1
|
Geng A, Zhang C, Wang J, Zhang X, Qiu W, Wang L, Xi J, Yang B. Current advances of chlorinated organics degradation by bioelectrochemical systems: a review. World J Microbiol Biotechnol 2024; 40:208. [PMID: 38767676 DOI: 10.1007/s11274-024-04013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Chlorinated organic compounds (COCs) are typical refractory organic compounds, having high biological toxicity. These compounds are a type of pervasive pollutants that can be present in polluted soil, air, and various types of waterways, such as groundwater, rivers, and lakes, posing a significant threat to the ecological environment and human health. Bioelectrochemical systems (BESs) are an effective strategy for the degradation of bio-refractory compounds. BESs improve the waste treatment efficiency through the application of weak electrical stimulation. This review discusses the processes of BESs configurations and degradation performances in different environmental media including wastewater, soil, waste gas and groundwater. In addition, the degradation mechanisms and performance-enhancing additives are summarized. The future challenges and perspectives on the development of BES for COCs removal are briefly discussed.
Collapse
Affiliation(s)
- Anqi Geng
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Caiyun Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jiajie Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Xinyan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Wei Qiu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Liping Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Bairen Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
2
|
Lin R, Xie L, Zheng X, Patience DOD, Duan X. Advances and challenges in biocathode microbial electrolysis cells for chlorinated organic compounds degradation from electroactive perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167141. [PMID: 37739072 DOI: 10.1016/j.scitotenv.2023.167141] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Microbial electrolysis cell (MEC) is a promising in-situ strategy for chlorinated organic compound (COC) pollution remediation due to its high efficiency, low energy input, and long-term potential. Reductive dechlorination as the most critical step in COC degradation which takes place primarily in the cathode chamber of MECs is a complex biochemical process driven by the behavior of electrons. However, no information is currently available on the internal mechanism of MEC in dechlorination from the perspective of the whole electron transfer procedure and its dependent electrode materials. This review addresses the underlying mechanism of MEC on the fundamental of the generation (electron donor), transmission (transfer pathway), utilization (functional microbiota) and reception (electron acceptor) of electrons in dechlorination. In addition, the vital role of varied cathode materials involved in the entire electron transfer procedure during COC dechlorination is emphasized. Subsequently, suggestions for future research, including model construction, cathode material modification, and expanding the applicability of MECs to removal gaseous COCs have been proposed. This paper enriches the mechanism of COC degradation by MEC, and thus provides the theoretical support for the scale-up bioreactors for efficient COC removal.
Collapse
Affiliation(s)
- Rujing Lin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaomei Zheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dzedzemo-On Dufela Patience
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xu Duan
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
3
|
Ri C, Li F, Mun H, Liu L, Tang J. Impact of different zero valent iron-based particles on anaerobic microbial dechlorination of 2,4-dichlorophenol: Comparison of dechlorination performance and the underlying mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131881. [PMID: 37379603 DOI: 10.1016/j.jhazmat.2023.131881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/14/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
The integration of iron-based materials and anaerobic microbial consortia has been extensively studied owing to its potential to enhance pollutant degradation. However, few studies have compared how different iron materials enhance the dechlorination of chlorophenols in coupled microbial systems. This study systematically compared the combined performances of microbial community (MC) and iron materials (Fe0/FeS2 +MC, S-nZVI+MC, n-ZVI+MC, and nFe/Ni+MC) for the dechlorination of 2,4-dichlorophenol (DCP) as one representative of chlorophenols. DCP dechlorination rate was significantly higher in Fe0/FeS2 +MC and S-nZVI+MC (1.92 and 1.67 times, with no significant difference between two groups) than in nZVI+MC and nFe/Ni+MC (1.29 and 1.25 times, with no significant difference between two groups). Fe0/FeS2 had better performance for the reductive dechlorination process as compared with other three iron-based materials via the consumption of any trace amount of oxygen in anoxic condition and accelerated electron transfer. On the other hand, nFe/Ni could induce different dechlorinating bacteria as compared to other iron materials. The enhanced microbial dechlorination was mainly due to some putative dechlorinating bacteria (Pseudomonas, Azotobacter, Propionibacterium), and due to improved electron transfer of sulfidated iron particles. Therefore, Fe0/FeS2 as a biocompatible as well as low-cost sulfidated material can be a good alternative for possible engineering applications in groundwater remediation.
Collapse
Affiliation(s)
- Cholnam Ri
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Institute of Microbiology, State Academy of Sciences, Pyongyang, Democratic People's Republic of Korea
| | - Fengxiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hyokchol Mun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Institute of national energy, State Academy of Sciences, Pyongyang, Democratic People's Republic of Korea
| | - Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
4
|
Gao Y, Cai T, Yin J, Li H, Liu X, Lu X, Tang H, Hu W, Zhen G. Insights into biodegradation behaviors of methanolic wastewater in up-flow anaerobic sludge bed (UASB) reactor coupled with in-situ bioelectrocatalysis. BIORESOURCE TECHNOLOGY 2023; 376:128835. [PMID: 36889605 DOI: 10.1016/j.biortech.2023.128835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Granular sludge disintegration and washing out pose a challenge to up-flow anaerobic sludge bed (UASB) reactor treating methanolic wastewater. Herein, in-situ bioelectrocatalysis (BE) was integrated into UASB (BE-UASB) reactor to alter microbial metabolic behaviors and enhance the re-granulation process. BE-UASB reactor exhibited the highest methane (CH4) production rate of 388.0 mL/Lreactor/d and chemical oxygen demand (COD) removal of 89.6 % at 0.8 V. Sludge re-granulation was strengthened with particle size over 300 µm of up to 22.4%. Bioelectrocatalysis stimulated extracellular polymeric substances (EPS) secretion and formation of granules with rigid [-EPS-cell-EPS-] matrix by enhancing the proliferation of key functional microorganisms (Acetobacterium, Methanobacterium, and Methanomethylovorans) and diversifying metabolic pathways. Particularly, a high Methanobacterium richness (10.8%) drove the electroreduction of CO2 into CH4 and reduced its emissions (52.8%). This study provides a novel bioelectrocatalytic strategy for controlling granular sludge disintegration, which will facilitate the practical application of UASB in methanolic wastewater treatment.
Collapse
Affiliation(s)
- Yijing Gao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Teng Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Jian Yin
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Huan Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xinyu Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd, Shanghai 200062, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China.
| | - Hongxia Tang
- Shanghai Solid Waste and Chemicals Management Center, Shanghai, No. 55, Sanjiang Road, Xuhui District, PR China
| | - Weijie Hu
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai 200092, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N Zhongshan Road, Shanghai 200062, PR China
| |
Collapse
|
5
|
Wang C, Zheng J, Wang S, Zhou A, Kong X, Zhao B, Li H, Yue X. Efficient elimination of nonylphenol and 4-tert-octylphenol by weak electrical stimulated anaerobic microbial processes. CHEMOSPHERE 2023; 320:138085. [PMID: 36758818 DOI: 10.1016/j.chemosphere.2023.138085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/06/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The investigation into the degradation of alkylphenol pollutants (APs) has become a hotspot due to their harmful effects on the environment and human health. In this study, microbial electrolysis cells (MECs) were used to degrade nonylphenol (NP) and 4-tert-octylphenol (4-tert-OP). The study found that the degradation rates of NP and 4-tert-OP for a 6-day period were 83.6% and 96.3%, respectively, which were 30.53% and 26.7% higher than those of the group without applied voltage. The double layer area in the degradation of 4-tert-OP was larger than that of NP, and the resistance exhibited by 4-tert-OP (87.47 Ω) in MEC was lower than that of NP (99.42 Ω). Meanwhile, NP had a greater effect on the bioenzyme activity than 4-tert-OP. GC-MS analysis showed that the degradation pathways of both pollutants mainly included oxidation and hydroxylation reactions. Furthermore, the microbial community analysis indicated that the main functional bacteria in NP degradation were Citrobacter, Desulfovibrio and Advenella, and those in 4-tert-OP degradation were Stenotrophomonas, Chryseobacterium, Dokdonella, and the key microbiomes underlying the cooperative relationship. The biotoxicity test indicated that the toxicity of residual substances was significantly reduced. Therefore, the MEC system is efficient and environmentally friendly and has broad application prospects in phenol refractory organics.
Collapse
Affiliation(s)
- Cuicui Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Jierong Zheng
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Sufang Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Xin Kong
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Bowei Zhao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Houfen Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| |
Collapse
|
6
|
Zhao W, You J, Yin S, He S, Feng L, Li J, Zhao Q, Wei L. Calcium peroxide and freezing co-pretreatment enhancing short-chain fatty acids production from waste activated sludge towards carbon-neutral sludge treatment. BIORESOURCE TECHNOLOGY 2023; 367:128273. [PMID: 36347477 DOI: 10.1016/j.biortech.2022.128273] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Short-chain fatty acids (SCFAs) recovery through anaerobic fermentation is a promising technology to achieve carbon-neutral in waste activated sludge (WAS) management. After 0.15 g CaO2/g volatile suspended solids (VSS) addition and three-cycle freezing co-pretreatments, the maximal SCFAs production of 438.5 mg COD/g VSS was achieved within 4 days fermentation, and more than 70 % of SCFAs was composed of acetate and propionate, which achieved a higher level than reported in previous studies. Mechanism explorations elucidated that co-pretreatment triggered sludge solubilization, promoting the release of biodegradable organics, providing more biodegradable substrates for SCFAs generation. Further microbial community analysis indicated that the abundances of hydrolytic microorganisms and acidogens were enriched, whereas methanogens were inhibited. Besides, environmental analysis suggested that co-pretreatment could achieve carbon reduction benefits of 0.116-0.291 ton CO2/ton WAS, demonstrating its huge carbon-neutral potential benefits.
Collapse
Affiliation(s)
- Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jia You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shilei Yin
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
7
|
Zhang J, Chang H, Li X, Jiang B, Wei T, Sun X, Liang D. Boosting hydrogen production from fermentation effluent of biomass wastes in cylindrical single-chamber microbial electrolysis cell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89727-89737. [PMID: 35857167 DOI: 10.1007/s11356-022-22095-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Microbial electrolysis cells (MECs) are considered as green technologies for H2 production with simultaneously wastewater treatment. Low H2 recovery and production rate are two key bottlenecks of MECs fed with real H2 fermentation effluent of biomass wastes. This work established a 1 L cylindrical single chamber MEC and enriched electroactive anodic biofilms from cow dung compost to overcome the bottlenecks. These MEC components (platinum-coated cylindrical titanium mesh cathode and cylindrical graphite felt anode) were arranged in a concentric configuration. A high H2 production rate of 6.26 ± 0.23 L L-1 day-1 with H2 yield of 5.75 ± 0.16 L H2 L-1 fermentation effluent was achieved at 0.8 V. The degradation of acetate and butyrate (main components of H2 fermentation effluent) could reach to 95.3 ± 2.1% and 78.4 ± 3.6%, respectively. The microbial community analysis for anode showed the abundance of Geobacter (22.6%), Syntrophomonas (8.7%), and Dysgonomonas (6.3%) which are responsible to complex substrate oxidation, electrical current generation, and H2 production. These results prove the feasibility of cylindrical single-chamber MEC for high H2 production rate and high acetate and butyrate removal from H2 fermentation effluent.
Collapse
Affiliation(s)
- Jingnan Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450000, People's Republic of China
| | - Hanghang Chang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450000, People's Republic of China
| | - Xiaohu Li
- School of Space and Environment, Beihang University, Beijing, 100191, People's Republic of China.
| | - Baoxuan Jiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450000, People's Republic of China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan, 450000, People's Republic of China
- Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou, Henan, 450002, People's Republic of China
| | - Tao Wei
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450000, People's Republic of China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan, 450000, People's Republic of China
- Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou, Henan, 450002, People's Republic of China
| | - Xincheng Sun
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450000, People's Republic of China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan, 450000, People's Republic of China
- Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou, Henan, 450002, People's Republic of China
| | - Dawei Liang
- School of Space and Environment, Beihang University, Beijing, 100191, People's Republic of China
| |
Collapse
|
8
|
Wang W, Chang JS, Show KY, Lee DJ. Anaerobic recalcitrance in wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2022; 363:127920. [PMID: 36087651 DOI: 10.1016/j.biortech.2022.127920] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic treatment is applied as an alternative to traditional aerobic treatment for recalcitrant compound degradation. This review highlighted the recalcitrant compounds in wastewaters and their pathways under aerobic and anaerobic conditions. Forty-one recalcitrant compounds commonly found in wastewater along with associated anaerobic removal performance were summarized from current research. Anaerobic degradability of wastewater could not be appropriately evaluated by BOD/COD ratio, which should only be suitable for determining aerobic degradability. Recalcitrant wastewaters with a low BOD/COD ratio may be handled by anaerobic treatments after the adaption and provision of sufficient electron donors. Novel indicator characterizing the anaerobic recalcitrance of wastewater is called for, essential for emergent needs to resource recovery from high-strength recalcitrant wastewater for fulfilling appeals of circular bioeconomy of modern societies.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Kuan-Yeow Show
- Puritek Research Institute, Puritec Co., Ltd., Nanjing, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering & Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|
9
|
Zhou H, Xing D, Ma J, Su Y, Zhang Y. Electrifying anaerobic granular sludge for enhanced waste anaerobic digestion and biogas production. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Gatidou G, Samanides CG, Fountoulakis MS, Vyrides I. Microbial electrolysis cell coupled with anaerobic granular sludge: A novel technology for real bilge water treatment. CHEMOSPHERE 2022; 296:133988. [PMID: 35181427 DOI: 10.1016/j.chemosphere.2022.133988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
In the current study, treatment of undiluted real bilge water (BW) and the production of methane was examined for the first time using a membraneless single chamber Microbial Electrolysis Cell (MEC) with Anaerobic Granular Sludge (AGS) for its biodegradation. Initially, Anaerobic Toxicity Assays (ATAs) were used to evaluate the effect of undiluted real BW on the methanogenic activity of AGS. According to the results, BW shown higher impact to acetoclastics compared to hydrogenotrophic methanogens which proved to be more tolerant. However, dilution of BW caused lower inhibition allowing BW biodegradation. Maximum methane production (142.2 ± 4.8 mL) was observed at 50% of BW. Operation of MEC coupled with AGS, seemed to be very promising technology for BW treatment. During 80 days of operation in increasing levels of BW, R2 (1 V) reactor resulted in better performance than AGS alone. Exposure of AGS to gradual increase of BW content revealed that CH4 production was possible and reached 51% in five days even after feeding with 90% of BW using simple commercial iron electrodes. Successful chemical oxygen demand (sCOD) removal (up to 70%) was observed after gradual biomass acclimatization. Among the different monitored volatile fatty acids (VFAs), acetic and valeric acids were the most frequently detected compounds with concentrations up to 2.79 and 1.81 g L-1, respectively. The recalcitrant nature of BW did not allow the MEC-AD (anaerobic digester) to balance the consumed energy. Microbial profile analysis confirmed the existence of several methanogenic microorganisms of which Desulfovibrio and Methanobacterium presented significantly higher abundance in the cathodes compared to anodes and AGS.
Collapse
Affiliation(s)
- Georgia Gatidou
- Laboratory of Environmental Engineering, Department of Chemical Engineering, Cyprus University of Technology, Anexartisias 57 Str, Lemesos, 3603, Cyprus.
| | - Charis G Samanides
- Laboratory of Environmental Engineering, Department of Chemical Engineering, Cyprus University of Technology, Anexartisias 57 Str, Lemesos, 3603, Cyprus
| | - Michalis S Fountoulakis
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, University Hill, 81100, Mytilene, Greece
| | - Ioannis Vyrides
- Laboratory of Environmental Engineering, Department of Chemical Engineering, Cyprus University of Technology, Anexartisias 57 Str, Lemesos, 3603, Cyprus
| |
Collapse
|
11
|
Wu H, Cui M, Yang N, Liu Y, Wang X, Zhang L, Zhan G. Aerobic biocathodes with potential regulation for ammonia oxidation with concomitant cathodic oxygen reduction and their microbial communities. Bioelectrochemistry 2022; 144:107997. [PMID: 34801809 DOI: 10.1016/j.bioelechem.2021.107997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022]
Abstract
Aerobic biocathodes are effective construct for the simultaneous nitrification and denitrification, but the disturbance of cathodic oxygen reduction on ammonia oxidation and denitrification remains unclear. In this study, we revealed the oxygen reduction peak at -0.4 V (versus silver/silver chloride) by cyclic voltammetry analysis at a cathode without a biofilm. The reduction peak, however, showed a right shift from -0.4 to -0.3 V for the biocathode, indicating that the aerobic biocathode could simultaneously perform traditional nitrification and cathode oxygen reduction. Therefore, different electrode potentials ranging from -0.5 to -0.1 V were designed for regulating the ammonia oxidation rate, and the results showed that the highest oxidation rate reached 3.08 mg/h/L at a potential of -0.2 V under a low-aeration rate of 5 mL/min. High-throughput sequencing showed that Nitrosomonas and Rhodococcus were the dominant nitrogen removal genera in the biocathode, and the abundance of Devosia was related to the interactions between the aeration rate and the electrode potential. Furthermore, the amoC and hao genes responded to aeration and electrode potential regulation, and -0.2 V was more suitable for promoting the denitrification process under low-aeration conditions. Therefore, these findings provided new insights on cathodic potential control for ammonia oxidation and nitrogen removal as well as for the regulation of microbial communities.
Collapse
Affiliation(s)
- Heng Wu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Mengyao Cui
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Nuan Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yiliang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Xiaomei Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Lixia Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| |
Collapse
|
12
|
The degradation and simultaneous influence of bisphenol A on methane production in a bio-anode single-chamber microbial electrolysis cell. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Xie J, Zou X, Chang Y, Chen C, Ma J, Liu H, Cui MH, Zhang TC. Bioelectrochemical systems with a cathode of stainless-steel electrode for treatment of refractory wastewater: Influence of electrode material on system performance and microbial community. BIORESOURCE TECHNOLOGY 2021; 342:125959. [PMID: 34852439 DOI: 10.1016/j.biortech.2021.125959] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The large-scale application of the bioelectrochemical system (BES) is limited by the cost-effective electrode materials. In this study, five kinds of stainless-steel materials were used as the cathode of the BES coupled with anaerobic digestion (BES-AD) for the treatment of diluted N, N-dimethylacetamide (DMAC) wastewater. Compared with a carbon-cloth cathode, BES-AD with a stainless-steel cathode had more engineering due to its low cost, although the operating efficiencies were slightly inferior. Stainless-steel mesh with a 100 µm aperture (SSM-100 μm) was the most cost-effective electrode and the implanted BES exhibited better COD removal efficiency, electrochemical performance and biodegradability. Analysis of microbial community revealed the synergetic effect between exoelectrogen and fermentative bacteria had been strengthened in the SSM-100 μm cathode biofilm. Function analysis of the microbial community based on PICRUSt predicted metagenomes revealed that the metabolic pathways of xenobiotics biodegradation and metabolism in the SSM-100 μm cathode were stimulated.
Collapse
Affiliation(s)
- Jiawei Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Xinyi Zou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yaofeng Chang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Ji Ma
- Jiangsu Sujing Group Co., Ltd, Suzhou 215122, PR China
| | - He Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Min-Hua Cui
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Tian C Zhang
- Civil & Environmental Engineering Dept, University of Nebraska-Lincoln (Omaha Campus), Omaha, NE 68182-0178, USA
| |
Collapse
|
14
|
Pan Y, Zheng X, Xiang Y. Structure-function elucidation of a microbial consortium in degrading rice straw and producing acetic and butyric acids via metagenome combining 16S rDNA sequencing. BIORESOURCE TECHNOLOGY 2021; 340:125709. [PMID: 34375790 DOI: 10.1016/j.biortech.2021.125709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The characterized microbial consortium can efficiently degrade rice straw to produce acetic and butyric acids in high yields. The rice straw lost 86.9% in weight and degradation rates of hemicellulose, cellulose, and lignin attained were 97.1%, 86.4% and 70.3% within 12 days, respectively. During biodegradation via fermentation of rice straw, average concentrations of acetic and butyric acids reached 1570 mg/L and 1270 mg/L, accounting for 47.2% and 35.4% of the total volatile fatty acids, respectively. The consortium mainly composed of Prevotella, Cellulosilyticum, Pseudomonas, Clostridium and Ruminococcaceae, etc. Metagenomic analyses indicated that glycoside hydrolases (GHs) were the largest enzyme group with a relative abundance of 54.5%. Various lignocellulose degrading enzymes were identified in the top 30 abundant GHs, and were primarily distributed in the dominant genera (Prevotella, Cellulosilyticum and Clostridium). These results provide a new route for the commercial recycling of rice straw to produce organic acids.
Collapse
Affiliation(s)
- Yunxia Pan
- College of Engineering and Technology, Southwest University, Chongqing 400715, China.
| | - Xuntao Zheng
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| | - Yang Xiang
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
15
|
Zhu Q, Wang X, Hu J, Chen S, Hu S, Wu Y, Liu B, Xiao K, Liang S, Yang J, Hou H. Efficient degradation of refractory pollutant in a microbial fuel cell with novel hybrid photocatalytic air-cathode: Intimate coupling of microbial and photocatalytic processes. BIORESOURCE TECHNOLOGY 2021; 340:125717. [PMID: 34426232 DOI: 10.1016/j.biortech.2021.125717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
A microbial fuel cell-photocatalysis system with a novel photocatalytic air-cathode (MFC-PhotoCat) was proposed for synergistic degradation of 2,4,6-trichlorophenol (TCP) with simultaneous electricity generation. Stable electricity generation of 350 mV was achieved during 130 days of operation. Besides, 50 mg L-1 TCP was completely degraded within 72 h, and the rate constant of 0.050 h-1 was 1.8-fold higher than MFC with air-cathode without N-TiO2 photocatalyst. Degradation pathway was proposed based on the intermediates detected and density functional theory (DFT) calculation, with two open-chain intermediates (2-chloro-4-keto-2-hexenedioic acid and hexanoic acid) detected. Furthermore, hierarchical cluster and PCoA revealed significant shifts of microbial community structures, with enriched exoelectrogen (55.2% of Geobacter) and TCP-degrading microbe (7.1% of Thauera) on the cathode biofilm as well as 61.8% of Pseudomonas in the culture solution. This study provides a promising strategy for synergic degradation of recalcitrant contaminants by intimate-coupling of MFC and photocatalysis.
Collapse
Affiliation(s)
- Qian Zhu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, PR China
| | - Xiaoxuan Wang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, PR China
| | - Jingping Hu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Sijing Chen
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, PR China
| | - Shaogang Hu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, PR China
| | - Yaqian Wu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, PR China
| | - Bingchuan Liu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, PR China
| | - Keke Xiao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, PR China
| | - Sha Liang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, PR China
| | - Jiakuan Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Huijie Hou
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, PR China.
| |
Collapse
|
16
|
Qin X, Lu X, Cai T, Niu C, Han Y, Zhang Z, Zhu X, Zhen G. Magnetite-enhanced bioelectrochemical stimulation for biodegradation and biomethane production of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147859. [PMID: 34052496 DOI: 10.1016/j.scitotenv.2021.147859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Microbial electrolytic cell (MEC) and magnetite (M) have shown excellent performance in promoting anaerobic digestion (AD) of biowastes. In this study, four types of anaerobic systems (i.e. single AD, M-AD, MEC-AD, and M-MEC-AD) were developed to comprehensively investigate the potential effects of magnetite-enhanced bioelectrochemical stimulation on the biodegradation of waste activated sludge (WAS) and methane (CH4) production. Results showed that M-MEC-AD system produced the highest cumulative CH4 yield, 9.4% higher than that observed in MEC-AD system. Bioelectrochemical stimulation enriched electroactive Geobacter, and classical methanogens (Methanosaeta and Methanobacterium), and the proliferation was further promoted when coupling with magnetite. The relative abundance of Geobacter (6.9%), Methanosaeta (0.3%), and Methanobacterium (12.6%) in M-MEC-AD system was about 10.8, 1.2, and 1.2 times of MEC-AD system, respectively. The integration of magnetite could serve as the conductive materials, and promote inherent indirect electron transfer (IET) and emerging direct electron transfer (DET) between methanogens and fermentative bacteria, building a more energy-efficient route for interspecies electron transfer and methane productivity. This study demonstrated the positive promotion of the coupled bioelectrochemical regulation and magnetite on organic biodegradation, process stability and CH4 productivity, providing some references for the integrated technology in sludge treatment and bioenergy recovery.
Collapse
Affiliation(s)
- Xi Qin
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China.
| | - Teng Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Chengxin Niu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yule Han
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Zhongyi Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xuefeng Zhu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
17
|
Chen Z, Li D, Liu H, Wen Q. Effects of polyurethane foam carrier addition on anoxic/aerobic membrane bioreactor (A/O-MBR) for coal gasification wastewater (CGW) treatment: Performance and microbial community structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:148037. [PMID: 34082207 DOI: 10.1016/j.scitotenv.2021.148037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Coal gasification wastewater (CGW) is a typical toxic and refractory industrial wastewater with abundant phenols contained. Two identical anoxic/aerobic membrane bioreactors (with (R2) and without (R1) polyurethane (PU) foam) were carried out in parallel to investigate the role of PU foam addition in enhancing pollutants removal in CGW. Results showed that both systems exhibited effective removal of chemical oxygen demand (>93%) and total phenols (>97%) but poor ammonia nitrogen removal (<35%) constrained by ammonia oxidation process. GC-MS analysis revealed that aromatic and other refractory intermediates were dramatically reduced in R2. Moreover, the PU addition had negligible influence on the total soluble microbial products and extracellular polymeric substances contents but significantly alleviated membrane fouling with the operating time 33% prolonged. Microbial community revealed that Flavobacterium, Holophaga, and Geobacter were enriched on PU. Influent type might be a main driver for microbial community succession.
Collapse
Affiliation(s)
- Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730070, China
| | - Da Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongguo Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
18
|
Cheng J, Li S, Yang X, Huang X, Lu Z, Xu J, He Y. Regulating the dechlorination and methanogenesis synchronously to achieve a win-win remediation solution for γ-hexachlorocyclohexane polluted anaerobic environment. WATER RESEARCH 2021; 203:117542. [PMID: 34412017 DOI: 10.1016/j.watres.2021.117542] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The wish for rapid degradation of chlorinated organic pollutants along with the increase concern with respect to greenhouse effect and bioenergy methane production have created urgent needs to explore synchronous regulation approach. Microbial electrolysis cell was established under four degressive cathode potential settings (from -0.15V to -0.60V) to regulate γ-hexachlorocyclohexane (γ-HCH) reduction while CH4 cumulation in this study. The synchronous facilitation of γ-HCH reduction and CH4 cumulation was occurred in -0.15V treatment while the facilitation of γ-HCH reductive removal together with the inhibition of CH4 cumulation was showed in -0.30V treatment. Electrochemical patterns via cyclic voltammetry and morphological performances via scanning electron microscopy illustrated bioelectrostimulation promoted redox reactions and helped to construct mature biofilms located on bioelectrodes. Also, bioelectrostimulated regulation pronouncedly affected the bacteria and archaeal communities and subsequently assembled distinctly core sensitive responders across bioanode, biocathode and plankton. Clostridum, Longilinea and Methanothrix relatively accumulated in the plankton, and Cupriavidus and Methanospirillum, and Perimonas and Nonoarcheaum in biocathode and bioanode, respectively; while Pseudomonas, Stenotrophomonas, Methanoculleus and Methanosarcina were diffusely enriched. Microbial interactions in the ecological network were more complicated in -0.15V and -0.30V cathodic potential treatments, coincident with the increasement of γ-HCH reduction. The co-existence between putative dechlorinators and methanogens was less significant in -0.30V treatment when compared to that in -0.15V treatment, relevant with the variations of CH4 cumulation. In all, this study firstly corroborated the availability to synchronously regulate γ-HCH reductive removal and methanogenesis. Besides, it paves an advanced approach controlling γ-HCH reduction in cooperation with CH4 cumulation, of which to achieve γ-HCH degradation facilitation along with biogas (CH4) production promotion with -0.15V cathode potential during anaerobic γ-HCH contaminated wastewater digestion, or to realize γ-HCH degradation facilitation with the inhibition of CH4 emission with -0.30V cathode potential for an all-win remediation in γ-HCH polluted anaerobic environment such as paddy soil.
Collapse
Affiliation(s)
- Jie Cheng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Shuyao Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Xueling Yang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Xiaowei Huang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Zhijiang Lu
- Department of Environmental Science and Geology, Wayne State University, Detroit, MI 48201, United States
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yan He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| |
Collapse
|
19
|
Wang H, Zheng X, Yan Q, Zhang G, Kim JR. Microbial community and metabolic responses to electrical field intensity for alleviation of ammonia inhibition in an integrated bioelectrochemical system (BES). BIORESOURCE TECHNOLOGY 2021; 336:125332. [PMID: 34090099 DOI: 10.1016/j.biortech.2021.125332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Bioelectrochemical system (BES) is a promising solution for mitigation of ammonia inhibition in anaerobic digestion (AD) process. However, the effect of electric field intensity on microbial community changes and metabolic function prediction during the alleviation of ammonia inhibition are still missing. The results of the current study represented that the improvement of ammonia removal (20.6%) and methane production (14.6%) could both be achieved at 0.2 V while higher voltages led to reductions of methane production (more than 48.9%) compared with the control. Moreover, hydrogenotrophic methanogens (Methanobacterium) seemed to be more robust to high voltages compared with aceticlastic methanogens (Methanosaeta). Additionally, bacteria for hydrolysis and acidogenesis (Rikenellaceae and Soehngenia) were found vulnerable to external electric field intensity. Furthermore, abundances changes of metabolic pathways demonstrated that the degradation of carbohydrates, lipids and proteins during all steps (hydrolysis, acidogenesis, acetogenesis and methanogenesis) of AD process could be affected by different applied voltages.
Collapse
Affiliation(s)
- Han Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaoxiao Zheng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China.
| | - Guangsheng Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| |
Collapse
|
20
|
Tian X, Shen Z, Zhou Y, Wang K. Acidification inhibition, biodechlorination, and biotransformation of chlorinated acetaldehydes on acidogenic sludge and microbial community changes. CHEMOSPHERE 2021; 277:130231. [PMID: 33774258 DOI: 10.1016/j.chemosphere.2021.130231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/04/2020] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Chlorinated acetaldehydes (CALs) are typical chlorinated organic compounds that posing a great threat to biological wastewater treatment plants. In this study, volatile batch acid (VFA) tests were employed to investigate the acidification inhibition, biodechlorination, and biotransformation of high-strength CALs on hydrolytic acidification. The results indicated that the optimum parameters were 4 g/L sludge, pH = 8, and glucose as an electron donor. Moreover, the acidification inhibition and biodechlorination showed a strongly positive correlation with the degree of chlorination and CAL concentrations. Extracellular polymeric substances (EPS) decreased dramatically, while DNA increased sharply under higher CAL concentrations, which was the result of cell death caused by the toxicity of the CALs. Additionally, the relative toxicities of the CALs were as follows: trichloroacetaldehyde > dichloroacetaldehyde > chloroacetaldehyde. Furthermore, Excitation-Emission-Matrix (EEM) spectra of EPS revealed that aromatic protein-like substances I interacted with CALs to achieve a slight removal of CALs. The detected products revealed that some of the chlorine atoms and aldehyde groups in the CALs were removed by microbes to certain degree. Moreover, microbial community analysis indicated that the dominant phyla were Actinobacteria, Bacteroidetes, and Synergistetes, which had a stronger tolerance to CALs. Notably, biodechlorination was closely related to a remarkable increase in members of the genus Trichococcus.
Collapse
Affiliation(s)
- Xiangmiao Tian
- School of Environment, Tsinghua University, Beijing, 100084, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Zhiqiang Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Yuexi Zhou
- School of Environment, Tsinghua University, Beijing, 100084, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Kaijun Wang
- School of Environment, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
21
|
Karimipour Z, Jalilzadeh Yengejeh R, Haghighatzadeh A, Mohammadi MK, Mohammadi Rouzbehani M. UV-Induced Photodegradation of 2,4,6-Trichlorophenol Using Ag–Fe2O3–CeO2 Photocatalysts. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01859-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|