1
|
García-Encinas JP, Ruiz-Cruz S, Juárez J, Ornelas-Paz JDJ, Del Toro-Sánchez CL, Márquez-Ríos E. Proteins from Microalgae: Nutritional, Functional and Bioactive Properties. Foods 2025; 14:921. [PMID: 40231937 PMCID: PMC11941487 DOI: 10.3390/foods14060921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 04/16/2025] Open
Abstract
Microalgae have emerged as a sustainable and efficient source of protein, offering a promising alternative to conventional animal and plant-based proteins. Species such as Arthrospira platensis and Chlorella vulgaris contain protein levels ranging from 50% to 70% of their dry weight, along with a well-balanced amino acid profile rich in essential amino acids such as lysine and leucine. Their cultivation avoids competition for arable land, aligning with global sustainability goals. However, the efficient extraction of proteins is challenged by their rigid cell walls, necessitating the development of optimized methods such as bead milling, ultrasonication, enzymatic treatments, and pulsed electric fields. These techniques preserve functionality while achieving yields of up to 96%. Nutritional analyses reveal species-dependent digestibility, ranging from 70 to 90%, with Spirulina platensis achieving the highest rates due to low cellulose content. Functionally, microalgal proteins exhibit emulsifying, water-holding, and gel-forming properties, enabling applications in baking, dairy, and meat analogs. Bioactive peptides derived from these proteins exhibit antioxidant, antimicrobial (inhibiting E. coli and S. aureus), anti-inflammatory (reducing TNF-α and IL-6), and antiviral activities (e.g., Dengue virus inhibition). Despite their potential, commercialization faces challenges, including regulatory heterogeneity, high production costs, and consumer acceptance barriers linked to eating habits or sensory attributes. Current market products like Spirulina-enriched snacks and Chlorella tablets highlight progress, but food safety standards and scalable cost-effective extraction technologies remain critical for broader adoption. This review underscores microalgae's dual role as a nutritional powerhouse and a source of multifunctional bioactives, positioning them at the forefront of sustainable food and pharmaceutical innovation.
Collapse
Affiliation(s)
- Juan Pablo García-Encinas
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Boulevard Luis Encinas y Rosales, Hermosillo 83000, Sonora, Mexico; (J.P.G.-E.); (S.R.-C.); (C.L.D.T.-S.)
| | - Saul Ruiz-Cruz
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Boulevard Luis Encinas y Rosales, Hermosillo 83000, Sonora, Mexico; (J.P.G.-E.); (S.R.-C.); (C.L.D.T.-S.)
| | - Jousé Juárez
- Departamento de Física, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico;
| | - José de Jesús Ornelas-Paz
- Coordinación de Fisiología y Tecnología de Alimentos de la Zona Templada, Centro de Investigación en Alimentación y Desarrollo, Av. Río Conchos S/N, Parque Industrial, Cuauhtémoc 31570, Chihuahua, Mexico;
| | - Carmen Lizette Del Toro-Sánchez
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Boulevard Luis Encinas y Rosales, Hermosillo 83000, Sonora, Mexico; (J.P.G.-E.); (S.R.-C.); (C.L.D.T.-S.)
| | - Enrique Márquez-Ríos
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Boulevard Luis Encinas y Rosales, Hermosillo 83000, Sonora, Mexico; (J.P.G.-E.); (S.R.-C.); (C.L.D.T.-S.)
| |
Collapse
|
2
|
Miranda Júnior JR, da Silva CAS, de Moura Guimarães L, Rocha DN, Alhaji AM, de Oliveira EB, Martins MA, Dos Reis Coimbra JS. Cell rupture of Tetradesmus obliquus using high-pressure homogenization at the pilot scale and recovery of pigments and lipids. Food Res Int 2024; 196:115113. [PMID: 39614578 DOI: 10.1016/j.foodres.2024.115113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
Microalgae are promising sources of intracellular metabolites such as proteins, polysaccharides, pigments, and lipids. Thus, this study applied high-pressure homogenization (HPH) techniques on a pilot scale to disrupt the cells of Tetradesmus obliquus. The effects of pressure (P; 150, 250, and 350 bar), suspension concentration (Cs; 1.0, 1.5, and 2.0 % w/v), and number of cycles (Nc; 5, 15, and 25) were evaluated in HPH via a Box-Behnken experimental design. Response surface methodology was applied to optimize the recovery rate (dTr) of pigments and lipids. The specific energy consumption (SEC) and color change gradient (ΔE) of the biomass during HPH were also assessed. The optimal HPH conditions for pigment extraction with 1.5 % Cs (w/v) were as follows: P = 312 bar and Nc = 22 for chlorophyll-a (0.83 g/100 g; dTr = 69 %; SEC = 47.50 kJ/g dry matter); P = 345 bar and Nc = 24 for chlorophyll-b (0.63 g/100 g; dTr = 80 %; SEC = 57.30 kJ/g dry matter); P = 345 bar and Nc = 24 for total carotenoids (0.53 g/100 g; dTr = 79 %; SEC = 54.12 kJ/g dry matter); and P = 350 bar and Nc = 25 for β-carotene (299 µg/g; dTr = 58 %; SEC = 62.08 kJ/g dry matter). The optimal HPH conditions for lipid extraction were P = 350 bar and Nc = 23, with a lipid recovery rate of ≥28 %. Cell disruption during HPH caused a change in the color of the biomass (ΔE) due to the release of intracellular biocompounds. Increasing P and Nc led to higher SECs, ΔE gradients, and pigment and lipid contents. Thus, the levels of recovered pigments and lipids can be indicators of cell disruption in T. obliquus.
Collapse
Affiliation(s)
- José Roberto Miranda Júnior
- Universidade Federal de Viçosa, Department of Food Technology, Campus Universitário S/N, Centro, 36570-900 Viçosa, MG, Brazil.
| | - César Augusto Sodré da Silva
- Universidade Federal de Viçosa, Department of Food Technology, Campus Universitário S/N, Centro, 36570-900 Viçosa, MG, Brazil
| | - Luciano de Moura Guimarães
- Universidade Federal de Viçosa, Department of Physics, Campus Universitário S/N, Centro, 36570-900 Viçosa, MG, Brazil
| | - Dilson Novais Rocha
- Universidade Federal de Viçosa, Department of Agricultural Engineering, Campus Universitário S/N, Centro, 36570-900 Viçosa, MG, Brazil
| | - Adamu Muhammad Alhaji
- Universidade Federal de Viçosa, Department of Food Technology, Campus Universitário S/N, Centro, 36570-900 Viçosa, MG, Brazil; Kano University of Science and Technology, Institute of Food Science and Technology, Wudil, Kano, Nigeria
| | - Eduardo Basílio de Oliveira
- Universidade Federal de Viçosa, Department of Food Technology, Campus Universitário S/N, Centro, 36570-900 Viçosa, MG, Brazil
| | - Marcio Arêdes Martins
- Universidade Federal de Viçosa, Department of Agricultural Engineering, Campus Universitário S/N, Centro, 36570-900 Viçosa, MG, Brazil
| | - Jane Sélia Dos Reis Coimbra
- Universidade Federal de Viçosa, Department of Food Technology, Campus Universitário S/N, Centro, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
3
|
Zhou J, Wang M, Grimi N, Dar BN, Calvo-Lerma J, Barba FJ. Research progress in microalgae nutrients: emerging extraction and purification technologies, digestive behavior, and potential effects on human gut. Crit Rev Food Sci Nutr 2024; 64:11375-11395. [PMID: 37489924 DOI: 10.1080/10408398.2023.2237586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Microalgae contain a diverse range of high-value compounds that can be utilized directly or fractionated to obtain components with even greater value-added potential. With the use of microalgae for food and medical purposes, there is a growing interest in their digestive properties and impact on human gut health. The extraction, separation, and purification of these components are key processes in the industrial application of microalgae. Innovative technologies used to extract and purify microalgal high-added-value compounds are key for their efficient utilization and evaluation. This review's comprehensive literature review was performed to highlight the main high-added-value microalgal components. The technologies for obtaining bioactive compounds from microalgae are being developed rapidly, various innovative, efficient, green separation and purification technologies are emerging, thus helping in the scaling-up and subsequent commercialization of microalgae products. Finally, the digestive behavior of microalgae nutrients and their health effects on the human gut microbiota were discussed. Microalgal nutrients exhibit favorable digestive properties and certain components have been shown to benefit gut microbes. The reality that must be faced is that multiple processes are still required for microalgae raw materials to final usable products, involving energy, time consumption and loss of ingredients, which still face challenges.
Collapse
Affiliation(s)
- Jianjun Zhou
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, València, Spain
| | - Min Wang
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, València, Spain
| | - Nabil Grimi
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, Compiègne, France
| | - Basharat N Dar
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, Kashmir, India
| | - Joaquim Calvo-Lerma
- Instituto Universitario de Ingeniería para el Desarrollo (IU-IAD), Universitat Politècnica de València, Valencia, Spain
| | - Francisco J Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| |
Collapse
|
4
|
Souza ATVDE, Souza KMSDE, Amorim APDE, Bezerra RP, Porto ALF. Methods to protein and peptide extraction from microalgae: a systematic review. AN ACAD BRAS CIENC 2024; 96:e20240113. [PMID: 39442102 DOI: 10.1590/0001-3765202420240113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/19/2024] [Indexed: 10/25/2024] Open
Abstract
Currently, there is a demand for protein sources that do not use soil management or animal breeding. Among these sources we highlight the microorganisms, such cyanobacteria and microalgae, which have a simple growth using light, CO2, water and some mineral salts to generate high protein production. The extraction of these proteins depends on the method used. The most used methods for extracting bio-functional proteins are mechanical, chemical and enzymatic. The aim of this work is to analyze the protein extraction methods in microalgae using Scielo, ScienceDirect and NCBI (PubMed) electronic databases that made it possible to select original studies published in the last five years (2018-2023). A total of 2707 articles, 25 of which were selected for further analysis and subjected to risk of bias assessment. The genera Chlorella, Scenedesmus and Nannochloropsis were the most studied due to their high protein content. Mechanical methods and chemical hydrolysis are the most used methods, achieving an extraction yield of 46.0 % and 64.0 %, respectively. The best extraction results are obtained with a combination of methods, reaching up to 80.0 % yield. However, some aspects need to be observed to choose an ideal protein extraction method.
Collapse
Affiliation(s)
- Ariadne Tennyle V DE Souza
- Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, 1235, 50670-901 Recife, PE, Brazil
| | | | - Andreza P DE Amorim
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Morfologia e Fisiologia Animal, Avenida Dom Manoel de Medeiros, s/n, 52171-900 Recife, PE, Brazil
| | - Raquel P Bezerra
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Morfologia e Fisiologia Animal, Avenida Dom Manoel de Medeiros, s/n, 52171-900 Recife, PE, Brazil
| | - Ana Lucia F Porto
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Morfologia e Fisiologia Animal, Avenida Dom Manoel de Medeiros, s/n, 52171-900 Recife, PE, Brazil
| |
Collapse
|
5
|
Khodadadianzaghmari F, Jahadi M, Goli M. Biochemical profile of Scenedesmus isolates, with a main focus on the fatty acid profile. Food Sci Nutr 2024; 12:5922-5931. [PMID: 39139969 PMCID: PMC11317656 DOI: 10.1002/fsn3.4254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 08/15/2024] Open
Abstract
Biochemical characterization of new microalgal strains that are isolated from diverse environmental conditions is an important starting point for the establishment of high-quality feedstock for nutraceutical and pharmaceutical applications. In this research study, the biochemical composition of three Iranian native subspecies of Scenedesmus microalgae (Scenedesmus obliquus, Scenedesmus bijugusi, and Scenedesmus sp.), with the main focus on fatty acid composition, was studied. The results showed that the strain Scenedesmus bijugusi had the highest biomass productivity (48 g/L/d), biomass (0.73%), carbohydrate (13.97%), fat (16.27%), protein (44.04%), chlorophyll-a (6.32 mg/g), and carotenoids (3.7 mg/g). The lipid profile also revealed that S. obliquus had the highest percentage of polyunsaturated fatty acid (46.52%), ratio of ∑n-3/∑n-6 (5.96), ratio of polyunsaturated fatty acid to saturated fatty acid (PUFA/SAF) (1.18), α-linolenic acid (22.74%), hypocholesterolemia index (1.61), and low atherogenic index (0.34). S. bijugusi and S. obliquus, thus, showed a great promise in nutraceutical and pharmaceutical applications due to their appropriate high productivity, biopigment, protein, lipid, antioxidant activity, long-chain polyunsaturated fatty acids, and α-linolenic acid.
Collapse
Affiliation(s)
- Faezeh Khodadadianzaghmari
- Department of Food Science and Technology, Faculty of Agriculture, Isfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
| | - Mahshid Jahadi
- Department of Food Science and Technology, Faculty of Agriculture, Isfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
| | - Mohammad Goli
- Department of Food Science and Technology, Laser and Biophotonics in Biotechnologies Research Center, Isfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
| |
Collapse
|
6
|
Falah F, Samie A, Mortazavi SA, Danesh A, Yazdi FT, Ramezani M. Bio-synthesis, purification and structural analysis of Cyclosporine-A produced by Tolypocladium inflatum with valorization of agro-industrial wastes. Sci Rep 2024; 14:12540. [PMID: 38822034 PMCID: PMC11143273 DOI: 10.1038/s41598-024-63110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/24/2024] [Indexed: 06/02/2024] Open
Abstract
Cyclosporine A (CyA) holds significant importance as a strategic immunosuppressive drug for organ transplant patients. In this study, we aimed to produce pure and cost-effective Cyclosporine A (CyA) by fermenting a culture medium containing dairy sludge, using Tolypocladium inflatum PTCC 5253. Following the fermentation stage, ethyl acetate extraction and fast protein liquid chromatography were employed for sample purification. The initial evaluation of the effectiveness of CyA obtained from these processes was performed through bioassay, wherein the antimicrobial clear zone diameter was found to be larger compared to the sample obtained from the fermentation culture. The concentration of CyA was determined using high-performance liquid chromatography, yielding values of 334 mg/L, 456 mg/L, and 578 mg/L for the fermented, extracted, and purified samples, respectively. Further analysis utilizing liquid chromatography tandem mass spectrometry (LC/MS/MS) confirmed a purity of 91.9% and proper agreement with the standard sample based on the ion intensity of Z/m 1205. To validate the structure of CyA, nuclear magnetic resonance spectroscopy, Fourier-transform infrared (FT-IR), and Raman spectroscopy were employed. X-ray diffraction and differential scanning calorimetry analyses demonstrated that the purified CyA exhibited a crystal structure similar to the standard sample, characterized by two broad peaks at 2θ = 9° and 20°, and comparable glass transition temperatures (57-68 °C for the purified sample; 53-64 °C for the standard sample). Dynamic light scattering analysis confirmed a uniform particle size distribution in both the purified and standard samples. The zeta potentials of the purified and standard samples were determined to be - 25.8 ± 0.16 and - 23.63 ± 0.12 mV, respectively. Our results demonstrate that dairy sludge can serve as a suitable culture medium for the production of (CyA).
Collapse
Affiliation(s)
- Fereshteh Falah
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Samie
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Mortazavi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Abolghasem Danesh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farideh Tabatabaei Yazdi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Zhu M, Singer SD, Guan LL, Chen G. Emerging microalgal feed additives for ruminant production and sustainability. ADVANCED BIOTECHNOLOGY 2024; 2:17. [PMID: 38756984 PMCID: PMC11097968 DOI: 10.1007/s44307-024-00024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
The global demand for animal-derived foods has led to a substantial expansion in ruminant production, which has raised concerns regarding methane emissions. To address these challenges, microalgal species that are nutritionally-rich and contain bioactive compounds in their biomass have been explored as attractive feed additives for ruminant livestock production. In this review, we discuss the different microalgal species used for this purpose in recent studies, and review the effects of microalgal feed supplements on ruminant growth, performance, health, and product quality, as well as their potential contributions in reducing methane emissions. We also examine the potential complexities of adopting microalgae as feed additives in the ruminant industry.
Collapse
Affiliation(s)
- Mianmian Zhu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, EdmontonAlberta, T6G 2P5 Canada
| | - Stacy D. Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, LethbridgeAlberta, T1J 4B1 Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, EdmontonAlberta, T6G 2P5 Canada
- Faculty of Land and Food Systems, University of British Columbia, VancouverBritish Columbia, V6T 1Z4 Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, EdmontonAlberta, T6G 2P5 Canada
| |
Collapse
|
8
|
Chaos-Hernández D, Reynel-Ávila HE, Bonilla-Petriciolet A, Villalobos-Delgado FJ. Extraction methods of algae oils for the production of third generation biofuels - A review. CHEMOSPHERE 2023; 341:139856. [PMID: 37598949 DOI: 10.1016/j.chemosphere.2023.139856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Microalgae are the main source of third-generation biofuels because they have a lipid content of 20-70%, can be abundantly produced and do not compete in the food market besides other benefits. Biofuel production from microalgae is a promising option to contribute for the resolution of the eminent crisis of fossil energy and environmental pollution specially in the transporting sector. The choice of lipid extraction method is of relevance and associated to the algae morphology (i.e., rigid cells). Therefore, it is essential to develop suitable extraction technologies for economically viable and environment-friendly lipid recovery processes with the aim of achieving a commercial production of biofuels from this biomass. This review presents an exhaustive analysis and discussion of different methods and processes of lipid extraction from microalgae for the subsequent conversion to biodiesel. Physical methods based on the use of supercritical fluids, ultrasound and microwaves were reviewed. Chemical methods using solvents with different polarities, aside from mechanical techniques such as mechanical pressure and enzymatic methods, were also analyzed. The advantages, drawbacks, challenges and future prospects of lipid extraction methods from microalgae have been summarized to provide a wide panorama of this relevant topic for the production of economic and sustainable energy worldwide.
Collapse
Affiliation(s)
- D Chaos-Hernández
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| | - H E Reynel-Ávila
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico; CONACYT, Av. Insurgentes 1582 Sur, Ciudad de México, 03940, Aguascalientes, Ags, Mexico.
| | - A Bonilla-Petriciolet
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| | - F J Villalobos-Delgado
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| |
Collapse
|
9
|
Kashyap M, Chakraborty S, Kumari A, Rai A, Varjani S, Vinayak V. Strategies and challenges to enhance commercial viability of algal biorefineries for biofuel production. BIORESOURCE TECHNOLOGY 2023; 387:129551. [PMID: 37506948 DOI: 10.1016/j.biortech.2023.129551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
The rise in energy consumption would quadruple in the coming century and the, existing energy resources might be insufficient to meet the demand of the growing population. An alternative and sustainable energy resource is therefore needed to address the fossil fuel deficiency. The utility of microalgae strains in the aspect of biorefinery has been in research for quite some time. Algal biorefinery is an alternate way of renewable energy however even after decades of research it still suffers from commercialization bottlenecks. The current manuscript reviews the scenarios where the innovation needs an ignition for its commercialization. This review discusses the prospects of up-scale cultivation, and harvesting algal biomass for biorefineries. It narrates algal biorefinery hurdles that can be solved using integrated technology approach, life cycle assessment and applications of nanotechnology. The review also sheds light upon the ties of algal biorefineries with its economic viability.
Collapse
Affiliation(s)
- Mrinal Kashyap
- Porter School of Earth and Environment Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sukanya Chakraborty
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP 470003, India
| | - Anamika Kumari
- Porter School of Earth and Environment Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP 470003, India
| | - Anshuman Rai
- Department of Biotechnology, School of Engineering, Maharishi Markandeshwar University, Ambala, Haryana 133203, India; State Forensic Science Laboratory, Haryana, Madhuban 132037, India
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, MP 470003, India.
| |
Collapse
|
10
|
Devi A, Verma M, Saratale GD, Saratale RG, Ferreira LFR, Mulla SI, Bharagava RN. Microalgae: A green eco-friendly agents for bioremediation of tannery wastewater with simultaneous production of value-added products. CHEMOSPHERE 2023:139192. [PMID: 37353172 DOI: 10.1016/j.chemosphere.2023.139192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023]
Abstract
Tannery wastewater (TWW) has high BOD, COD, TS and variety of pollutants like chromium, formaldehydes, biocides, oils, chlorophenols, detergents and phthalates etc. Besides these pollutants, TWW also rich source of nutrients like nitrogen, phosphorus, carbon and sulphur etc. that can be utilized by microalgae during their growth. Direct disposal of TWW into the environment may lead severe environmental and health threats, therefore it needs to be treated adequately. Microalgae are considered as an efficient microorganisms (fast growing, adaptability and strain robustness, high surface to volume ratio, energy saving) for remediation of wastewaters with simultaneous biomass recovery and generation of value added products (VAPs) such as biofuels, biohydrogen, biopolymer, biofertilizer, pigments, bioethanol, bioactive compounds, nutraceutical etc. Most microalgae are photosynthetic and use CO2 and light energy to synthesise carbohydrate and reduces the emission of greenhouse gasses. Microalgae are also reported to remove heavy metals and antibiotics from wastewaters by bioaccumulation, biodegradation and biosorption. Microalgal treatment can be an alternative of conventional processes with generation of VAPs. The use of biotechnology in wastewater remediation with simultaneous generation of VAPs is trending. The validation of economic viability and environmental sustainability, life cycle assessment studies and techno-economic analysis is undergoing. Thus, in this review, the characteristics of TWW and microalgae are summarized, which manifest microalgae as potential candidates for wastewater remediation with simultaneous production of VAPs. Further, the treatment mechanisms, various factors (physical, chemical, mechanical and biological etc.) affecting treatment efficiency as well as challenges associated with microalgal remediation are also discussed.
Collapse
Affiliation(s)
- Anuradha Devi
- Laboratory of Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226 025 (U.P.), India
| | - Meenakshi Verma
- University Centre of Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali 140413, Panjab, India
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University, Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Luiz Fernando R Ferreira
- Waste and Effluent Treatment Laboratory, Institute of Technology and Research (ITP), Tiradentes University, Farolândia, Aracaju, SE 49032-490, Brazil; Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490 Aracaju, Sergipe, Brazil
| | - Sikandar I Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore, India
| | - Ram Naresh Bharagava
- Laboratory of Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow-226 025 (U.P.), India.
| |
Collapse
|
11
|
Lima VS, de Oliveira DRB, da Silva CAS, Santana RDC, Soares NDFF, de Oliveira EB, Martins MA, Coimbra JSDR. Stabilization of oil-water emulsions with protein concentrates from the microalga Tetradesmus obliquus. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:797-808. [PMID: 36712212 PMCID: PMC9873893 DOI: 10.1007/s13197-023-05666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/07/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
The present work used water-soluble protein concentrates from the microalga Tetradesmus obliquus to stabilize sunflower oil emulsions. Microalgal cells were disrupted by sonication, and proteins were separated from the biomass using two methods, isoelectric and solvent precipitations. The protein extracts were concentrated by lyophilization, and the concentrates were used to produce emulsions with three amounts of Tetradesmus obliquus protein concentrate (TobPC) (0.1, 0.5, and 1.0% w/v). Emulsions were homogenized through sonication and characterized for creaming index, optical microscopy, size distribution, ζ-potential, and rheology. Isoelectric precipitation resulted in TobPC with a high protein content (51.46 ± 2.37%) and a better dispersibility profile. Emulsion stability was higher for both the isoelectric TobPC and control systems than for the TobPC solvent. Solvent TobPC does not efficiently stabilize emulsions at low protein concentrations that showed microscopically larger oil droplets and flocculation spots. A high phase separation velocity was observed for solvent TobPC, probably due to the higher hydrodynamic droplet diameters. The increase in TobPC content in the emulsions resulted in more stable emulsions for all samples. Therefore, Tetradesmus obliquus protein concentrates are a potential emulsifying agent.
Collapse
Affiliation(s)
- Viviane Sobreira Lima
- Departamento de Tecnologia de Alimentos (DTA), Universidade Federal de Viçosa (UFV), Campus Universitário S/N, Viçosa, MG CEP 36570-900 Brazil
| | - Davi Rocha Bernardes de Oliveira
- Departamento de Tecnologia de Alimentos (DTA), Universidade Federal de Viçosa (UFV), Campus Universitário S/N, Viçosa, MG CEP 36570-900 Brazil
| | - César Augusto Sodré da Silva
- Departamento de Tecnologia de Alimentos (DTA), Universidade Federal de Viçosa (UFV), Campus Universitário S/N, Viçosa, MG CEP 36570-900 Brazil
| | - Rejane de Castro Santana
- Departamento de Química (DEQ), Universidade Federal de Viçosa (UFV), Campus Universitário S/N, Viçosa, MG CEP 36570-900 Brazil
| | - Nilda de Fátima Ferreira Soares
- Departamento de Tecnologia de Alimentos (DTA), Universidade Federal de Viçosa (UFV), Campus Universitário S/N, Viçosa, MG CEP 36570-900 Brazil
| | - Eduardo Basílio de Oliveira
- Departamento de Tecnologia de Alimentos (DTA), Universidade Federal de Viçosa (UFV), Campus Universitário S/N, Viçosa, MG CEP 36570-900 Brazil
| | - Marcio Aredes Martins
- Departamento de Engenharia Agrícola (DEA), Universidade Federal de Viçosa (UFV), Campus Universitário S/N, Viçosa, MG CEP 36570-900 Brazil
| | - Jane Sélia dos Reis Coimbra
- Departamento de Tecnologia de Alimentos (DTA), Universidade Federal de Viçosa (UFV), Campus Universitário S/N, Viçosa, MG CEP 36570-900 Brazil
| |
Collapse
|
12
|
Enhancement of Metabolite Production in High-Altitude Microalgal Strains by Optimized C/N/P Ratio. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study evaluated the role of C/N/P in the increase in the synthesis of carbohydrates, proteins, and lipids in two high-mountain strains of algae (Chlorella sp. UFPS019 and Desmodesmus sp. UFPS021). Three carbon sources (sodium acetate, sodium carbonate, and sodium bicarbonate), and the sources of nitrogen (NaNO3) and phosphate (KH2PO4 and K2HPO4) were analyzed using a surface response (3 factors, 2 levels). In Chlorella sp. UFPS019, the optimal conditions to enhance the synthesis of carbohydrates were high sodium carbonate content (3.53 g/L), high KH2PO4 and K2HPO4 content (0.06 and 0.14 g/L, respectively), and medium-high NaNO3 (0.1875 g/L). In the case of lipids, a high concentration of sodium acetate (1.19 g/L) coupled with high KH2PO4 and K2HPO4 content (0.056 and 0.131 g/L, respectively) and a low concentration of NaNO3 (0.075 g/L) drastically induced the synthesis of lipids. In the case of Desmodesmus sp. UFPS021, the protein content was increased using high sodium acetate (2 g/L), high KH2PO4 and K2HPO4 content (0.056 and 0.131 g/L, respectively), and high NaNO3 concentration (0.25 g/L). These results demonstrate that the correct adjustment of the C/N/P ratio can enhance the capacity of high-mountain strains of algae to produce high concentrations of carbohydrates, proteins, and lipids.
Collapse
|
13
|
Kumar R, Hegde AS, Sharma K, Parmar P, Srivatsan V. Microalgae as a sustainable source of edible proteins and bioactive peptides – Current trends and future prospects. Food Res Int 2022; 157:111338. [DOI: 10.1016/j.foodres.2022.111338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/23/2022]
|
14
|
do Carmo Cesário C, Soares J, Cossolin JFS, Almeida AVM, Bermudez Sierra JJ, de Oliveira Leite M, Nunes MC, Serrão JE, Martins MA, Dos Reis Coimbra JS. Biochemical and morphological characterization of freshwater microalga Tetradesmus obliquus (Chlorophyta: Chlorophyceae). PROTOPLASMA 2022; 259:937-948. [PMID: 34643788 DOI: 10.1007/s00709-021-01712-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Tetradesmus is a microalgal genus with biotechnological potential due to its rapid production of biomass, which is plenty in proteins, carbohydrates, lipids, and bioactives. However, its morphology and physiology need to be determined to guide better research to optimize the species cultivation and biocompounds processing. Thus, this study describes the biochemistry and morphology of the strain Tetradesmus obliquus BR003, isolated from a sample of freshwater reservoirs in a Brazilian municipality. In the T. obliquus BR003 dry biomass, we identified 61.6% unsaturated fatty acids, and 3.4% saturated fatty acids. Regarding other compounds, 28.50 ± 1.47 g soluble proteins/100 g, 0.14 ± 0.009 g carotenoids/100 g, 0.76 ± 0.013 g chlorophyll a/100 g, and 0.42 ± 0.015 g chlorophyll b/100 g with a chlorophyll a/b ratio of 1.8 were detected. The main chemical elements found were S, Mg, and P. The cells of BR003 were elliptically curved at the ends and without appendages. Histochemical tests showed carbohydrates distributed in the cytoplasm and pyrenoids, some lipid droplets, and proteins. The cytoplasm is rich in vacuoles, rough endoplasmic reticulum, mitochondria, and chloroplasts. The nucleus has a predominance of decondensed chromatin, and the cell wall has three layers. Chloroplasts have many starch granules and may be associated with a spherical central pyrenoid. To the best of our knowledge, this was the first biochemical description combined with ultrastructural morphological characterization of the strain T. obliquus BR003, grown under standard conditions, to demonstrate specific characteristics of the species.
Collapse
Affiliation(s)
| | - Jimmy Soares
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | | | | | | - Maria Clara Nunes
- Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, Brazil
| | - José Eduardo Serrão
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Brazil.
| | - Marcio Arêdes Martins
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Brazil
| | | |
Collapse
|
15
|
O’Connor J, Garcia-Vaquero M, Meaney S, Tiwari BK. Bioactive Peptides from Algae: Traditional and Novel Generation Strategies, Structure-Function Relationships, and Bioinformatics as Predictive Tools for Bioactivity. Mar Drugs 2022; 20:md20050317. [PMID: 35621968 PMCID: PMC9145204 DOI: 10.3390/md20050317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/27/2023] Open
Abstract
Over the last decade, algae have been explored as alternative and sustainable protein sources for a balanced diet and more recently, as a potential source of algal-derived bioactive peptides with potential health benefits. This review will focus on the emerging processes for the generation and isolation of bioactive peptides or cryptides from algae, including: (1) pre-treatments of algae for the extraction of protein by physical and biochemical methods; and (2) methods for the generation of bioactive including enzymatic hydrolysis and other emerging methods. To date, the main biological properties of the peptides identified from algae, including anti-hypertensive, antioxidant and anti-proliferative/cytotoxic effects (for this review, anti-proliferative/cytotoxic will be referred to by the term anti-cancer), assayed in vitro and/or in vivo, will also be summarized emphasizing the structure–function relationship and mechanism of action of these peptides. Moreover, the use of in silico methods, such as quantitative structural activity relationships (QSAR) and molecular docking for the identification of specific peptides of bioactive interest from hydrolysates will be described in detail together with the main challenges and opportunities to exploit algae as a source of bioactive peptides.
Collapse
Affiliation(s)
- Jack O’Connor
- School of Biological & Health Sciences, Technological University Dublin, Dublin 2, Ireland; (J.O.); (S.M.)
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland;
| | - Marco Garcia-Vaquero
- Section of Food and Nutrition, School Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
- Correspondence: ; Tel.: +353-(01)-716-2513
| | - Steve Meaney
- School of Biological & Health Sciences, Technological University Dublin, Dublin 2, Ireland; (J.O.); (S.M.)
| | - Brijesh Kumar Tiwari
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland;
| |
Collapse
|
16
|
de Carvalho Silvello MA, Severo Gonçalves I, Patrícia Held Azambuja S, Silva Costa S, Garcia Pereira Silva P, Oliveira Santos L, Goldbeck R. Microalgae-based carbohydrates: A green innovative source of bioenergy. BIORESOURCE TECHNOLOGY 2022; 344:126304. [PMID: 34752879 DOI: 10.1016/j.biortech.2021.126304] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Microalgae contribute significantly to the global carbon cycle through photosynthesis. Given their ability to efficiently convert solar energy and atmospheric carbon dioxide into chemical compounds, such as carbohydrates, and generate oxygen during the process, microalgae represent an excellent and feasible carbohydrate bioresource. Microalgae-based biofuels are technically viable and, delineate a green and innovative field of opportunity for bioenergy exploitation. Microalgal polysaccharides are one of the most versatile groups for biotechnological applications and its content can be increased by manipulating cultivation conditions. Microalgal carbohydrates can be used to produce a variety of biofuels, including bioethanol, biobutanol, biomethane, and biohydrogen. This review provides an overview of microalgal carbohydrates, focusing on their use as feedstock for biofuel production, highlighting the carbohydrate metabolism and approaches for their enhancement. Moreover, biofuels produced from microalgal carbohydrate are showed, in addition to a new bibliometric study of current literature on microalgal carbohydrates and their use.
Collapse
Affiliation(s)
- Maria Augusta de Carvalho Silvello
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo 13083-862, Brazil
| | - Igor Severo Gonçalves
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo 13083-862, Brazil
| | - Suéllen Patrícia Held Azambuja
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo 13083-862, Brazil
| | - Sharlene Silva Costa
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil
| | - Pedro Garcia Pereira Silva
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil
| | - Lucielen Oliveira Santos
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil
| | - Rosana Goldbeck
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo 13083-862, Brazil.
| |
Collapse
|
17
|
An efficient protein isolation process for use in Limnospira maxima: A biorefinery approach. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Silva METD, Leal MA, Resende MDO, Martins MA, Coimbra JSDR. Scenedesmus obliquus protein concentrate: A sustainable alternative emulsifier for the food industry. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
de Lima Barizão AC, de Oliveira JP, Gonçalves RF, Cassini ST. Nanomagnetic approach applied to microalgae biomass harvesting: advances, gaps, and perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44795-44811. [PMID: 34244940 DOI: 10.1007/s11356-021-15260-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Microalgae biomass is a versatile option for a myriad of purposes, as it does not require farmable land for cultivation and due of its high CO2 fixation efficiency during growth. However, biomass harvesting is considered a bottleneck in the process because of its high cost. Magnetic harvesting is a promising method on account of its low cost, high harvesting speed, and efficiency, which can be used to improve the results of other harvesting methods. Here, we present the state of the art of the magnetic harvesting method. Detailed approaches involving different nanomaterials are described, including types, route of synthesis, and functionalization, variables that interfere with harvesting, and recycling methods of nanoparticles and medium. In addition to discussing the overall perspectives of the method, we provide a guideline for future research.
Collapse
Affiliation(s)
- Ana Carolina de Lima Barizão
- Department of Environmental Engineering, Federal University of Espírito Santo, Fernando Ferrari avenue, 514 - Goiabeiras, Vitória, ES, 29075-910, Brazil
| | - Jairo Pinto de Oliveira
- Department of Morphology, Federal University of Espírito Santo, Maruípe avenue, Vitória, ES, 29053-360, Brazil
| | - Ricardo Franci Gonçalves
- Department of Environmental Engineering, Federal University of Espírito Santo, Fernando Ferrari avenue, 514 - Goiabeiras, Vitória, ES, 29075-910, Brazil
| | - Sérvio Túlio Cassini
- Department of Environmental Engineering, Federal University of Espírito Santo, Fernando Ferrari avenue, 514 - Goiabeiras, Vitória, ES, 29075-910, Brazil.
| |
Collapse
|
20
|
Amorim ML, Soares J, Vieira BB, Leite MDO, Rocha DN, Aleixo PE, Falconí JHH, Xavier Júnior MDL, Albino LFT, Martins MA. Pilot-scale biorefining of Scenedesmus obliquus for the production of lipids and proteins. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Vieira BB, Soares J, Amorim ML, Bittencourt PVQ, de Cássia Superbi R, de Oliveira EB, dos Reis Coimbra JS, Martins MA. Optimized extraction of neutral carbohydrates, crude lipids and photosynthetic pigments from the wet biomass of the microalga Scenedesmus obliquus BR003. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Prospects of Microalgae for Biomaterial Production and Environmental Applications at Biorefineries. SUSTAINABILITY 2021. [DOI: 10.3390/su13063063] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microalgae are increasingly viewed as renewable biological resources for a wide range of chemical compounds that can be used as or transformed into biomaterials through biorefining to foster the bioeconomy of the future. Besides the well-established biofuel potential of microalgae, key microalgal bioactive compounds, such as lipids, proteins, polysaccharides, pigments, vitamins, and polyphenols, possess a wide range of biomedical and nutritional attributes. Hence, microalgae can find value-added applications in the nutraceutical, pharmaceutical, cosmetics, personal care, animal food, and agricultural industries. Microalgal biomass can be processed into biomaterials for use in dyes, paints, bioplastics, biopolymers, and nanoparticles, or as hydrochar and biochar in solid fuel cells and soil amendments. Equally important is the use of microalgae in environmental applications, where they can serve in heavy metal bioremediation, wastewater treatment, and carbon sequestration thanks to their nutrient uptake and adsorptive properties. The present article provides a comprehensive review of microalgae specifically focused on biomaterial production and environmental applications in an effort to assess their current status and spur further deployment into the commercial arena.
Collapse
|
23
|
Bertsch P, Böcker L, Mathys A, Fischer P. Proteins from microalgae for the stabilization of fluid interfaces, emulsions, and foams. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Amorim ML, Soares J, Coimbra JSDR, Leite MDO, Albino LFT, Martins MA. Microalgae proteins: production, separation, isolation, quantification, and application in food and feed. Crit Rev Food Sci Nutr 2020; 61:1976-2002. [PMID: 32462889 DOI: 10.1080/10408398.2020.1768046] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many countries have been experienced an increase in protein consumption due to the population growth and adoption of protein-rich dietaries. Unfortunately, conventional-based protein agroindustry is associated with environmental impacts that might aggravate as the humankind increase. Thus, it is important to screen for novel protein sources that are environmentally friendly. Microalgae farming is a promising alternative to couple the anthropic emissions with the production of food and feed. Some microalgae show protein contents two times higher than conventional protein sources. The use of whole microalgae biomass as a protein source in food and feed is simple and well-established. Conversely, the production of microalgae protein supplements and isolates requires the development of feasible and robust processes able to fractionate the microalgae biomass in different value-added products. Since most of the proteins are inside the microalgae cells, several techniques of disruption have been proposed to increase the efficiency to extract them. After the disruption of the microalgae cells, the proteins can be extracted, concentrated, isolated or purified allowing the development of different products. This critical review addresses the current state of the production of microalgae proteins for multifarious applications, and possibilities to concatenate the production of proteins and advanced biofuels.
Collapse
Affiliation(s)
- Matheus Lopes Amorim
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Jimmy Soares
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | | | | - Marcio Arêdes Martins
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|