled the implementation of an extended scenario at a low cost in real time. Therefore, ML algorithms are suitable for expressing the complex and uncertain effects of the design and operation parameters on the performance of FWS CWs. Acquiring datasets consisting of more extensive, uniform, and unbiased parameter combinations is crucial for developing more robust and practical ML algorithms for the optimal design of FWS CWs.
Collapse
Affiliation(s)
- Changqiang Guo
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Key Laboratory of Basin Water Resources and Eco-Environmental Science in Hubei Province, Changjiang River Scientific Research Institute of Changjiang Water Resources Commission, Wuhan, 430010, China
| | - Yuanlai Cui
- State Key Laboratory of Water Resource and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
10
|
Li Y, Nuamah LA, Pu Y, Zhang H, Norgbey E, Nwankwegu AS, Banahene P, Bofah R. A radial basis function neural network based multi-objective optimization for simultaneously enhanced nitrogen and phosphorus removal in a full-scale integrated surface flow treatment wetland-pond system. BIORESOURCE TECHNOLOGY 2022; 344:126336. [PMID: 34785331 DOI: 10.1016/j.biortech.2021.126336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
In this study, a radial basis function neural network (RBFNN) model was developed and implemented in a multi-objective optimization procedure to determine the optimal hydraulic loading rate (HLR), hydraulic retention time (HRT), and mass loading rates (MLR) for enhanced removal of nitrogen and phosphorus by an integrated surface flow treatment wetland-pond system treating drinking source water in Yancheng, China. Prior to modelling, the system's 6-year nitrogen and phosphorus removal efficiencies were found to trend downwards as effluent concentrations trended positively. Meanwhile, operating parameter interaction effects impacted final effluent quality. Thus, total nitrogen and total phosphorus removal were simulated by an RBFNN model with satisfactory R2 of 0.99 and 0.98 respectively. Optimal average HLR, HRT and MLR for 80% simultaneous removal efficiencies were subsequently determined to be 0.10860 ± 0.03 md-1, 30.43 ± 9.96 d and 306.416 ± 89.54 mgm-2d-1 respectively. The results highlight the feasibility of the RBFNN modelling based optimization procedure for treatment wetlands.
Collapse
Affiliation(s)
- Yiping Li
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Linda A Nuamah
- College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yashuai Pu
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Haikuo Zhang
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Eyram Norgbey
- College of Environment, Hohai University, Nanjing 210098, PR China
| | | | - Patrick Banahene
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Robert Bofah
- College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
11
|
Zheng C, Zhang X, Gan L, He Z, Zhu J, Zhang W, Gao Y, Yang L. Effects of biochar on the growth of Vallisneria natans in surface flow constructed wetland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:66158-66170. [PMID: 34331223 DOI: 10.1007/s11356-021-15399-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
To improve the nitrogen and phosphorus removal efficiency of surface flow constructed wetlands (SFCWs), biochar was added to an SFCW matrix. The effects of adding different amounts of biochar on water purification, the growth of Vallisneria natans (V. natans), and microbial mechanisms were explored through SFCW simulation experiments. The results showed that through the joint action of biochar and V. natans, the concentrations of total nitrogen, total phosphorus, and ammonia nitrogen in the effluent significantly decreased. The total biomass, relative growth rate, and chlorophyll content of V. natans were significantly reduced by adding biochar (≥20%, v/v), as the root activity and the root to leaf biomass ratio slightly increased at first and then decreased. The carbon and nitrogen contents of V. natans slightly increased with the addition of biochar (≥10%, v/v), but the phosphorus content slightly decreased. Moreover, the nitrogen content of the matrices decreased significantly over time (P<0.05), and the phosphorus content in the matrix showed an increasing trend in the same period. In addition, the microbial 16S rDNA sequencing results indicated that the diversity and abundance of the microbial community in the matrix of the biochar-added SFCW tended to decrease. Nevertheless, the abundance of functional bacteria related to nitrogen and phosphorus removal (i.e., Pseudomonas and Dechloromonas) slightly increased, which would benefit denitrification and dephosphorization in the SFCW. Hence, the addition of biochar to the SFCW matrix facilitated the improvement of effluent water quality, while excessive biochar addition (≥10%, v/v) restrained the growth of V. natans but did not cause death. This conclusion provides valid data support regarding the ability of biochar-added SFCW to purify lightly contaminated water.
Collapse
Affiliation(s)
- Chaoqun Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xuanwen Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Lin Gan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Zhaofang He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Jinling Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Wen Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yan Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
12
|
Li D, Chu Z, Zeng Z, Sima M, Huang M, Zheng B. Effects of design parameters, microbial community and nitrogen removal on the field-scale multi-pond constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:148989. [PMID: 34351277 DOI: 10.1016/j.scitotenv.2021.148989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Ecological multi-pond constructed wetlands (CWs) are an alternative wastewater treatment technology for nitrogen removal from non-point source pollution. As an important component of nitrogen cycles in the field-scale CWs, microorganisms are affected by design parameters. Nevertheless, the mechanism of design parameters affecting the distribution of microbial community and removal performance remains largely unexplored. In this study, satisfactory nitrogen removal performance was obtained in three multi-pond CWs. The highest mass removal rate per square meter (1104.0 mg/m2/day) and mass removal rate per cubic meter (590.2 mg/m3/day) for total nitrogen removal were obtained in the XY CW system during the wet season. The changes in seasonal parameters accounted for different removal performances and distributions of the microbial community. The combination of wastewater treatment technologies in the XY CW system consisting of ponds, CWs, and eco-floating treatment wetlands enriched the abundances of nitrogen-related functional genera. Correlation network analysis further demonstrated that longer hydraulic residence time and higher nitrogen concentration could intensify the enrichment of nitrogen-related functional genera. Regulating the combination of wastewater treatment technologies, the nitrogen concentration of influent, hydraulic loading rate, and water depth might promote the accumulation of microbial communities and enhance nitrogen removal. Macroscopical spatial/temporal regulation were proposed to enhance the treatment of non-point source pollution. The clarification of driving mechanism on design parameters, microbial community, and removal performance provided a novel perspective on the long-term maintenance of purification performance, practically sustainable applications, and scientific management of field-scale multi-pond CWs.
Collapse
Affiliation(s)
- Dan Li
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaosheng Chu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zhenzhong Zeng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Matthew Sima
- Department of Civil and Environmental Engineering, Princeton University, NJ 08540, USA
| | - Minsheng Huang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Binghui Zheng
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
13
|
Shen S, Li X, Lu X. Recent developments and applications of floating treatment wetlands for treating different source waters: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62061-62084. [PMID: 34586569 DOI: 10.1007/s11356-021-16663-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Most water bodies around the world suffer from pollution to varying degrees. Floating treatment wetlands (FTWs) are a simple and efficient ecological treatment technology and have been widely studied and applied as a sustainable solution for different source waters. Based on the analysis of abundant literature in the last ten years, this paper systematically reviews the history and the latest development of FTWs. Meanwhile, the treatment performance and pollutant removal mechanisms of FTWs on the natural water, stormwater, domestic wastewater, industrial wastewater, and agricultural runoff are analyzed. In particular, very interesting information is provided, such as water depth, water surface coverage, the ratio of dissolved to total phosphorous (DRP/TP), the ratio of nitrogen to phosphorous (N/P), BOD/COD ratio, and its effects on the efficiency and removal mechanisms of FTWs. This information will provide useful references and guidance for optimizing the design of FTW and pollutant treatment efficiency of different source waters. This paper also provides an objective review of the limitations of FTWs. Subsequently, the enhancements of FTW technology which are recognized to be effective, including aeration, adding functional fillers or obligate degrading bacteria, and construction of hybrid FTWs, are summarized and recommendations are made for further research.
Collapse
Affiliation(s)
- Shuting Shen
- Sch Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Xiang Li
- Sch Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Xiwu Lu
- Sch Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China.
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China.
| |
Collapse
|
14
|
Xu J, Liu J, Hu J, Wang H, Sheng L, Dong X, Jiang X. Nitrogen and phosphorus removal in simulated wastewater by two aquatic plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63237-63249. [PMID: 34227002 DOI: 10.1007/s11356-021-15206-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Water pollution control is the focus of environmental pollution control. Ecological water treatment is widely used because of its low cost and landscape effect, and has no pollution. Aquatic plants have attracted wide attention because of their low cost and high level of resource utilization. In order to study the effects of emergent and submerged plants on the removal of different concentrations of wastewater, and the effect of pollutants on plant growth, two common aquatic plants found in Northeast China (Iris ensata Thunb. and Potamogeton malaianus Miq.) were selected. Under static conditions, the removal efficiency of nitrogen and phosphorus in wastewater with different concentrations by two kinds of plants was studied. The results showed that the removal rate of total nitrogen (TN) in medium- and high-pollutant concentration water samples and total phosphorus (TP) in medium- and low-pollutant concentration water with I. ensata reached more than 75%. The removal rate of TN in the medium-pollutant concentration water with P. malaianus reached 71.4%, while the removal efficiency of TN and TP in the low-pollutant concentration water was higher than 80%. In the Nanhu Park Lake samples, I. ensata had the highest removal rates of TN (80.38%) and TP (85.62%). This study shows that both I. ensata and P. malaianus can be used as aquatic plants to restore the water quality of urban lakes. This research provides an important basis for the phytoremediation and treatment of urban domestic wastewater and urban surface water bodies in Northern China.
Collapse
Affiliation(s)
- Jianling Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration / School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China.
| | - Jiao Liu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration / School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| | - Jiaqi Hu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration / School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| | - Hanxi Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration / School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China.
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration / School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| | - Xiaoliang Dong
- , Nanhu Park, Gongnong Road 2715, Changchun, 130021, China
| | - Xiaodan Jiang
- , Nanhu Park, Gongnong Road 2715, Changchun, 130021, China
| |
Collapse
|
15
|
Cheng K, Xu X, Cui L, Li Y, Zheng J, Wu W, Sun J, Pan G. The role of soils in regulation of freshwater and coastal water quality. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200176. [PMID: 34365829 DOI: 10.1098/rstb.2020.0176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Water quality regulation is an important ecosystem service function of soil. In this study, the mechanism by which soil regulates water quality was reviewed, and the effects of soil management on water quality were explored. A scientometrics analysis was also conducted to explore the research fields and hotspots of water quality regulation of soil in the past 5 years. This review found that the pollutants entering the soil can be mitigated by precipitation, adsorption and desorption, ion exchange, redox and metabolic decomposition. As an optimal substrate, soil in constructed wetlands has perfect performance in the adsorption and passivation of pollutants such as nitrogen, phosphorus and heavy metals in water, and degradation of pesticides and emerging contaminants. Mangrove wetlands play an important role in coastal zone protection and coastal water quality restoration. However, the excessive application of agricultural chemicals causes soil overload, which leads to the occurrence of agricultural non-point source pollution. Under the dual pressures of climate change and food insecurity in the future, developing environmentally friendly and economically feasible sustainable soil management measures is crucial for maintaining the water purification function of soil by relying on the accurate quantification of soil function based on big data and modelling. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.
Collapse
Affiliation(s)
- Kun Cheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu 210095, People's Republic of China
| | - Xiangrui Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu 210095, People's Republic of China
| | - Liqiang Cui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Jiangsu 224003, People's Republic of China
| | - Yunpeng Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu 210095, People's Republic of China
| | - Jufeng Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu 210095, People's Republic of China
| | - Wenao Wu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu 210095, People's Republic of China
| | - Jianfei Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu 210095, People's Republic of China
| | - Genxing Pan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu 210095, People's Republic of China
| |
Collapse
|
16
|
de Oliveira JF, Fia R, Gomes ACC, Bigogno VS, de Souza Antônio T, Alves MRS, da Cruz TC. Multivariate criteria applied in the performance of Tifton 85 grass in a constructed wetland: effects of organic, nutritional, and sodium loads from swine wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:21314-21325. [PMID: 33415635 DOI: 10.1007/s11356-020-11391-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to analyze the effects of the application of multivariate criteria of principal components and hierarchical clustering as a mechanism for monitoring the performance of Tifton 85 grass (Cynodon spp.) planted in horizontal subsurface flow constructed wetland reactor (HSSF-CW) under different organic (OLR), nutritional and sodium loads of swine wastewater (SW). The HSSF-CW planted with Tifton 85 grass was used as a swine wastewater after treatment applying organic loading rates between 26.1 (1st cut) and 360.6 kg ha-1 day-1 COD (8th cut). The maximum performances of HSSF-CW consisted of 52.0 t ha-1 of productivity and 24.0% of crude protein, with the application of 59.7, 64.2, and 31.2 kg ha-1 day-1 of TKN, PT, and K+, respectively. The eleven original variables generated four new components, with PC4 accounting for 94.0% of total variance, a condition strengthened with four data groupings greater than 48% similarity and three data groupings greater than 95% similarity between the variables. There was a strong association between of nitrogen, phosphorus, and potassium concentration by the hierarchical grouping and the intermediate cuts and lower temperatures.
Collapse
Affiliation(s)
- Jacineumo Falcão de Oliveira
- Department of Water Resources and Sanitation, Environmental and Sanitary Engineering Centre, Federal University of Lavras, UFLA, Minas Gerais, 37200-000, Brazil.
| | - Ronaldo Fia
- Department of Water Resources and Sanitation, Environmental and Sanitary Engineering Centre, Federal University of Lavras, UFLA, Minas Gerais, 37200-000, Brazil
| | - Ana Cláudia Cristina Gomes
- Department of Water Resources and Sanitation, Environmental and Sanitary Engineering Centre, Federal University of Lavras, UFLA, Minas Gerais, 37200-000, Brazil
| | - Vanessa Salgado Bigogno
- Department of Water Resources and Sanitation, Environmental and Sanitary Engineering Centre, Federal University of Lavras, UFLA, Minas Gerais, 37200-000, Brazil
| | - Thainara de Souza Antônio
- Department of Water Resources and Sanitation, Environmental and Sanitary Engineering Centre, Federal University of Lavras, UFLA, Minas Gerais, 37200-000, Brazil
| | - Marcolina Rosa Souza Alves
- Department of Water Resources and Sanitation, Environmental and Sanitary Engineering Centre, Federal University of Lavras, UFLA, Minas Gerais, 37200-000, Brazil
| | - Thaís Caroline da Cruz
- Department of Water Resources and Sanitation, Environmental and Sanitary Engineering Centre, Federal University of Lavras, UFLA, Minas Gerais, 37200-000, Brazil
| |
Collapse
|
17
|
Guo CQ, Cui YL. Improved solute transport and pollutant degradation model of free water surface constructed wetlands considering significant linear correlation between model parameters. BIORESOURCE TECHNOLOGY 2021; 327:124817. [PMID: 33578355 DOI: 10.1016/j.biortech.2021.124817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
To unify the structures of solute transport and pollutant degradation models and evaluate the wetland performance conveniently, a pollutant degradation model combining first-order kinetics with the hybrid solute transport model (plug flow with dispersion + continuous stirred-tank reactor, PFD + CSTR) was developed. Orthogonal tests revealed significant correlation between the model parameters, and the original models were optimized via linear substitution of parameters. The improved PFD + CSTR solute transport model exhibited a satisfactory fit with the original model, and the average relative errors of the determination coefficient (R2) and correlation coefficient were <5%. The multiple linear regressions between the hydraulic indicators and model parameters were reconstructed and exhibited consistent structures between different stages. The degradation constant kaTN between the original and improved models exhibited high consistency (R2 = 0.982). Conclusively, the improved models exhibited good consistency with the original models and allowed rapid and accurate performance evaluation.
Collapse
Affiliation(s)
- Chang-Qiang Guo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Water Resource and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
| | - Yuan-Lai Cui
- State Key Laboratory of Water Resource and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
18
|
Liao R, Jin Z, Chen M, Li S. An integrated approach for enhancing the overall performance of constructed wetlands in urban areas. WATER RESEARCH 2020; 187:116443. [PMID: 32979580 DOI: 10.1016/j.watres.2020.116443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/07/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Constructed wetlands (CWs) are an important component of the urban matrix and play an essential role in the restoration of urban ecological environments. Although existing studies have mainly focused on the efficiency of technologies for removing pollutants in wastewater, efforts to intensify the overall performance of CWs have not been reported. Here, we propose a novel theoretical scheme for promoting optimal overall performance of CWs through the development of an integrated approach, entailing simulation, evaluation, and optimization strategies for their management. We successfully simulated the water distribution system of the Yanfangdian CW in Beijing, China, applying 42 hydrological parameters within the MIKE 21 software. We further evaluated our simulation results by performing an analytic hierarchy process to calculate performance scores. The back propagation neural network was well trained to quantify the relationship between the hydrological parameters and the overall performance of CW based on its water distribution characteristics and their corresponding scores. Subsequently, a genetic algorithm was applied to determine the hydrological solution. A strategy for optimizing the water level and flow was formulated for improving the ecological, purification and storage performances of the targeted CW along with a flexible strategy for ensuring its proper functioning. Our approach provides a robust and universal platform that can contribute significantly to the advancement of CWs that have a wide range of applications and could be extended to other ecosystems.
Collapse
Affiliation(s)
- Renkuan Liao
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, PR China; Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Zhengyuan Jin
- College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing 100083, PR China
| | - Minghong Chen
- College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing 100083, PR China
| | - Shuqin Li
- College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
19
|
Martinez-Guerra E, Ghimire U, Nandimandalam H, Norris A, Gude VG. Wetlands for environmental protection. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1677-1694. [PMID: 32744347 DOI: 10.1002/wer.1422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
This article presents an update on the research and practical demonstration of wetland-based treatment technologies for protecting water resources and environment covering papers published in 2019. Wetland applications in wastewater treatment, stormwater management, and removal of nutrients, metals, and emerging pollutants including pathogens are highlighted. A summary of studies focusing on the effects of vegetation, wetland design and operation strategies, and process configurations and modeling, for efficient treatment of various municipal and industrial wastewaters, is included. In addition, hybrid and innovative processes with wetlands as a platform treatment technology are presented.
Collapse
Affiliation(s)
- Edith Martinez-Guerra
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Umesh Ghimire
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, MS, USA
| | - Hariteja Nandimandalam
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, MS, USA
| | - Anna Norris
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, MS, USA
| | - Veera Gnaneswar Gude
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, MS, USA
| |
Collapse
|
20
|
Li Y, Zhang H, Zhu L, Chen H, Du G, Gao X, Pu Y. Evaluation of the long-term performance in a large-scale integrated surface flow constructed wetland-pond system: A case study. BIORESOURCE TECHNOLOGY 2020; 309:123310. [PMID: 32325377 DOI: 10.1016/j.biortech.2020.123310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Limited information is available in regards to the long-term treatment performance of large-scale integrated surface flow constructed wetland-pond (ISFWP) system improving drinking water source. This study aimed to investigate the treatment performance of a large-scale ISFWP system for the improvement of drinking water source. During five years of operation, the average effluent water quality in the ISFWP system could comply with Chinese Environmental Quality Standards for Drinking Water Source. The average removal efficiencies of permanganate index (CODMn), ammonia nitrogen, total nitrogen (TN), total phosphorus, and fecal coliforms were 7.6%, 44.3%, 42.9%, 50.8%, and 88.6%, respectively. The treatment performance in the ISFWP system was stable during the operation time, while TN removal efficiency declined by 38.2% after five years of operation. Moreover, contaminants removal efficiencies were not subject to change of season, except for CODMn and TN. Consequently, efficient and sustainable contaminants removal in the large-scale ISFWP system still possessed challenges, especially for CODMn and TN.
Collapse
Affiliation(s)
- Yiping Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Haikuo Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Liqin Zhu
- College of Marxism, Hohai University, Nanjing 210098, China.
| | - Hongwei Chen
- Yancheng Water Conservancy Bureau of Jiangsu Province, Yancheng 224001, China
| | - Guanchao Du
- Yancheng Yanlong Lake Drinking Water Source Management Department, Yancheng 224007, China
| | - Xu Gao
- Yancheng Yanlong Lake Drinking Water Source Management Department, Yancheng 224007, China
| | - Yashuai Pu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
21
|
Zhuang LL, Yang T, Zhang J, Li X. The configuration, purification effect and mechanism of intensified constructed wetland for wastewater treatment from the aspect of nitrogen removal: A review. BIORESOURCE TECHNOLOGY 2019; 293:122086. [PMID: 31495460 DOI: 10.1016/j.biortech.2019.122086] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 05/10/2023]
Abstract
Constructed wetland (CW) for wastewater treatment has attracted increasing attention. In this review, the system configuration optimization, purification effect and general mechanisms of nitrogen removal in CW are systematically summarized and discussed. Ammonia oxidation is a crucial and primary process for total nitrogen (TN) removal in domestic or livestock wastewater treatment. Aeration, waterdrop influent and tidal operation are three main methods to strengthen the oxygen supplement and nitrification process in CW. Aeration significantly increases the ammonia removal rate (almost 100%), followed by the removal of chemical oxygen demand (COD) and TN. Solid carbon source, iron and anode material can be filled as electron donor for the denitrification process. The co-adjustment of oxygen and carbon/electron donor can form different conditions for different nitrogen removal pathways (e.g. the simultaneous nitrification-denitrification, the partial nitrification-denitrification and the anammox process), and achieve the optimal removal of nitrogen.
Collapse
Affiliation(s)
- Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Ting Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China.
| | - Xiangzheng Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|