1
|
Menzorov AG, Iukhtanov DA, Naumenko LG, Bobrovskikh AV, Zubairova US, Morozova KN, Doroshkov AV. Thraustochytrids: Evolution, Ultrastructure, Biotechnology, and Modeling. Int J Mol Sci 2024; 25:13172. [PMID: 39684882 DOI: 10.3390/ijms252313172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
The thraustochytrids are a group of marine protists known for their significant ecological roles as decomposers and parasites as well as for their potential biotechnological applications, yet their evolutionary and structural diversity remains poorly understood. Our review critically examines the phylogeny of this taxa, utilizing available up-to-date knowledge and their taxonomic classifications. Additionally, advanced imaging techniques, including electron microscopy, are employed to explore the ultrastructural characteristics of these organisms, revealing key features that contribute to their adaptive capabilities in varying marine environments. The integration of this knowledge with available omics data highlights the huge biotechnological potential of thraustochytrids, particularly in producing ω-3 fatty acids and other bioactive compounds. Our review underscores the importance of a systems biology approach in understanding thraustochytrids biology and highlights the urgent need for novel, accurate omics research to unlock their full biotechnological potential. Overall, this review aims to foster a deeper appreciation of thraustochytrids by synthesizing information on their evolution, ultrastructure, and practical applications, thereby providing a foundation for future studies in microbiology and biotechnology.
Collapse
Affiliation(s)
- Aleksei G Menzorov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Daniil A Iukhtanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Ludmila G Naumenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Aleksandr V Bobrovskikh
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ulyana S Zubairova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ksenia N Morozova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexey V Doroshkov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia
| |
Collapse
|
2
|
Mehta P, Rani R, Gupta R, Mathur A, Ramakumar SSV. Simultaneous production of high-value lipids in Schizochytrium sp. by synergism of chemical modulators. Appl Microbiol Biotechnol 2023; 107:6135-6149. [PMID: 37555947 DOI: 10.1007/s00253-023-12698-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/31/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023]
Abstract
The study focuses on the simultaneous improvement of biomass, lipid, and docosahexaenoic acid (DHA) productivities in a single reactor using modulator control strategies. The efficacy of three different biochemical modulators, sesamol (Ses), 6-benzylaminopurine (6-BAP), and ethylenediaminetetraacetic acid (EDTA), as potential stimulants in augmenting the biomass, lipid, and DHA production of Schizochytrium sp. MTCC 5890 was elucidated. After 48 h of cultivation, among tested modulators, the individual supplementation of 6-BAP and Ses showed improvement in biomass, lipid, and DHA accumulation by 28.2%, 56.1%, and 87.2% and 21.7%, 47.9%, and 91%, respectively, over the non-supplemented group. In addition, the cooperative effect of selected concentrations, i.e., 10 mgL-1 6-BAP and 200 mgL-1 Ses, further increased the productivities of biomass of 13.5 gL-1d-1 ± 0.66, lipid of 7.4 gL-1d-1 ± 0.69, and DHA of 3.2 gL-1d-1 ± 1.09 representing 8%, 39%, and 69% increase over the individual addition of 6-BAP or Ses, respectively, in batch culture. Supplementation with 6-BAP + Ses at 12 h of time point eventually increased the lipid yield to 15.6 ± 0.42 gL-1 from 7.88 ± 0.31 gL-1 (control) and DHA yield to 6.4 ± 0.11 gL-1 from 2.23 ± 0.09 gL-1 (control), respectively. Furthermore, the process was optimized in continuous culture supplemented with 6-BAP + Ses for enhanced productivities. Continuous culture resulted in maximum biomass (2.04 ± 1.12 gL-1 day-1), lipid (1.0 ± 0.73 gL-1 day-1), and DHA (0.386 ± 0.22 gL-1 day-1) productivities, which were higher as compared with the batch and fed-batch processes by 26 ± 1.21%, 22 ± 1.01%, and 21 ± 0.98% and 24 ± 0.45%, 16 ± 0.38%, and 14 ± 0.12%, respectively. This work represents the potential application of the combined effect of modulators for the simultaneous enhancement of biomass production and lipid and DHA productivities. KEY POINTS: • The cumulative study of 6-BAP and sesamol proved to be more efficient in the simultaneous production of biomass, lipid, and DHA in a single reactor. • Addition of a combination of 6-BAP + Ses remarkably increased the biomass, lipid, and DHA productivities in tandem in continuous culture.
Collapse
Affiliation(s)
- Preeti Mehta
- DBT-IOC Centre, R & D, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007, India
| | - Rekha Rani
- DBT-IOC Centre, R & D, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007, India
| | - Ravi Gupta
- Indian Oil Corporation Limited, Research and Development Centre, Sector-13, Faridabad, 121007, India
| | - Anshu Mathur
- Indian Oil Corporation Limited, Research and Development Centre, Sector-13, Faridabad, 121007, India.
| | | |
Collapse
|
3
|
Dashtipour B, Dehghanpour S, Sharbatdaran M. Improvement of the acidic properties of MOF by doped SnO2 quantum dots for the production of solketal. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
4
|
Li Y, Qi Z, Fan Y, Zhou R, Tang Y. Boosting concurrent lipid accumulation and secretion by Coccomyxa subellipsoidea with glucose coupling glycerol as accelerator. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
5
|
Bharathiraja B, Jayamuthunagai J, Sreejith R, Iyyappan J, Praveenkumar R. Techno economic analysis of malic acid production using crude glycerol derived from waste cooking oil. BIORESOURCE TECHNOLOGY 2022; 351:126956. [PMID: 35272039 DOI: 10.1016/j.biortech.2022.126956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
In the present work, Aspergillus niger was employed to produce commercially valuable malic acid from crude glycerol derived from waste cooking oil. Crude glycerol dosage, yeast extract dosage and initial pH were the influencing factors playing a significant role in the malic acid synthesis. The optimal condition for malic acid biosynthesis was studied by using response surface methodology. Further the feasibility analysis for biosynthesis of malic acid from crude glycerol was studied using the laboratory scale optimized data, with this experimentally optimized data, plant was simulated using SuperPro Designer (v10). The cost involved for malic acid synthesis per unit volume was likely expected to be $0.43/kg of malic acid using reactive extraction method. Thus, process optimization combined with techno-economical analysis of malic acid production could be beneficial.
Collapse
Affiliation(s)
- B Bharathiraja
- Department of Chemical Engineering, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai 600032, Tamil Nadu, India
| | - J Jayamuthunagai
- Centre for Biotechnology,Anna university, Chennai 600025, Tamil Nadu, India
| | - R Sreejith
- Department of Chemical Engineering, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai 600032, Tamil Nadu, India
| | - J Iyyappan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha Nagar, Thandalam, Chennai 602105, Tamil Nadu, India
| | - R Praveenkumar
- Department of Biotechnology, Arunai Engineering college, Tiruvannamalai 606603, Tamil Nadu, India.
| |
Collapse
|
6
|
Antioxidant and Anti-Colorectal Cancer Properties in Methanolic Extract of Mangrove-Derived Schizochytrium sp. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work studied the antioxidant and anti-colorectal cancer properties of a potential strain of thraustochytrids, Schizochytrium sp. (SMKK1), isolated from mangrove leaf litter. The biomass was extracted with methanol and screened for antioxidant activity using six different assays. The extract exhibited the highest total antioxidant activity (87.37 ± 1.22%) and the lowest nitric oxide radical (75.12 ± 2.22%), and the activity increased with the concentration of the extract. The methanolic extract was further tested for in vitro cytotoxicity on the colon cancer cell line (HT29). The extract was also analyzed for polyunsaturated fatty acids using GC-MS. The five predominant HTVS-based compounds, viz., arachidonic acid, linolenic acid (alpha-linolenic acid and gamma-linolenic acid), eicosapentaenoic acid, and docosahexaenoic acid, were identified in the extract, and these were tested against the colon cancer protein IGF binding (IGF-1) using the in silico docking method. The results revealed that all the five compounds were capable of destroying the colon oncoprotein responsible for anti-colon carcinogen, based on activation energy and also good hydrogen bond interaction against IGF binding proteins. Of the compounds, docosahexaenoic acid was the most effective, having a docking score of −10.8 Kcal/mol. All the five fatty acids passed the ADMET test and were hence accepted for further clinical trials towards the development of anticancer drugs.
Collapse
|
7
|
Optimization of Lipid Production by Schizochytrium limacinum Biomass Modified with Ethyl Methane Sulfonate and Grown on Waste Glycerol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053108. [PMID: 35270800 PMCID: PMC8910453 DOI: 10.3390/ijerph19053108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022]
Abstract
One of the most promising avenues of biofuel research relates to using waste as a starting feedstock to produce liquid or gaseous energy carriers. The global production of waste glycerol by the refinery industry is rising year after year. The aim of the present study was to examine the effect of ethyl methane sulfonate (EMS) on the growth rates and intracellular lipid accumulation in heterotrophically-cultured Schizochytrium limacinum microalgae, grown on waste glycerol as the carbon source. The strain S. limacinum E20, produced by incubating a reference strain in EMS for 20 min, was found to perform the best in terms of producing biomass (0.054 gDW/dm3·h) and accumulating intracellular bio-oil (0.021 g/dm3·h). The selected parameters proved to be optimal for S. limacinum E20 biomass growth at the following values: temperature 27.3 °C, glycerol level 249.0 g/dm3, oxygen in the culture 26%, and yeast extract concentration 45.0 g/dm3. In turn, the optimal values for lipid production in an S. limacinum E20 culture were: temperature 24.2 °C, glycerol level 223.0 g/dm3, oxygen in the culture 10%, and yeast extract concentration 10.0 g/dm3. As the process conditions are different for biomass growth and for intracellular lipid accumulation, it is recommended to use a two-step culture process, which resulted in a lipid synthesis rate of 0.41 g/dm3·h.
Collapse
|
8
|
Ma X, Mi Y, Zhao C, Wei Q. A comprehensive review on carbon source effect of microalgae lipid accumulation for biofuel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151387. [PMID: 34740661 DOI: 10.1016/j.scitotenv.2021.151387] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/12/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Energy is a major driving force for the economic development. Due to the scarcity of fossil fuels and negative impact on the environment, it is important to develop renewable and sustainable energy sources for humankind. Microalgae as the primary feedstock for biodiesel has shown great application potential. However, lipid yield from microalgae is limited by the upstream cost, which restrain the realization of large-scale biofuel production. The modification of lipid-rich microalgae cell has become the focus over the last few decades to improve the lipid content and productivity of microalgae. Carbon is a vital nutrient that regulates the growth and metabolism of microalgae. Different carbon sources are assimilated by microalgae cells via different pathways. Inorganic carbon sources are mainly used through the CO2-concentrating mechanisms (CCMs), while organic carbon sources are absorbed by microalgae mainly through the Pentose Phosphate (PPP) Pathway and the Embden-Meyerhof-Pranas (EMP) pathway. Therefore, the addition of carbon source has a significant impact on the production of microalgae biomass and lipid accumulation. In this paper, mechanisms of lipid synthesis and carbon uptake of microalgae were introduced, and the effects of different carbon conditions (types, concentrations, and addition methods) on lipid accumulation in microalgal biomass production and biodiesel production were comprehensively discussed. This review also highlights the recent advances in microalgae lipid cultivation with large-scale commercialization and the development prospects of biodiesel production. Current challenges and constructive suggestions are proposed on cost-benefit concerns in large-scale production of microalgae biodiesel.
Collapse
Affiliation(s)
- Xiangmeng Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, China
| | - Yuwei Mi
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China
| | - Chen Zhao
- China Construction Fifth Engineering Division Corp., Ltd, 9 Kaixuan Rd, Liangqing District, Nanning, Guangxi 530000, China
| | - Qun Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
9
|
Castillo T, Ramos D, García-Beltrán T, Brito-Bazan M, Galindo E. Mixotrophic cultivation of microalgae: An alternative to produce high-value metabolites. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Ha GS, Saha S, Basak B, Kurade MB, Kim GU, Ji MK, Ahn Y, Salama ES, Woong Chang S, Jeon BH. High-throughput integrated pretreatment strategies to convert high-solid loading microalgae into high-concentration biofuels. BIORESOURCE TECHNOLOGY 2021; 340:125651. [PMID: 34333346 DOI: 10.1016/j.biortech.2021.125651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The commercial feasibility of energy-efficient conversion of highly concentrated microalgal suspensions to produce high-titer biofuels is a major bottleneck due to high energy consumption. Herein, high-titer biofuels (bioethanol, higher-alcohols, and biodiesel) were generated from carbohydrate-rich Chlamydomonas mexicana and lipid-rich Chlamydomonas pitschmannii biomass through energy-saving microwave pretreatment, successive fermentation, and transesterification. Microwave pretreatment needed low specific energy (4.2 MJ/kg) for 100 g/L of microalgal suspension. Proposed sustainable integrated pretreatments method achieved unprecedented total conversion efficiency (67%) and highest biomass utilization (87%) of C. pitschmannii (100 g/L) with high yields of bioethanol (0.48 g-ethanol/g-carbohydrates), higher-alcohols (0.44 g-higher-alcohols/g-proteins), and biodiesel (0.90 g-biodiesel/g-lipids). Transmission electron microscopy showed the changes in the microalgal cellular integrity before and after sequential fermentations. Energy-efficient integrated pretreatments enhanced the extraction efficiency and whole utilization of high-concentration microalgae to generate high-titer biofuels with minimum waste production.
Collapse
Affiliation(s)
- Geon-Soo Ha
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Shouvik Saha
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Bikram Basak
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Gyeong-Uk Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Min-Kyu Ji
- Environmental Assessment Group, Korea Environment Institute, Yeongi-gun 30147, South Korea
| | - Yongtae Ahn
- Center for Environment, Health, and Welfare Research, Korea Institute of Science and Technology, South Korea
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Soon Woong Chang
- Department of Environmental Engineering, Kyonggi University, Suwon 16627, South Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
11
|
Thraustochytrids of Mangrove Habitats from Andaman Islands: Species Diversity, PUFA Profiles and Biotechnological Potential. Mar Drugs 2021; 19:md19100571. [PMID: 34677470 PMCID: PMC8539084 DOI: 10.3390/md19100571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
Thraustochytrids are the most promising microbial source for the commercial production of docosahexaenoic acid (DHA) for its application in the human health, aquaculture, and nutraceutical sectors. The present study isolated 127 thraustochytrid strains from mangrove habitats of the south Andaman Islands, India to study their diversity, polyunsaturated fatty acids (PUFAs), and biotechnological potential. The predominant strains were identified as belonging to two major genera (Thraustochytrium, Aurantiochytrium) based on morphological and molecular characteristics. The strain ANVKK-06 produced the maximum biomass of 5.42 g·L-1, while ANVKK-03 exhibited the maximum total lipid (71.03%). Omega-3 PUFAs such as eicosapentaenoic acid (EPA) accumulated up to 11.03% in ANVKK-04, docosapentaenoic acid (DPA) up to 8.65% in ANVKK-07, and DHA up to 47.19% in ANVKK-06. ANVKK-06 showed the maximum scavenging activity (84.79 ± 2.30%) while ANVKK-03 and ANVKK-10 displayed the highest antibacterial activity against human and fish pathogens, S. aureus (18.69 ± 1.2 mm) and V. parahaemolyticus (18.31 ± 1.0 mm), respectively. All strains were non-toxic as evident by negative blood agar hemolysis, thus, the thraustochytrids are suggested to be a potential source of DHA for application in the health care of human and fish.
Collapse
|
12
|
Gupta A, Barrow CJ, Puri M. Multiproduct biorefinery from marine thraustochytrids towards a circular bioeconomy. Trends Biotechnol 2021; 40:448-462. [PMID: 34627647 DOI: 10.1016/j.tibtech.2021.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022]
Abstract
Microalgal biotechnology research continues to expand due to largely unexplored marine environments and growing consumer interest in healthy products. Thraustochytrids, which are marine oleaginous protists, are known for their production of bioactives with significant applications in nutraceuticals, pharmaceuticals, and aquaculture. A wide range of high-value biochemicals, such as nutritional supplements (omega-3 fatty acids), squalene, exopolysaccharides (EPSs), enzymes, aquaculture feed, and biodiesel and pigment compounds, have been investigated. We discuss thraustochytrids as potential feedstocks to produce various bioactive compounds and advocate developing a biorefinery to offset production costs. We anticipate that future advances in cell manufacturing, lipidomic analysis, and nanotechnology-guided lipid extraction would facilitate large-scale cost-competitive production through these microbes.
Collapse
Affiliation(s)
- Adarsha Gupta
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, 5042, Adelaide, Australia; Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, 5042, Adelaide, Australia
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, 3216, Geelong, Australia
| | - Munish Puri
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, 5042, Adelaide, Australia; Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, 5042, Adelaide, Australia; Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, 3216, Geelong, Australia.
| |
Collapse
|
13
|
Bao Z, Zhu Y, Zhang K, Feng Y, Chen X, Lei M, Yu L. High-value utilization of the waste hydrolysate of Dioscorea zingiberensis for docosahexaenoic acid production in Schizochytrium sp. BIORESOURCE TECHNOLOGY 2021; 336:125305. [PMID: 34044242 DOI: 10.1016/j.biortech.2021.125305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
The starch saccharification liquid of Dioscorea zingiberensis tubers (SSLD) is a glucose-rich agro-industrial waste. Herein, SSLD was used as a novel potential carbon source for the biosynthesis of docosahexaenoic acid (DHA) in Schizochytrium sp. to achieve waste recycling and high-value utilization. Component analysis showed that SSLD contains abundant nutrients, such as glucose, amino acids, phenolics and flavonoids. When the total sugar concentration in SSLD was optimized to 90 g/L, the biomass and DHA yield reached 44.85 and 6.60 g/L, respectively, which were 32.1% and 36.92% higher than that at pure glucose culture condition. Fermentation characteristics and gene expression analysis showed that SSLD could remarkably improve cell antioxidant capacity, which is beneficial to scavenge intracellular reactive oxygen species and increase the gene expression of antioxidant enzymes in Schizochytrium sp. Hence, SSLD is an effective and economic carbon source for DHA production in Schizochytrium sp.
Collapse
Affiliation(s)
- Zhendong Bao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Yuanmin Zhu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Kai Zhang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Yumei Feng
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Xuemin Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Mengjie Lei
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China.
| |
Collapse
|
14
|
Bagul VP, Annapure US. Isolation of fast-growing thraustochytrids and seasonal variation on the fatty acid composition of thraustochytrids from mangrove regions of Navi Mumbai, India. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112597. [PMID: 33878627 DOI: 10.1016/j.jenvman.2021.112597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/07/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
This study was aimed to isolate fast-growing thraustochytrids and the influence of seasonal variation in fatty acid composition from the mangrove habitat. The thraustochytrids were isolated from fallen yellowish or green mangrove leaves, in four seasons, including winter, summer, rainy, and post rainy season in one year. The thraustochytrids were analyzed for biomass production, total lipid content, and fatty acid profile. The thraustochytrid isolates showed biomass yield and total lipid content in the range of 14.12 ± 0.69 to 22.98 ± 0.53 g/L and 34.98-58.86% per dry cell weight, respectively. The isolates showed two dominant fatty acids, palmitic acid (PA) as saturated fatty acid (SFA) and docosahexaenoic acid (DHA) as long-chain polyunsaturated fatty acids (LC-PUFA) in total fatty acid (TFA) content. The significant differences (P < 0.05) were observed for seasonal variations in SFA and DHA content in summer isolates and winter isolates. The maximum DHA content with 47.12% of TFA, recorded in winter (January) isolates and summer (April) isolates with SFA 68.82% of TFA. The results from this study were verified the hypothesis that the presence of high DHA producing thraustochytrids in lower temperature season in the same habitat. These findings have also emphasized the role of the environmental temperature conditions and the importance of thraustochytrid fatty acid composition as a dietary biomarker. Also, it revealed the ecological significance of thraustochytrid in DHA enrichment in the food web of the marine ecosystem. These findings could be useful while isolating thraustochytrids according to seasons for industrial application for omega 3 fatty acids and biodiesel production.
Collapse
Affiliation(s)
- Vaishali P Bagul
- Department of Food Engineering and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India
| | - Uday S Annapure
- Department of Food Engineering and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India.
| |
Collapse
|
15
|
Jayakumar M, Karmegam N, Gundupalli MP, Bizuneh Gebeyehu K, Tessema Asfaw B, Chang SW, Ravindran B, Kumar Awasthi M. Heterogeneous base catalysts: Synthesis and application for biodiesel production - A review. BIORESOURCE TECHNOLOGY 2021; 331:125054. [PMID: 33832828 DOI: 10.1016/j.biortech.2021.125054] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Recently, much research has been carried out to find a suitable catalyst for the transesterification process during biodiesel production where heterogeneous catalysts play a crucial role. As homogenous catalysts present drawbacks such as slow reaction rate, high-cost due to the use of food grade oils, problems associated with separation process, and environmental pollution, heterogenous catalysts are more preferred. Animal shells and bones are the biowastes suitably calcined for the synthesis of heterogenous base catalyst. The catalysts synthesized using organic wastes are environmentally friendly, and cost-effective. The present review is dedicated to synthesis of heterogeneous basic catalysts from the natural resources or biowastes in biodiesel production through transesterification of oils. Use of calcined catalysts for converting potential feedstocks (vegetable oils and animal fat) into biodiesel/FAME is effective and safe, and the yield could be improved over 98%. There is a vast scope for biowaste-derived catalysts in green production of biofuel.
Collapse
Affiliation(s)
- Mani Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem-636007, Tamil Nadu, India
| | - Marttin Paulraj Gundupalli
- The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut's University of Technology North Bangkok, Bangsue, Bangkok 10800, Thailand
| | - Kaleab Bizuneh Gebeyehu
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Belete Tessema Asfaw
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea; Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
16
|
Isolation and Optimization of Culture Conditions of Thraustochytrium kinnei for Biomass Production, Nanoparticle Synthesis, Antioxidant and Antimicrobial Activities. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9060678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This work deals with the identification of a predominant thraustochytrid strain, the optimization of culture conditions, the synthesis of nanoparticles, and the evaluation of antioxidant and antimicrobial activities in biomass extracts and nanoparticles. Thraustochytrium kinnei was identified as a predominant strain from decomposing mangrove leaves, and its culture conditions were optimized for maximum biomass production of 13.53 g·L−1, with total lipids of 41.33% and DHA of 39.16% of total fatty acids. Furthermore, the strain was shown to synthesize gold and silver nanoparticles in the size ranges of 10–85 nm and 5–90 nm, respectively. Silver nanoparticles exhibited higher total antioxidant and DPPH activities than gold nanoparticles and methanol extract of the strain. The silver nanoparticles showed higher antimicrobial activity than gold nanoparticles and petroleum ether extract of the strain. Thus, Thraustochytrium kinnei is proven to be promising for synthesis of silver nanoparticles with high antioxidant and antimicrobial activity.
Collapse
|
17
|
Lyu L, Wang Q, Wang G. Cultivation and diversity analysis of novel marine thraustochytrids. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:263-275. [PMID: 37073337 PMCID: PMC10077191 DOI: 10.1007/s42995-020-00069-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/23/2020] [Indexed: 05/03/2023]
Abstract
Thraustochytrids are a group of unicellular marine heterotrophic protists, and have long been known for their biotechnological potentials in producing squalene, polyunsaturated fatty acids (PUFAs) and other bioactive products. There are less than a hundred known strains from diverse marine habitats. Therefore, the discovery of new strains from natural environments is still one of the major limitations for fully exploring this interesting group of marine protists. At present, numerous attempts have been made to study thraustochytrids, mainly focusing on isolating new strains, analyzing the diversity in specific marine habitats, and increasing the yield of bioactive substances. There is a lack of a systematic study of the culturable diversity, and cultivation strategies. This paper reviews the distribution and diversity of culturable thraustochytrids from a range of marine environments, and describes in detail the most commonly used isolation methods and the control of culture parameters. Furthermore, the perspective approaches of isolation and cultivation for the discovery of new strains are discussed. Finally, the future directions of novel marine thraustochytrid research are proposed. The ultimate goal is to promote the awareness of biotechnological potentials of culturable thraustochytrid strains in industrial and biomedical applications.
Collapse
Affiliation(s)
- Lu Lyu
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Qiuzhen Wang
- Ocean College of Hebei Agricultural University, Qinhuangdao, 066000 China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072 China
| |
Collapse
|
18
|
Oliveira CYB, D'Alessandro EB, Antoniosi Filho NR, Lopes RG, Derner RB. Synergistic effect of growth conditions and organic carbon sources for improving biomass production and biodiesel quality by the microalga Choricystis minor var. minor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143476. [PMID: 33218810 DOI: 10.1016/j.scitotenv.2020.143476] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
In the search for microalgae species with potential for biodiesel production, Choricystis minor var. minor has been seen as a promising source of biomass due to its high lipid content and the satisfactory characteristics of its fatty acid methyl esters (FAMEs). For this reason, the objective of this study was to investigate the synergistic effect of growth conditions and organic carbon sources on cultivation of this microalga. To do so, experimental cultivations were conducted in photoautotrophic, heterotrophic and mixotrophic metabolisms using glucose, fructose, glycerol or sucrose - in growth conditions that use organic carbon. Thus, growth parameters of the cultures were evaluated and at the end of the cultivations, FAMEs yield and profile were determined by gas chromatography, the efficiency of carbon conversion into biomass was evaluated and a microbial analysis was conducted. Regarding growth conditions, the findings have confirmed that, regardless of the organic carbon source used, the heterotrophic and mixotrophic metabolisms can present advantages over the photoautotrophic one. In addition, biomass production was higher with the use of glucose than with other organic carbon sources, regardless of growth condition (heterotrophic or mixotrophic). Moreover, cultivations with the addition of CO2 have converted carbon into biomass less efficiently. On the other hand, photoautotrophic cultures presented the lowest bacterial load. In comparison to photoautotrophic and mixotrophic, heterotrophic cultures have led to lower FAMEs content and higher yields of unsaturated fatty acids. The most satisfactory FAMEs profile for biodiesel production was obtained with mixotrophic growth using fructose.
Collapse
Affiliation(s)
- Carlos Yure B Oliveira
- Universidade Federal Rural de Pernambuco, Departamento de Pesca e Aquicultura, Laboratório de Produção de Alimento Vivo, Recife, Brazil; Universidade Federal de Santa Catarina, Departamento de Aquicultura, Laboratório de Cultivo de Algas, Florianópolis, Brazil.
| | - Emmanuel B D'Alessandro
- Universidade Federal de Goiás, Departamento de Química, Laboratório de Métodos de Extração e Separação, Goiânia, Brazil
| | - Nelson R Antoniosi Filho
- Universidade Federal de Goiás, Departamento de Química, Laboratório de Métodos de Extração e Separação, Goiânia, Brazil
| | - Rafael G Lopes
- Universidade Federal de Santa Catarina, Departamento de Aquicultura, Laboratório de Cultivo de Algas, Florianópolis, Brazil
| | - Roberto B Derner
- Universidade Federal de Santa Catarina, Departamento de Aquicultura, Laboratório de Cultivo de Algas, Florianópolis, Brazil
| |
Collapse
|
19
|
Kumar LR, Kaur R, Tyagi RD, Drogui P. Identifying economical route for crude glycerol valorization: Biodiesel versus polyhydroxy-butyrate (PHB). BIORESOURCE TECHNOLOGY 2021; 323:124565. [PMID: 33360115 DOI: 10.1016/j.biortech.2020.124565] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Crude glycerol, a by-product of biodiesel industry, has been used for production of biodiesel and polyhydroxy-alkanoates. But question is: which product is economically favorable using crude glycerol as substrate? In this study, energy balance and economic assessment has been carried out for crude glycerol valorization for B10 biodiesel and polyhydroxy-butyrate (PHB) production. For same quantity of crude glycerol utilized, energy ratio for B10 production was higher than PHB production while unit production cost for B10 was lower than that of PHB. For 50 million L plant capacity of biodiesel, unit production cost was 0.77 $/L B10 while for 2 million kg plant capacity of PHB, unit production cost was 4.88 $/kg PHB. Thus, in present scenario production of biodiesel seems economically better than production of PHA with crude glycerol as raw material. This study is useful for researchers, environmental scientists and industries in identifying effective route for crude glycerol valorization.
Collapse
Affiliation(s)
- Lalit R Kumar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Rajwinder Kaur
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - R D Tyagi
- School of Technology, Huzhou University, Huzhou, China; BOSK Bioproducts, 100-399 rue Jacquard, Québec G1N 4J6, Canada.
| | - Patrick Drogui
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
20
|
Patel A, Sarkar O, Rova U, Christakopoulos P, Matsakas L. Valorization of volatile fatty acids derived from low-cost organic waste for lipogenesis in oleaginous microorganisms-A review. BIORESOURCE TECHNOLOGY 2021; 321:124457. [PMID: 33316701 DOI: 10.1016/j.biortech.2020.124457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
To meet environmental sustainability goals, microbial oils have been suggested as an alternative to petroleum-based products. At present, microbial fermentation for oil production relies on pure sugar-based feedstocks. However, these feedstocks are expensive and are in limited supply. Volatile fatty acids, which are generated as intermediates during anaerobic digestion of organic waste have emerged as a renewable feedstock that has the potential to replace conventional sugar sources for microbial oil production. They comprise short-chain (C2 to C6) organic acids and are employed as building blocks in the chemical industry. The present review discusses the use of oleaginous microorganisms for the production of biofuels and added-value products starting from volatile fatty acids as feedstocks. The review describes the metabolic pathways enabling lipogenesis from volatile fatty acids, and focuses on strategies to enhance lipid accumulation in oleaginous microorganisms by tuning the ratios of volatile fatty acids generated via anaerobic fermentation.
Collapse
Affiliation(s)
- Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Omprakash Sarkar
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| |
Collapse
|
21
|
Sun XM, Xu YS, Huang H. Thraustochytrid Cell Factories for Producing Lipid Compounds. Trends Biotechnol 2020; 39:648-650. [PMID: 33199047 DOI: 10.1016/j.tibtech.2020.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022]
Abstract
Thraustochytrids can accumulate over 150 g/l biomass, containing up to 55% lipids, without any genetic modification. Their broad substrate utilization capacity, several effective key metabolic pathways, and a well-developed suite of bioprocess engineering strategies all point toward great promise for the future development of these marine protists.
Collapse
Affiliation(s)
- Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, China.
| |
Collapse
|
22
|
Ali SS, Al-Tohamy R, Xie R, El-Sheekh MM, Sun J. Construction of a new lipase- and xylanase-producing oleaginous yeast consortium capable of reactive azo dye degradation and detoxification. BIORESOURCE TECHNOLOGY 2020; 313:123631. [PMID: 32540694 DOI: 10.1016/j.biortech.2020.123631] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 05/07/2023]
Abstract
A new oleaginous yeast consortium Y-BC-SH which stands for molecularly identified species Yarrowia sp., Barnettozyma californica and Sterigmatomyces halophilus was successfully constructed in this study. This multipurpose oleaginous yeast consortium was developed based on its higher ability to accumulate large amounts of lipids in the form of triacylglycerol, grow on xylose, produce lipase and xylanase and it could rapidly decolorize and degrade commonly-used textile reactive azo dyes. The specific enzyme activities of lipase, xylanase, xylan esterase, β-xylosidase, CMCase, β-glucosidase and cellobiohydrolase produced by Y-BC-SH were significantly higher than that of individual strains. As chemical oxygen demand reduction had occurred in the dye mixture solutions, it was evidence of their color removal and mineralization by Y-BC-SH. The significant induction of oxidoreductive enzymes by Y-BC-SH was probably due to the coordinated metabolic interactions of the individual strains. Phytotoxicity assay confirmed that metabolites generated after dye degradation by Y-BC-SH are non-toxic.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rongrong Xie
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | | | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
23
|
Cheng J, Guo H, Qiu Y, Zhang Z, Mao Y, Qian L, Yang W, Park JY. Switchable solvent N, N, N', N'-tetraethyl-1, 3-propanediamine was dissociated into cationic surfactant to promote cell disruption and lipid extraction from wet microalgae for biodiesel production. BIORESOURCE TECHNOLOGY 2020; 312:123607. [PMID: 32504947 DOI: 10.1016/j.biortech.2020.123607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Switchable solvent N, N, N', N'-tetraethyl-1,3-propanediamine (TEPDA) was proposed to extract lipids from wet Nannochloropsis oceanica with a 5% higher extraction efficiency than chloroform-methanol. It was found that TEPDA acted mainly as an organic solvent to soften and dissolve lipids, while a small amount of TEPDA was dissociated into tertiary amine ion, i.e.,(C2H5)2N-(CH2)3-NH+(C2H5)2. This cation acted as a surfactant to promote cell disruption and lipid separation. With moisture increasing from 0 to 84 wt%, more TEPDA was dissociated into cationic surfactant to induce local rearrangement of phospholipid bilayers in cell membranes through electrostatic interaction, resulting in the fractal dimension of disrupted cells increased from 1.49 to 1.66. Accordingly, the yield of fatty acid methyl ester (FAME) through transesterification of lipids extracted with TEPDA increased by 9%, while FAME yield from lipids extracted with chloroform and n-hexane decreased by 41% and 65%, respectively.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Hao Guo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yi Qiu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Ze Zhang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yuxiang Mao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Lei Qian
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Weijuan Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Ji-Yeon Park
- Biomass and Wastes to Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Daejeon 34129, Republic of Korea
| |
Collapse
|
24
|
Use of Biofuel Industry Wastes as Alternative Nutrient Sources for DHA-Yielding Schizochytrium limacinum Production. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The simultaneous use of crude glycerol and effluent from anaerobic digestate, both wastes derived from the biofuel industry, were tested in the frame of circular economy concept, as potential low-cost nutrient sources for the cultivation of rich in docosahexaenoic acid (DHA) oil microalgae strain Schizochytrium limacinum SR21. Initially, the optimal carbon and nitrogen concentration levels for high S. limacinum biomass and lipids production were determined, in a culture media containing conventional, high cost, organic nitrogen sources (yeast extract and peptone), micronutrients and crude glycerol at varying concentrations. Then, the effect of a culture media composed of crude glycerol (as carbon source) and effluent digestate at varying proportions on biomass productivity, lipid accumulation, proximate composition, carbon assimilation and fatty acid content were determined. It was shown that the biomass and total lipid content increased considerably with varying effluent concentrations reaching 49.2 g L−1 at 48% (v/v) of effluent concentration, while the lipid yield at the same effluent concentration reached 10.15 g L−1, compared to 17.0 g L−1 dry biomass and 10.2 g L−1 lipid yield when yeast extract and peptone medium with micronutrients was used. Compared to the control treatment, the above production was obtained with 48% less inorganic salts, which are needed for the preparation of the artificial sea water. It was shown that Schizochytrium limacinum SR21 was able to remediate 40% of the total organic carbon content of the biofuel wastes, while DHA productivity remained at low levels with saturated fatty acids comprising the main fraction of total fatty acid content. The results of the present study suggest that the simultaneous use of two waste streams from the biofuel industry can serve as potential nutrient sources for the growth of Schizochytrium limacinum SR21, replacing the high cost organic nutrients and up to one half the required artificial sea water salts, but upregulation of DHA productivity through optimization of the abiotic environment is necessary for industrial application, including aqua feed production.
Collapse
|