1
|
Zhang Y, Li C, Zhu X, Angelidaki I. Effect of Stepwise Exposure to High-Level Erythromycin on Anaerobic Digestion. Molecules 2024; 29:3489. [PMID: 39124894 PMCID: PMC11313690 DOI: 10.3390/molecules29153489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
High-level erythromycin (ERY) fermentation wastewater will pose serious threats to lake environments. Anaerobic digestion (AD) has advantages in treating high-level antibiotic wastewater. However, the fate of antibiotic resistance genes (ARGs) and microbial communities in AD after stepwise exposure to high-level ERY remains unclear. In this study, an AD reactor was first exposed to 0, 5, 10, 50, 100 and 200 mg/L ERY and then re-exposed to 0, 50, 200 and 500 mg/L ERY to investigate the effect of ERY on AD. The results show that AD could adapt to the presence of high-level ERY (500 mg/L) and could maintain efficient CH4 production after domestication with low-level ERY (50 mg/L). The AD process could achieve higher removal of ERY (>94%), regardless of the initial ERY concentration. ErmB and mefA, conferring resistance through target alteration and efflux pumps, respectively, were dominant in the AD process. The first exposure to ERY stimulated an increase in the total ARG abundance, while the AD process seemed to discourage ARG maintenance following re-exposure to ERY. ERY inhibited the process of acetoclastic methanogenesis, but strengthened the process of hydrogenotrophic methanogenesis. This work provides useful information for treating high-level ERY fermentation wastewater by the AD process.
Collapse
Affiliation(s)
- Yanxiang Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China;
| | - Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China;
| | - Xinyu Zhu
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark;
| |
Collapse
|
2
|
Iltchenco J, Smiderle MD, Gaio J, Magrini FE, Paesi S. Metataxonomic Studies to Evaluate the Beneficial Effect of Enzymatic Pretreatment on the Anaerobic Digestion of Waste Generated in Turkey Farming. Curr Microbiol 2024; 81:255. [PMID: 38955830 DOI: 10.1007/s00284-024-03787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Turkey litter waste is lignocellulosic and keratinous, requiring prior enzymatic treatment to facilitate fiber hydrolysis and utilization by microorganisms in anaerobic digestion (AD) process. The understanding of the performance of microorganisms in AD can be facilitated through molecular biology and bioinformatics tools. This study aimed to determine the taxonomic profile and functional prediction of microbial communities in the AD of turkey litter waste subjected to enzymatic pretreatment and correlate it with operational parameters. The tests involved the use of turkey litter (T) at 25 g L-1 of volatile solids, a granular inoculum (S) (10% m/v), and the addition of cellulase (C), and pectinase (P) enzymes at four concentrations. The use of enzymes increased methane production by 19% (turkey litter, inoculum, and cellulase-TSC4) and 15% (turkey litter, inoculum, and enzymatic pectinase-TSP4) compared to the control (turkey litter and inoculum-TS), being more effective in TSC4 (667.52 mLCH4), where there was consumption of acetic, butyric, and propionic acids. The pectinase assay (TSP4) showed a methane production of 648 mLCH4 and there was the accumulation of metabolites. Cellulolytic microorganisms Bacteroides, Ruminofilibacter, Lachnospiraceae, Ruminococcaceae, and Methanosaeta were favored in TSC4. In TSP4, the predominant genus was Macellibacteroides and Methanosarcina, and genes involved in methylotrophic methanogenesis were also found (mtaB, mtmB, and mtbB). Enzymes involved in hydrogenotrophic methanogenesis were identified in both assays (TSC4 and TSP4). Molecular tools helped to understand the metabolic routes involved in AD with enzymatic treatment, allowing the elaboration of strategies to improve the sustainable degradation of turkey litter waste.
Collapse
Affiliation(s)
- Janaina Iltchenco
- Molecular Diagnostic Laboratory (LDIM), University of Caxias Do Sul, Caxias do Sul, Rio Grande do Sul, 95070-560, Brazil
| | - Mariana Dalsoto Smiderle
- Molecular Diagnostic Laboratory (LDIM), University of Caxias Do Sul, Caxias do Sul, Rio Grande do Sul, 95070-560, Brazil
| | - Juliano Gaio
- Molecular Diagnostic Laboratory (LDIM), University of Caxias Do Sul, Caxias do Sul, Rio Grande do Sul, 95070-560, Brazil
| | - Flaviane Eva Magrini
- Molecular Diagnostic Laboratory (LDIM), University of Caxias Do Sul, Caxias do Sul, Rio Grande do Sul, 95070-560, Brazil
| | - Suelen Paesi
- Molecular Diagnostic Laboratory (LDIM), University of Caxias Do Sul, Caxias do Sul, Rio Grande do Sul, 95070-560, Brazil.
| |
Collapse
|
3
|
Zhuravleva EA, Shekhurdina SV, Laikova A, Kotova IB, Loiko NG, Popova NM, Kriukov E, Kovalev AA, Kovalev DA, Katraeva IV, Vivekanand V, Awasthi MK, Litti YV. Enhanced thermophilic high-solids anaerobic digestion of organic fraction of municipal solid waste with spatial separation from conductive materials in a single reactor volume. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121434. [PMID: 38861886 DOI: 10.1016/j.jenvman.2024.121434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Despite benefits such as lower water and working volume requirements, thermophilic high solids anaerobic digestion (THSAD) often fails due to the rapid build-up of volatile fatty acids (VFAs) and the associated drop in pH. Use of conductive materials (CM) can promote THSAD through stimulation of direct interspecies electron transfer (DIET), while the need for their constant dosing due to poor separation from effluent impairs economic feasibility. This study used an approach of spatially separating magnetite and granular activated carbon (GAC) from the organic fraction of municipal solid waste (OFMSW) in a single reactor for THSAD. GAC and magnetite addition could both mitigate the severe inhibition of methanogenesis after VFAs build-up to ∼28-30 g/L, while negligible methane production was observed in the control group. The highest methane yield (286 mL CH4/g volatile solids (VS)) was achieved in magnetite-added reactors, while the highest maximum CH4 production rates (26.38 mL CH4/g VS/d) and lowest lag-phase (2.83 days) were obtained in GAC-added reactors. The enrichment of GAC and magnetite biofilms with various syntrophic and potentially electroactive microbial groups (Ruminiclostridium 1, Clostridia MBA03, Defluviitoga, Lentimicrobiaceae) in different relative abundances indicates the existence of specific preferences of these groups for the nature of CM. According to predicted basic metabolic functions, CM can enhance cellular processes and signals, lipid transport and metabolism, and methane metabolism, resulting in improved methane production. Rearrangement of metabolic pathways, formation of pili-like structures, enrichment of biofilms with electroactive groups and a significant improvement in THSAD performance was attributed to the enhancement of the DIET pathway. Promising results obtained in this work due to the spatial separation of the bulk OFMSW and CM can be useful for modeling larger-scale THSAD systems with better recovery of CM and cost-effectiveness.
Collapse
Affiliation(s)
- Elena A Zhuravleva
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2 117312 Moscow, Russia.
| | - Svetlana V Shekhurdina
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2 117312 Moscow, Russia.
| | - Aleksandra Laikova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2 117312 Moscow, Russia.
| | - Irina B Kotova
- Department of Biology, Lomonosov Moscow State University, Vorob'jovy gory, 119899 Moscow, Russia.
| | - Natalia G Loiko
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2 117312 Moscow, Russia.
| | - Nadezhda M Popova
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 31, bld.4, Leninsky prospect, 119071 Moscow, Russia.
| | - Emil Kriukov
- Sechenov First Moscow State Medical University, 8-2 Trubetskaya str. 119435 Moscow, Russia.
| | - Andrey A Kovalev
- Federal Scientific Agroengineering Center VIM, 1st Institutsky proezd, 5,109428 Moscow, Russia.
| | - Dmitriy A Kovalev
- Federal Scientific Agroengineering Center VIM, 1st Institutsky proezd, 5,109428 Moscow, Russia.
| | - Inna V Katraeva
- Department of Water Supply, Sanitation, Engineering Ecology and Chemistry, Nizhny Novgorod State University of Architecture and Civil Engineering, Nizhny Novgorod, 603000, Russia.
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environmental, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi, 71200, China.
| | - Yuriy V Litti
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2 117312 Moscow, Russia.
| |
Collapse
|
4
|
Yang J, Chen R, Zhang Q, Zhang L, Li Q, Zhang Z, Wang Y, Qu B. Green and chemical-free pretreatment of corn straw using cold isostatic pressure for methane production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165442. [PMID: 37442465 DOI: 10.1016/j.scitotenv.2023.165442] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/19/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
In this study, the effect of cold isostatic pressure (CIP) pretreatment on the physicochemical properties and subsequent anaerobic digestion (AD) performance of corn straw (CS) was explored. The CS was subjected to CIP pretreatment by pressures of 200, 400 and 600 MPa, respectively, while AD was carried out at medium temperature (35 ± 2 °C). The results showed that CIP pretreatment disrupted the dense structure of the CS and altered the crystallinity index and surface hydrophobicity of the CS, thereby affecting the AD process. The presence of CIP pretreatment increased the initial reducing sugar concentration by 0.11-0.27 g/L and increased the maximum volatile fatty acids content by 112.82-436.64 mg/L, which facilitated the process of acidification and hydrolysis of the AD. It was also observed that the CIP pretreatment maintained the pH in the range of 6.37-7.30, maintaining the stability of the overall system. Moreover, the cumulative methane production in the CIP pretreatment group increased by 27.17 %-64.90 % compared to the control group. Analysis of the microbial results showed that CIP pretreatment increased the abundance of cellulose degrading bacteria Ruminofilibacter from 21.50 % to 27.53 % and acetoclastic methanogen Methanosaeta from 45.48 % to 56.92 %, thus facilitating the hydrolysis and methanogenic stages. The energy conversion analysis showed that CIP is a green and non-polluting pretreatment strategy for the efficient AD of CS to methane.
Collapse
Affiliation(s)
- Jiancheng Yang
- College of Art and Science, Northeast Agr Univ, Harbin 150030, People's Republic of China
| | - Ruijie Chen
- College of Art and Science, Northeast Agr Univ, Harbin 150030, People's Republic of China
| | - Quanguo Zhang
- Huanghe S&T Univ, Inst Agr Engn, Zhengzhou 450006, People's Republic of China; Henan Agr Univ, Key Lab New Mat & Facil Rural Renewable Energy, MOA China, Zhengzhou 450002, People's Republic of China
| | - Linhai Zhang
- Taiyuan Donglong Machinery Co., Ltd., Taiyuan 030013, People's Republic of China
| | - Qichen Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Zhiyun Zhang
- College of Animal Medicine, Northeast Agr Univ, Harbin 150030, People's Republic of China
| | - Yuxin Wang
- College of Art and Science, Northeast Agr Univ, Harbin 150030, People's Republic of China
| | - Bin Qu
- College of Art and Science, Northeast Agr Univ, Harbin 150030, People's Republic of China.
| |
Collapse
|
5
|
Koga T, Ishizu M, Watanabe K, Miyamoto H, Oshiro M, Sakai K, Tashiro Y. Dilution rates and their transition modes influence organic acid productivity and bacterial community structure on continuous meta-fermentation using complex microorganisms. J Biosci Bioeng 2023; 136:391-399. [PMID: 37735063 DOI: 10.1016/j.jbiosc.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
We investigated the effect of dilution rates (D) (0.05, 0.15, and 0.4 h-1) and its transition mode strategies (constant, up, and down modes) on organic acid productivity and bacterial community structure on continuous meta-fermentation using complex microorganisms. The number of bacterial species decreased with increasing D in the constant mode while up and down modes maintained high and low values, respectively, regardless of the changing D values. Caldibacillus hisashii was the predominant species in all modes at all D values, while other bacterial species, including Anaerosalibacter bizertensis and Clostridium cochlearium were predominant in only certain modes and D values. The highest total organic acid productivity of 3.16 g L-1 h-1 was obtained with 82.2% lactic acid selectivity at D = 0.4 h⁻1 in constant mode. Heterofermentation occurred in the up mode, while the down mode exhibited the maximum butyric acid productivity of 0.348 g L-1 h-1 with 43.8% selectivity at D = 0.05 h-1. The constant, up, and down modes showed the distinct main products of lactic, acetic and formic, and butyric acids, respectively. In this study, we proposed a new parameter of species-specific productivity (SSP) to estimate which species and how much a bacterium quantitatively contributes to the targeted organic acid productivity in continuous meta-fermentation. SSP was determined based on the abundance of functional genes encoding key enzymes from the results of 16S amplicon analysis. In conclusion, D values and their transition modes affect productivity by changing the bacterial community structure, and are a significant factor in establishing a highly productive process in continuous meta-fermentation.
Collapse
Affiliation(s)
- Tomonori Koga
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Mitsuoki Ishizu
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Kota Watanabe
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Hirokuni Miyamoto
- Graduate School of Horticulture, Chiba University, Chiba 271-8510, Japan; Sermas Co., Ltd., Chiba 272-0015, Japan; Japan Eco-science (Nikkan Kagaku) Co. Ltd., Chiba 263-8522, Japan
| | - Mugihito Oshiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Kenji Sakai
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
6
|
Cai Y, Li H, Qu G, Hu Y, Zou H, Zhao S, Cheng M, Chu X, Ren N. Responses of applied voltages on the archaea microbial distribution in sludge digestion. CHEMOSPHERE 2023; 339:139639. [PMID: 37495052 DOI: 10.1016/j.chemosphere.2023.139639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
As the development of urban population led to the increase of domestic water consumption, consequently the generation of surplus sludge (SS) produced increasingly during sewage treatment processes. In order to enhance the SS resource utilization efficiency, an electricity-assisted anaerobic digestion (EAAD) system was employed to examine the alterations in the digestion broth and the characteristics of gas production. Additionally, the response of applied voltages on the distribution of archaeal community near various electrodes within the sludge was explored. The results revealed that the application of high voltages exceeding 3.0 V hindered the CH4 production but stimulated the CO2 generation. Subsequently, both CH4 and CO2 production were impeded by the applied voltages. Furthermore, the increased voltages significantly decreased the abundance of Methanomicrobia, Methanosaeta, and Methanosarcina, which were crucial determinants of CH4 content in biogas. Notably, the excessively high voltages intensities caused the AD process to halt and even inactivate the microbial flora. Interestingly, the distribution characteristics of archaeal community were influenced not only by the voltages intensity but also exhibited variations between the anode and cathode regions. Moreover, as the applied voltage intensified, the discrepancy of responses between the cathode and anode regions became more pronounced, offering novel theoretical and technical foundations for the advancement of electricity-assisted with AD technology.
Collapse
Affiliation(s)
- Yingying Cai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Heng Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; Yunnan Yuntianhua Environmental Protection Technology Co., LTD, Kunming, 650228, Yunnan, China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China.
| | - Yinghui Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Hongmei Zou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Shiqiang Zhao
- Yunnan Shunfeng Erhai Environmental Protection Technology Co., LTD, Dali, 671000, Yunnan, China
| | - Minhua Cheng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Xiaomei Chu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Nanqi Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; School of Environment, Harbin Institute of Technology, Harbin, 150000, Heilongjiang, China
| |
Collapse
|
7
|
Kim S, Lee C, Kim J, Young Kim J. Feasibility of thermal hydrolysis pretreatment to reduce hydraulic retention time of anaerobic digestion of cattle manure. BIORESOURCE TECHNOLOGY 2023:129308. [PMID: 37311528 DOI: 10.1016/j.biortech.2023.129308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
In this study, we investigated the potential of thermal hydrolysis pretreatment (THP) to reduce the hydraulic retention times (HRTs) in the anaerobic digestion (AD) of cattle manure (CM). The AD with THP (THP AD) outperformed the control AD by over 1.4 times in terms of methane yield and volatile solid removal, even under the same HRT conditions. Remarkably, even when the THP AD was operated with an HRT of 13.2 d, it performed better than the control AD operated with an HRT of 36.0 d. In THP AD, there was a shift in the dominant archaeal genus responsible for methane generation from Methanogranum (at HRT of 36.0 - 13.2 d) to Methanosaeta (at HRT of 8.0 d). However, decreasing HRT, and applying THP resulted in reduced stability, accompanied by increased inhibitory compounds, and changes in the microbial community. Further confirmation is required to assess the long-term stability of THP AD.
Collapse
Affiliation(s)
- Seunghwan Kim
- Department of Civil & Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Changmin Lee
- Department of Civil & Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junhyeon Kim
- Department of Civil & Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jae Young Kim
- Department of Civil & Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
8
|
Yang S, Luo F, Yan J, Zhang T, Xian Z, Huang W, Zhang H, Cao Y, Huang L. Biogas production of food waste with in-situ sulfide control under high organic loading in two-stage anaerobic digestion process: Strategy and response of microbial community. BIORESOURCE TECHNOLOGY 2023; 373:128712. [PMID: 36758645 DOI: 10.1016/j.biortech.2023.128712] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
A two-stage anaerobic digestion process utilizing food waste was investigated in this study, without any additive and co-digestion. Solid content, temperature and pH value were key controlling factors for hydrolysis, which results the optimized food waste hydrolysate with COD/VSfood waste of 2.67. Efficient biogas production was maintained in long-term operation (>150 d) without any additive, and methane production yields up to 699.7 mL·gVS-1·d-1 was achieved under organic loading rate (OLR) of 31.0 gVS·d-1. Methane production can be recovered (70.4 %) after temperature shock within 30 days. This study confirmed the possibility to establish two-stage food waste anaerobic digestion system under high organic load. pH, OLR, and temperature are key factors to maintain stable biogas production, while pH control was performed as a in situ sulfide control technology (75.8 % sulfide reduction). This study provides practical strategies for food waste utilization and decreasing carbon footprint.
Collapse
Affiliation(s)
- Siman Yang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Fan Luo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality Security and Protection in Pearl River Delta, Ministry of Education, Guangzhou 510006, PR China.
| | - Tianlang Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Ziyan Xian
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Weiyao Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality Security and Protection in Pearl River Delta, Ministry of Education, Guangzhou 510006, PR China
| | - Yongjian Cao
- Shenzhen Leoking Environmental Group Company Limited, 518117 Shenzhen, PR China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| |
Collapse
|
9
|
Wang Y, Lê Cao KA. PLSDA-batch: a multivariate framework to correct for batch effects in microbiome data. Brief Bioinform 2023; 24:bbac622. [PMID: 36653900 PMCID: PMC10025448 DOI: 10.1093/bib/bbac622] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 01/20/2023] Open
Abstract
Microbial communities are highly dynamic and sensitive to changes in the environment. Thus, microbiome data are highly susceptible to batch effects, defined as sources of unwanted variation that are not related to and obscure any factors of interest. Existing batch effect correction methods have been primarily developed for gene expression data. As such, they do not consider the inherent characteristics of microbiome data, including zero inflation, overdispersion and correlation between variables. We introduce new multivariate and non-parametric batch effect correction methods based on Partial Least Squares Discriminant Analysis (PLSDA). PLSDA-batch first estimates treatment and batch variation with latent components, then subtracts batch-associated components from the data. The resulting batch-effect-corrected data can then be input in any downstream statistical analysis. Two variants are proposed to handle unbalanced batch x treatment designs and to avoid overfitting when estimating the components via variable selection. We compare our approaches with popular methods managing batch effects, namely, removeBatchEffect, ComBat and Surrogate Variable Analysis, in simulated and three case studies using various visual and numerical assessments. We show that our three methods lead to competitive performance in removing batch variation while preserving treatment variation, especially for unbalanced batch $\times $ treatment designs. Our downstream analyses show selections of biologically relevant taxa. This work demonstrates that batch effect correction methods can improve microbiome research outputs. Reproducible code and vignettes are available on GitHub.
Collapse
Affiliation(s)
- Yiwen Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 97 Buxin Rd, Shenzhen, 518000, Guangdong, China
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, 30 Royal Parade, Melbourne, 3052, VIC, Australia
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, 30 Royal Parade, Melbourne, 3052, VIC, Australia
| |
Collapse
|
10
|
Sun H, Liao C, Lu G, Zheng Y, Cheng Q, Xie Y, Wang C, Chen C, Li P. Role of Lactiplantibacillus paraplantarum during anaerobic storage of ear-removed corn on biogas production. BIORESOURCE TECHNOLOGY 2022; 364:128061. [PMID: 36195220 DOI: 10.1016/j.biortech.2022.128061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
To optimize the volatile fatty acid production for anaerobic fermentation, the ear-removed corn was ensiled without (control) or with Lactiplantibacillus plantarum (LP), Lacticaseibacillus paracasei (LC) and L. paraplantarum (LpP). Inoculation of LpP increased acetic acid content by 40%, and decreased butyric acid content by 38% in relative to control. Moreover, inoculation of LpP decreased the bacterial alpha diversity indices, while inherent species of Lentilactobacillus buchneri and L. hilgardii dominated the anaerobic fermentation. In particular, inoculation of LpP restricted the growth of yeasts and production of propionic acid at the early stage of storage, but continuously stimulated anaerobic fermentation, resulting in a higher maximal cumulative gas emissions of methane (by about 20 %) than that of LP and LC. Therefore, inoculation of LpP during anaerobic storage was favorable to produce intermediate metabolites (acetic acid) for subsequent biogas production of ear-removed corn.
Collapse
Affiliation(s)
- Hong Sun
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Chaosheng Liao
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Guangrou Lu
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yulong Zheng
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Qiming Cheng
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yixiao Xie
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Chunmei Wang
- Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Ping Li
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
11
|
Metaproteomics reveals enzymatic strategies deployed by anaerobic microbiomes to maintain lignocellulose deconstruction at high solids. Nat Commun 2022; 13:3870. [PMID: 35790765 PMCID: PMC9256739 DOI: 10.1038/s41467-022-31433-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/16/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractEconomically viable production of cellulosic biofuels requires operation at high solids loadings—on the order of 15 wt%. To this end we characterize Nature’s ability to deconstruct and utilize mid-season switchgrass at increasing solid loadings using an anaerobic methanogenic microbiome. This community exhibits undiminished fractional carbohydrate solubilization at loadings ranging from 30 g/L to 150 g/L. Metaproteomic interrogation reveals marked increases in the abundance of specific carbohydrate-active enzyme classes. Significant enrichment of auxiliary activity family 6 enzymes at higher solids suggests a role for Fenton chemistry. Stress-response proteins accompanying these reactions are similarly upregulated at higher solids, as are β-glucosidases, xylosidases, carbohydrate-debranching, and pectin-acting enzymes—all of which indicate that removal of deconstruction inhibitors is important for observed undiminished solubilization. Our work provides insights into the mechanisms by which natural microbiomes effectively deconstruct and utilize lignocellulose at high solids loadings, informing the future development of defined cultures for efficient bioconversion.
Collapse
|
12
|
Zhang D, Wei Y, Wu S, Zhou L. Consolidation of hydrogenotrophic methanogenesis by sulfidated nanoscale zero-valent iron in the anaerobic digestion of food waste upon ammonia stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153531. [PMID: 35104513 DOI: 10.1016/j.scitotenv.2022.153531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The feasibility of adding sulfidated nanoscale zero-valent iron (S-nZVI) into anaerobic systems to improve anaerobic digestion of food waste (FW) under ammonia stress was evaluated in this study. The addition of S-nZVI improved the methane production compared to nanoscale zero-valent iron (nZVI), indicating that sulfidation significantly reinforced the enhancement effect of nZVI in consolidating the hydrogenotrophic methanogenesis. The promoted methanogenic performance was associated with chemical reaction and variances of microbial community induced by S-nZVI. With the characteristics of generation of Fe2+ and slow-release of H2, S-nZVI made the anaerobic system respond positively in facilitating extracellular polymeric substances secretion and optimizing the microbial community structure. Moreover, microbial community analysis showed that S-nZVI addition enriched the species related to biohydrogen production (e.g., Prevotella) and ammonia-tolerant hydrogenotrophic methanogenesis (e.g., Methanoculleus), possibly enhancing the hydrogenotrophic methanogenesis pathway to accelerate methane production. Therefore, adding S-nZVI into the anaerobic systems might propose a feasible engineering strategy to improve the methanogenic performance of the anaerobic digestion of FW upon ammonia stress.
Collapse
Affiliation(s)
- Dejin Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yidan Wei
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shuyue Wu
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
13
|
Ketsub N, Whatmore P, Abbasabadi M, Doherty WOS, Kaparaju P, O'Hara IM, Zhang Z. Effects of pretreatment methods on biomethane production kinetics and microbial community by solid state anaerobic digestion of sugarcane trash. BIORESOURCE TECHNOLOGY 2022; 352:127112. [PMID: 35381335 DOI: 10.1016/j.biortech.2022.127112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Solid state anaerobic digestion (SS-AD) of lignocellulose is effective in improving biomethane productivity but is limited by low biomass digestibility and lack of substrate-specific working microorganisms. In this study, the effects of different pretreatment methods on biomethane production by SS-AD of sugarcane trash were studied. The biomethane production, fitted to a modified Gompertz's model, predicted a maximum methane yield of 214.2 L/kg volatile solids (VS) and productivity of 6.9 L/kg VS/day from KOH-pretreated trash, respectively. Microbial community analysis showed that bacterial community was significantly associated with volatile acids and pretreatment types while archaeal community was significantly associated with methane yield. Microbial community dynamics was revealed in SS-AD. Main genera related to pretreatment method were identified and discussed. This study generated important information on SS-AD of lignocellulosic biomass pretreated by different methods, which is useful for developing bioaugmentation strategies to improve biomethane production by SS-AD.
Collapse
Affiliation(s)
- Napong Ketsub
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Paul Whatmore
- Bioinformatics Research Officer, Division of Research & Innovation, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Mahsa Abbasabadi
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia; School of Biology and Environmental Sciences, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - William O S Doherty
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Prasad Kaparaju
- School of Engineering and Built Environment, Griffith University, Brisbane, Queensland 4111, Australia
| | - Ian M O'Hara
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia; ARC Centre of Excellence in Synthetic Biology, QUT, Brisbane, QLD 4000, Australia
| | - Zhanying Zhang
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia; ARC Centre of Excellence in Synthetic Biology, QUT, Brisbane, QLD 4000, Australia.
| |
Collapse
|
14
|
Wei Y, Gao Y, Yuan H, Chang Y, Li X. Effects of organic loading rate and pretreatments on digestion performance of corn stover and chicken manure in completely stirred tank reactor (CSTR). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152499. [PMID: 34968582 DOI: 10.1016/j.scitotenv.2021.152499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The performance, system stability, and microbial community response in anaerobic co-digestion (AcoD) of corn stover (CS) and chicken manure (CM) were investigated by running completely stirred tank reactor (CSTR) under controlled organic loading rate (OLR). Prior to anaerobic digestion (AD), potassium hydroxide (KOH) or liquid fraction of digestate (LFD) was applied to pretreat CS, respectively. The results showed that the daily biogas production (DBP) in co-digestion showed a gradual increasing trend with an increase in the OLR from 65 g TS·L-1 to 100 g TS·L-1. The daily methane production per g volatile solids (DMP-VS) in co-digestion increased by 23.0%-27.1%, 18.7%-18.8%, and 17.5%-18.0% at the OLRs of 65, 80, and 100 g TS·L-1, respectively, upon pretreatment with KOH or LFD, as compared to that in co-digestion CSTR without any pretreatment. In addition, all co-digestion CSTRs were operated in stable state. Approximately half of the total carbon in the substrates was recovered in the form of a biogas product, with the carbon mass balance being impacted by the OLR as well as pretreatment. The diversity as well as function of the microbial community varied in response to different OLRs and pretreatment methods. The majority of bacterial genera were strongly correlated with operational parameters. The study indicates that management of OLR and selection of proper pretreatment method could enhance the efficiency and productivity of CS and CM co-digestion in CSTR.
Collapse
Affiliation(s)
- Yufang Wei
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China; State Environmental Protection Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yuan Gao
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Hairong Yuan
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Yanqing Chang
- WELLE Environmental Group Co., Ltd., No. 156, Hanjiang Road, Xinbei District, Changzhou, Jiangsu 213125, PR China
| | - Xiujin Li
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China.
| |
Collapse
|
15
|
Bio-Based Processes for Material and Energy Production from Waste Streams under Acidic Conditions. FERMENTATION 2022. [DOI: 10.3390/fermentation8030115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The revolutionary transformation from petrol-based production to bio-based production is becoming urgent in line with the rapid industrialization, depleting resources, and deterioration of the ecosystem. Bio-based production from waste-streams is offering a sustainable and environmentally friendly solution. It offers several advantages, such as a longer operation period, less competition for microorganisms, higher efficiency, and finally, lower process costs. In the current study, several bio-based products (organic acids, biomethane, biohydrogen, and metal leachates) produced under acidic conditions are reviewed regarding their microbial pathways, processes, and operational conditions. Furthermore, the limitations both in the production process and in the scale-up are evaluated with future recommendations.
Collapse
|
16
|
Isolation and Characterization of a Novel Laccase for Lignin Degradation, LacZ1. Appl Environ Microbiol 2021; 87:e0135521. [PMID: 34524901 DOI: 10.1128/aem.01355-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lignin is a complex natural organic polymer and is one of the primary components of lignocellulose. The efficient utilization of lignocellulose is limited because it is difficult to degrade lignin. In this study, we screened a lacz1 gene fragment encoding laccase from the macrotranscriptome data of a microbial consortium WSC-6, which can efficiently degrade lignocellulose. The reverse transcription-quantitative PCR (RT-qPCR) results demonstrated that the expression level of the lacz1 gene during the peak period of lignocellulose degradation by WSC-6 increased by 30.63 times compared to the initial degradation period. Phylogenetic tree analysis demonstrated that the complete lacz1 gene is derived from a Bacillus sp. and encoded laccase. The corresponding protein, LacZ1, was expressed and purified by Ni-chelating affinity chromatography. The optimum temperature was 75°C, the optimum pH was 4.5, and the highest enzyme activity reached 16.39 U/mg. We found that Cu2+ was an important cofactor needed for LacZ1 to have enzyme activity. The molecular weight distribution of lignin was determined by gel permeation chromatography (GPC), and changes in the lignin structure were determined by 1H nuclear magnetic resonance (1H NMR) spectra. The degradation products of lignin by LacZ1 were determined by gas chromatography and mass spectrometry (GC-MS), and three lignin degradation pathways (the gentian acid pathway, benzoic acid pathway, and protocatechuic acid pathway) were proposed. This study provides insight into the degradation of lignin and new insights into high-temperature bacterial laccase. IMPORTANCE Lignin is a natural aromatic polymer that is not easily degraded, hindering the efficient use of lignocellulose-rich biomass resources, such as straw. Biodegradation is a method of decomposing lignin that has recently received increasing attention. In this study, we screened a gene encoding laccase from the lignocellulose-degrading microbial consortium WSC-6, purified the corresponding protein LacZ1, characterized the enzymatic properties of laccase LacZ1, and speculated that the degradation pathway of LacZ1 degrades lignin. This study identified a new, high-temperature bacterial laccase that can degrade lignin, providing insight into lignin degradation by this laccase.
Collapse
|
17
|
Zhang M, Wang Y. Impact of biochar supported nano zero-valent iron on anaerobic co-digestion of sewage sludge and food waste: Methane production, performance stability and microbial community structure. BIORESOURCE TECHNOLOGY 2021; 340:125715. [PMID: 34391191 DOI: 10.1016/j.biortech.2021.125715] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
This work evaluates the effects of biochar supported nano zero-valent iron (nZVI-BC) on anaerobic co-digestion (co-AD) of sewage sludge and food waste. Kinetic model analysis suggested that nZVI-BC addition significantly increased the methane production potential (R0) and daily methane production rate (Gm) by 42.87% and 49.87%, while the raw biochar only increased R0 and Gm by 5.11% and 6.73%, respectively. Supplementation of higher concentrations of nZVI-BC was not preferable as inhibition of methane productivity was appeared. nZVI-BC addition remarkably improved organics degradation efficiency, as the reduction rate of TCOD, VSS and TSS were increased by 34.93%, 11.44% and 13.96%, respectively. The microbial analysis demonstrated that nZVI-BC facilitated the growth of hydrogentrophic methanogens, while acetotrophic methanogens which can only use acetate as electron donor were restrained. The study demonstrated nZVI-BC can effectively strengthen methanogenesis mainly through the enhancement of DIET between bacteria and methanogens, and the enrichment of hydrogenotrophic methanogens.
Collapse
Affiliation(s)
- Min Zhang
- Department of Landscape Architecture, Center for Ecophronetic Practice Research, College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China
| | - Yuncai Wang
- Department of Landscape Architecture, Center for Ecophronetic Practice Research, College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China.
| |
Collapse
|
18
|
Guo H, Oosterkamp MJ, Tonin F, Hendriks A, Nair R, van Lier JB, de Kreuk M. Reconsidering hydrolysis kinetics for anaerobic digestion of waste activated sludge applying cascade reactors with ultra-short residence times. WATER RESEARCH 2021; 202:117398. [PMID: 34252865 DOI: 10.1016/j.watres.2021.117398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/06/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Hydrolysis is considered to be the rate-limiting step in anaerobic digestion of waste activated sludge (WAS). In this study, an innovative 4 stages cascade anaerobic digestion system was researched to (1) comprehensively clarify whether cascading configuration enhances WAS hydrolysis, and to (2) better understand the governing hydrolysis kinetics in this system. The cascade system consisted of three 2.2 L ultra-short solids retention times (SRT) continuous stirred tank reactors (CSTRs) and one 15.4 L CSTR. The cascade system was compared with a reference conventional CSTR digester (22 L) in terms of process performance, hydrolytic enzyme activities and microbial community dynamics under mesophilic conditions (35 °C). The results showed that the cascade system achieved a high and stable total chemical oxygen demand (tCOD) reduction efficiency of 40-42%, even at 12 days total SRT that corresponded to only 1.2 days SRT each in the first three reactors of the cascade. The reference-CSTR converted only 31% tCOD into biogas and suffered process deterioration at the applied low SRTs. Calculated specific hydrolysis rates in the first reactors of the cascade system were significantly higher compared to the reference-CSTR, especially at the lowest applied SRTs. The activities of several hydrolytic enzymes produced in the different stages revealed that protease, cellulase, amino peptidases, and most of the tested glycosyl-hydrolases had significantly higher activities in the first three small digesters of the cascade system, compared to the reference-CSTR. This increase in hydrolytic enzyme production by far exceeded the increase in specific hydrolysis rate, indicating that hydrolysis was limited by solids-surface availability for enzymatic attack. Correspondingly, high relative abundances of hydrolytic-fermentative bacteria and hydrogenotrophic methanogens as well as the presence of syntrophic bacteria were found in the first three digesters of the cascade system. However, in the fourth reactor, acetoclastic methanogens dominated, similarly as in the reference-CSTR. Overall, the results concluded that using multiple CSTRs that are operated at low SRTs in a cascade mode of operation significantly improved the enzymatic hydrolysis rate and extend in anaerobic WAS digestion. Moreover, the governing hydrolysis kinetics in the cascading reactors were far more complex than the generally assumed simplified first-order kinetics.
Collapse
Affiliation(s)
- Hongxiao Guo
- Section Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands.
| | - Margreet J Oosterkamp
- Section Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Fabio Tonin
- Group Biocatalysis, Department of Biotechnology, Faculty of Applied Science, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Alexander Hendriks
- Royal HaskoningDHV, Laan 1914 No. 35, 3818 EX Amersfoort, The Netherlands
| | - Revathy Nair
- Section Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Jules B van Lier
- Section Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Merle de Kreuk
- Section Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| |
Collapse
|
19
|
Xu C, Su X, Wang J, Zhang F, Shen G, Yuan Y, Yan L, Tang H, Song F, Wang W. Characteristics and functional bacteria in a microbial consortium for rice straw lignin-degrading. BIORESOURCE TECHNOLOGY 2021; 331:125066. [PMID: 33812140 DOI: 10.1016/j.biortech.2021.125066] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
The degradation of lignin is the main rate-limiting step in the bio-pulping of rice straw. A lignin-degrading bacterial consortium LDC, which can efficiently degrade lignin of reed, was screened in the early stage of our laboratory work. In present study, 7-day incubation of LDC can degrade rice straw lignin by 31.18% in mineral salt medium. The communities' structure of different incubation phases varied greatly, in which high abundance (44.78%) of Anaerocolumna was first found. The expression levels of lignin degradation enzyme class II peroxidase (AA2), vanillyl alcohol oxidase (AA4) and 1,4-benzoquinone reductase (AA6) during peak phase (48 h) were significantly up-regulated than initial phase (24 h), increasing by 112%, 165% and 67%, respectively, and 42.86% AA2 was from Thaurea; 100% AA4 was from Clostridium; 62.5% AA6 was from Pseudomonas. These provide microbial resources and data support for the industrialization of rice straw bio-pulping.
Collapse
Affiliation(s)
- Congfeng Xu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, People's Republic of China
| | - Xin Su
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, People's Republic of China
| | - Jinghong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, People's Republic of China
| | - Fangzheng Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, People's Republic of China
| | - Guinan Shen
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, People's Republic of China; Engineering Research Center of Processing and Utilization of Grain By-products, Ministry of Education, Daqing 163319, People's Republic of China
| | - Yuan Yuan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, People's Republic of China; Engineering Research Center of Processing and Utilization of Grain By-products, Ministry of Education, Daqing 163319, People's Republic of China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, People's Republic of China; Engineering Research Center of Processing and Utilization of Grain By-products, Ministry of Education, Daqing 163319, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Fuqiang Song
- College of Life Science, Heilongjiang University, Harbin 150080, People's Republic of China
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, People's Republic of China; Engineering Research Center of Processing and Utilization of Grain By-products, Ministry of Education, Daqing 163319, People's Republic of China.
| |
Collapse
|
20
|
Li Y, Zhao J, Zhang Z. Implementing metatranscriptomics to unveil the mechanism of bioaugmentation adopted in a continuous anaerobic process treating cow manure. BIORESOURCE TECHNOLOGY 2021; 330:124962. [PMID: 33740585 DOI: 10.1016/j.biortech.2021.124962] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate the effect of bioaugmentation on microbial community and function in a continuous anaerobic process treating lignocellulosic cow manure. One reactor (Rb) received bioaugmentation dosage for a certain period (d100-d170) and stopped afterward (d170-d220), while the same applied to the control (Rc) except sterilized bioaugmentation dosage was introduced. Samples were taken on day130, 170 and 220 from both reactors for metatranscriptomic analysis. The results underlined the promotive effect of bioaugmentation on indigenous microorganisms regarding hydrolysis and methanogenesis. Bioaugmentation contributed to the enrichment of Clostridium, Cellvibrio, Cellulomonas, Bacillus, Fibrobacter, resulting in enhanced cellulase activity (Rb: 0.917-1.081; Rc: 0.551-0.677). Moreover, bioaugmentation brought Rb the prosperity of uncultured_ Bathyarchaeia, a prominent archaeal group responsible for the improved methyl-coenzyme M reductase activity, thus accelerated methanogenesis. Unique metabolic pathways (autotrophic carbon fixation and methanogenesis) in uncultured_ Bathyarchaeia broadened the horizon of its fundamental role as acetogens and methanogens in anaerobic digestion.
Collapse
Affiliation(s)
- Yu Li
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Jing Zhao
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Zhenhua Zhang
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|