1
|
Patel RV, Yadav A, Shahi VK. Advances in membrane distillation for wastewater treatment: Innovations, challenges, and sustainable opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178749. [PMID: 40022985 DOI: 10.1016/j.scitotenv.2025.178749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 03/04/2025]
Abstract
Water pollution and the growing demand for zero liquid discharge solutions have driven the development of advanced wastewater treatment technologies. Membrane distillation (MD) is a promising thermal-based process capable of treating high-salinity brines and wastewater. This review provides an in-depth analysis of MD configurations, operating principles, and membrane characteristics while addressing key challenges such as fouling and pore wetting which hinder large-scale implementation. To overcome these limitations, various membrane fabrication and modification strategies, including physical and chemical approaches, have been explored. The integration of MD with other processes (hybrid MD) for wastewater treatment is also examined. A comprehensive discussion on the mechanisms of organic, inorganic, and biological fouling and their impact on MD performance is presented. Additionally, recent advancements in antifouling strategies, including surface modifications, novel materials, and operational optimizations, are reviewed. Furthermore, the review critically analyzes membrane wetting, its governing mechanisms, and mitigation techniques. By summarizing the current challenges and future prospects, this work provides valuable insights into improving MD performance for practical applications. The findings serve as a foundation for further research and technological advancements in the field of wastewater treatment using MD.
Collapse
Affiliation(s)
- Raj Vardhan Patel
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Anshul Yadav
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364002, India; Department of Water Resources Development and Management, Indian Institute of Technology Roorkee, 247667, India.
| | - Vinod Kumar Shahi
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364002, India; Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, 247667, India.
| |
Collapse
|
2
|
Corsino SF, Bruno F, Di Bella G. Nutrients removal in overloaded WWTP by intermittently aerated IFAS: Effects of biofilm carrier and intermittent aeration cycle. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121516. [PMID: 38901318 DOI: 10.1016/j.jenvman.2024.121516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/16/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Updating of the current Urban Waste Water Treatment Directive (91/271/EEC) will demand stricter regulations for nutrients removal. In this frame, wastewater treatment plants (WWTPs) of small-to-medium potential will face new challenges for achieving process intensification. Integrating intermittent aeration (IA) and integrated fixed-film activated sludge (IFAS) technologies could be a promising solution to meet such requirements. This study analyzed how IA cycles affected nutrients removal in IFAS reactors with different biofilm carriers (e.g., plastic and sponge media). The plants responses to different carbon/nitrogen/phosphorous (C/N/P) ratios were evaluated while operating under low sludge retention time (SRT) to simulate overloaded conditions. A short IA cycle (1 h) with an aeration/not aeration ratio of 2:1 enabled high organic carbon and nitrification performances when operating at high C/N/P (11.8/1/1), whereas low denitrification and phosphorous removal yields were obtained because of the short not-aerated phase. Decreasing C/N ratio (8.8/1/1) without changing the IA cycle resulted in nitrification worsening because of the reduced metabolic kinetics of biofilm. Under such load conditions, a higher IA cycle (2 h) was necessary to improve process performance. A longer not-aerated phase was also positive for denitrification and phosphorous removal because of the establishment of anoxic and anaerobic environments within the bulk and inner biofilm layers. Besides, results suggested that sponge carriers offered advantages over plastic ones, enabling a higher biofilm retention capacity, better nutrient removal, as well as robustness and resilience to operating condition changes. This would result in simpler management systems for implementing the IA process, thus reducing process complexity and costs.
Collapse
Affiliation(s)
- Santo Fabio Corsino
- Department of Engineering, University of Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Federica Bruno
- Department of Engineering and Architecture, University of Enna ''Kore'', Cittadella Universitaria, 94100, Enna, Italy
| | - Gaetano Di Bella
- Department of Engineering and Architecture, University of Enna ''Kore'', Cittadella Universitaria, 94100, Enna, Italy.
| |
Collapse
|
3
|
Oberoi AS, Surendra KC, Wu D, Lu H, Wong JWC, Kumar Khanal S. Anaerobic membrane bioreactors for pharmaceutical-laden wastewater treatment: A critical review. BIORESOURCE TECHNOLOGY 2022; 361:127667. [PMID: 35878778 DOI: 10.1016/j.biortech.2022.127667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceuticalsare a diverse group of chemical compounds widely used for prevention and treatment of infectious diseases in both humans and animals. Pharmaceuticals, either in their original or metabolite form, find way into the wastewater treatment plants (WWTPs) from different sources. Recently, anaerobic membrane bioreactors (AnMBR) has received significant research attention for the treatment of pharmaceuticals in various wastewater streams. This review critically examines the behaviour and removal of a wide array of pharmaceuticals in AnMBR with primary focus on their removal efficiencies and mechanisms, critical influencing factors, and the microbial community structures. Subsequently, the inhibitory effects of pharmaceuticals on the performance of AnMBR and membrane fouling are critically discussed. Furthermore, the imperative role of membrane biofouling layer and its components in pharmaceuticals removal is highlighted. Finally, recent advancements in AnMBR configurations for membrane fouling control and enhanced pharmaceuticals removal are systemically discussed.
Collapse
Affiliation(s)
- Akashdeep Singh Oberoi
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawaì'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA; Global Institute for Interdisciplinary Studies, 44600 Kathmandu, Nepal.
| | - Di Wu
- Centre for Environmental and Energy Research, Ghent University Global Campus, Incheon, Republic of Korea.
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China.
| | - Jonathan W C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaì'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
4
|
Raj Deena S, Kumar G, Vickram AS, Rani Singhania R, Dong CD, Rohini K, Anbarasu K, Thanigaivel S, Ponnusamy VK. Efficiency of various biofilm carriers and microbial interactions with substrate in moving bed-biofilm reactor for environmental wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 359:127421. [PMID: 35690237 DOI: 10.1016/j.biortech.2022.127421] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
In a moving bed-biofilm reactor (MBBR), the fluidization efficiency, immobilization of microbial cells, and treatment efficiency are directly influenced by the shape and pores of biofilm carriers. Moreover, the efficacy of bioremediation mainly depends on their interaction interface with microbes and substrate. This review aims to comprehend the role of different carrier properties such as material shapes, pores, and surface area on bioremediation productivity. A porous biofilm carrier with surface ridges containing spherical pores sizes > 1 mm can be ideal for maximum efficacy. It provides diverse environments for cell cultures, develops uneven biofilms, and retains various cell sizes and biomass. Moreover, the thickness of biofilm and controlled scaling shows a significant impact on MBBR performance. Therefore, the effect of these parameters in MBBR is discussed detailed in this review, through which existing literature and technical strategies that focus on the surface area as the primary factor can be critically assessed.
Collapse
Affiliation(s)
- Santhana Raj Deena
- Departemnt of Biotechnology, Saveetha School of Engineering, Saveetha University, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - A S Vickram
- Departemnt of Biotechnology, Saveetha School of Engineering, Saveetha University, India
| | - Reeta Rani Singhania
- PhD Program of Aquatic Science and Technology & Department of Marine Environmental Engineering, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- PhD Program of Aquatic Science and Technology & Department of Marine Environmental Engineering, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City 81157, Taiwan
| | - Karunakaran Rohini
- Unit of Biochemistry, Faculty of Medicine, Centre for Excellence in Biomaterials Engineering (CoEBE), AIMST University, 08100, Bedong, Kedah, Malaysia
| | - K Anbarasu
- Departemnt of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - S Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Vinoth Kumar Ponnusamy
- PhD Program of Aquatic Science and Technology & Department of Marine Environmental Engineering, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City 81157, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, Taiwan; Deparment of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, Taiwan; Department of Chemistry, National Sun Yat-sen University, Kaohsiung City, Taiwan.
| |
Collapse
|
5
|
Arcanjo GS, Dos Santos CR, Cavalcante BF, Moura GDA, Ricci BC, Mounteer AH, Santos LVS, Queiroz LM, Amaral MC. Improving biological removal of pharmaceutical active compounds and estrogenic activity in a mesophilic anaerobic osmotic membrane bioreactor treating municipal sewage. CHEMOSPHERE 2022; 301:134716. [PMID: 35487362 DOI: 10.1016/j.chemosphere.2022.134716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
The contamination of water sources by pharmaceutically active compounds (PhACs) and their effect on aquatic communities and human health have become an environmental concern worldwide. Membrane bioreactors (MBRs) are an alternative to improve biological removal of recalcitrant organic compounds from municipal sewage. Their efficiency can be increased by using high retention membranes such as forward osmosis (FO) and membrane distillation (MD). Thus, this research aimed to evaluate the performance of an anaerobic osmotic MBR coupled with MD (OMBR-MD) in the treatment of municipal sewage containing PhACs and estrogenic activity. A submerged hybrid FO-MD module was integrated into the bioreactor. PhACs removal was higher than 96% due to biological degradation, biosorption and membrane retention. Biological removal of the PhACs was affected by the salinity build-up in the bioreactor, with reduction in biodegradation after 32 d. However, salinity increment had little or no effect on biosorption removal. The anaerobic OMBR-MD removed >99.9% of estrogenic activity, resulting in a distillate with 0.14 ng L-1 E2-eq, after 22 d, and 0.04 ng L-1 E2-eq, after 32 d. OMBR-MD treatment promoted reduction in environmental and human health risks from high to low, except for ketoprofen, which led to medium acute environmental and human health risks. Carcinogenic risks were reduced from unacceptable to negligible, regarding estrogenic activity. Thus, the hybrid anaerobic OMBR-MD demonstrated strong performance in reducing risks, even when human health is considered.
Collapse
Affiliation(s)
- Gemima S Arcanjo
- Department of Environmental Engineering - Universidade Federal da Bahia, 40210-630, Salvador, BA, Brazil; Department of Civil Engineering - Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Carolina R Dos Santos
- Department of Sanitary and Environmental Engineering - Universidade Federal de Minas Gerais, 30270-901, Belo Horizonte, MG, Brazil
| | - Bárbara F Cavalcante
- Pontifícia Universidade Católica de Minas Gerais - Engineering School, Building 03, Rua Dom José Gaspar, 500 - Coração Eucarístico, 30535-901, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriela de A Moura
- Pontifícia Universidade Católica de Minas Gerais - Engineering School, Building 03, Rua Dom José Gaspar, 500 - Coração Eucarístico, 30535-901, Belo Horizonte, Minas Gerais, Brazil
| | - Bárbara C Ricci
- Pontifícia Universidade Católica de Minas Gerais - Engineering School, Building 03, Rua Dom José Gaspar, 500 - Coração Eucarístico, 30535-901, Belo Horizonte, Minas Gerais, Brazil
| | - Ann H Mounteer
- Department of Civil Engineering - Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Lucilaine V S Santos
- Pontifícia Universidade Católica de Minas Gerais - Engineering School, Building 03, Rua Dom José Gaspar, 500 - Coração Eucarístico, 30535-901, Belo Horizonte, Minas Gerais, Brazil
| | - Luciano M Queiroz
- Department of Environmental Engineering - Universidade Federal da Bahia, 40210-630, Salvador, BA, Brazil
| | - Míriam Cs Amaral
- Department of Sanitary and Environmental Engineering - Universidade Federal de Minas Gerais, 30270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
6
|
Dang BT, Nguyen TT, Bui XT, Hao Ngo H, Andrew Lin KY, Tomoaki I, Saunders T, Huynh TN, Ngoc-Dan Cao T, Visvanathan C, Varjani S, Rene ER. Non-submerged attached growth process for domestic wastewater treatment: Influence of media types and internal recirculation ratios. BIORESOURCE TECHNOLOGY 2022; 343:126125. [PMID: 34653623 DOI: 10.1016/j.biortech.2021.126125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
This study is aimed to comprehend the treatment of non-submerged attached growth systems using bio-sponge, bio-cord, and bio-cloth media. Three reactors were set up with internal recirculation ratio of 1 (IR = 1) and similar media surface area. Bio-sponge and bio-cloth reactors showed removal of COD (79 vs. 76%) and NH4+-N (78 vs. 73%). While bio-cord treatment was deteriorated due to time-dependent process. Multiple linear regression revealed that alkalinity governed the formation degree of the anaerobic zone in bio-sponges, partially affecting nitrification. Increasing IR from 1 to 3 caused sloughing of the attached biomass and was positively correlated with effluent nitrite nitrogen concentration, indicating the sensitivity of nitrification to spatial distribution effects. In addition, bio-sponge system obtained superior performance at IR of 2 while bio-cloth one might be also an effective media for wastewater treatment if having good durability.
Collapse
Affiliation(s)
- Bao-Trong Dang
- Ho Chi Minh City University of Technology (HUTECH), 475A Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Viet Nam
| | - Thanh-Tin Nguyen
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea; Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc City, Viet Nam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc City, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Str., District 10, Ho Chi Minh City 700000, Viet Nam.
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Itayama Tomoaki
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Todd Saunders
- Graduate School of Biomedical Science, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Tan-Nhut Huynh
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc City, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Str., District 10, Ho Chi Minh City 700000, Viet Nam
| | - Thanh Ngoc-Dan Cao
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc City, Viet Nam
| | - Chettiyappan Visvanathan
- Department of Energy, Environment and Climate Change, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120, Thailand
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382010, India
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, IHE - Delft, Institute of Water Education, 2601 DA, Delft, The Netherlands
| |
Collapse
|
7
|
Aslam A, Khan SJ, Shahzad HMA. Anaerobic membrane bioreactors (AnMBRs) for municipal wastewater treatment- potential benefits, constraints, and future perspectives: An updated review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149612. [PMID: 34438128 DOI: 10.1016/j.scitotenv.2021.149612] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/11/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
The application of Anaerobic Membrane Bioreactors (AnMBRs) for municipal wastewater treatment has been made sufficiently sustainable for practical implementations. The potential benefits are significant as AnMBRs effectively remove a broad range of contaminants from wastewater for water reuse, degrade organics in wastewater to yield methane-rich biogas for resultant energy production, and concentrate nutrients for subsequent recovery for fertilizer production. However, there still exist some concerns requiring vigilant considerations to make AnMBRs economically and technically viable. This review paper briefly describes process fundamentals and the basic AnMBR configurations and highlights six major factors which obstruct the way to AnMBRs installations affecting their performance for municipal wastewater treatment: (i) organic strength, (ii) membrane fouling, (iii) salinity build-up, (iv) inhibitory substances, (v) temperature, and (vi) membrane stability. This review also covers the energy utilization and energy potential in AnMBRs aiming energy neutrality or positivity of the systems which entails the requirement to further determine the economics of AnMBRs. The implications and related discussions have also been made on future perspectives of the concurrent challenges being faced in AnMBRs operation.
Collapse
Affiliation(s)
- Alia Aslam
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Sher Jamal Khan
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan.
| | - Hafiz Muhammad Aamir Shahzad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| |
Collapse
|
8
|
Vu MT, Nguyen LN, Mofijur M, Johir MAH, Ngo HH, Mahlia TMI, Nghiem LD. Simultaneous nutrient recovery and algal biomass production from anaerobically digested sludge centrate using a membrane photobioreactor. BIORESOURCE TECHNOLOGY 2022; 343:126069. [PMID: 34606926 DOI: 10.1016/j.biortech.2021.126069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
This study aims to evaluate the performance of C. vulgaris microalgae to simultaneously recover nutrients from sludge centrate and produce biomass in a membrane photobioreactor (MPR). Microalgae growth and nutrient removal were evaluated at two different nutrient loading rates (sludge centrate). The results show that C. vulgaris microalgae could thrive in sludge centrate. Nutrient loading has an indiscernible impact on biomass growth and a notable impact on nutrient removal efficiency. Nutrient removal increased as the nutrient loading rate decreased and hydraulic retention time increased. There was no membrane fouling observed in the MPR and the membrane water flux was fully restored by backwashing using only water. However, the membrane permeability varies with the hydraulic retention time (HRT) and biomass concentration in the reactor. Longer HRT offers higher permeability. Therefore, it is recommended to operate the MPR system in lower HRT to improve the membrane resistance and energy consumption.
Collapse
Affiliation(s)
- Minh T Vu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Md Abu Hasan Johir
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Hao H Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - T M I Mahlia
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia.
| |
Collapse
|
9
|
Anaerobic Membrane Bioreactors for Municipal Wastewater Treatment: A Literature Review. MEMBRANES 2021; 11:membranes11120967. [PMID: 34940468 PMCID: PMC8703433 DOI: 10.3390/membranes11120967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022]
Abstract
Currently, there is growing scientific interest in the development of more economic, efficient and environmentally friendly municipal wastewater treatment technologies. Laboratory and pilot-scale surveys have revealed that the anaerobic membrane bioreactor (AnMBR) is a promising alternative for municipal wastewater treatment. Anaerobic membrane bioreactor technology combines the advantages of anaerobic processes and membrane technology. Membranes retain colloidal and suspended solids and provide complete solid–liquid separation. The slow-growing anaerobic microorganisms in the bioreactor degrade the soluble organic matter, producing biogas. The low amount of produced sludge and the production of biogas makes AnMBRs favorable over conventional biological treatment technologies. However, the AnMBR is not yet fully mature and challenging issues remain. This work focuses on fundamental aspects of AnMBRs in the treatment of municipal wastewater. The important parameters for AnMBR operation, such as pH, temperature, alkalinity, volatile fatty acids, organic loading rate, hydraulic retention time and solids retention time, are discussed. Moreover, through a comprehensive literature survey of recent applications from 2009 to 2021, the current state of AnMBR technology is assessed and its limitations are highlighted. Finally, the need for further laboratory, pilot- and full-scale research is addressed.
Collapse
|
10
|
Cong Nguyen N, Thi Nguyen H, Cong Duong H, Chen SS, Quang Le H, Cong Duong C, Thuy Trang L, Chen CK, Dan Nguyen P, Thanh Bui X, Guo W, Hao Ngo H. A breakthrough dynamic-osmotic membrane bioreactor/nanofiltration hybrid system for real municipal wastewater treatment and reuse. BIORESOURCE TECHNOLOGY 2021; 342:125930. [PMID: 34547711 DOI: 10.1016/j.biortech.2021.125930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
This study designed a Dynamic-Osmotic membrane bioreactor/nanofiltration (OsMBR/NF) system for municipal wastewater treatment and reuse. Results indicated that a continuously rotating FO module with 60 RPM in Dynamic-OsMBR system could enhance shear stress and reduce cake layer of foulants, leading to higher flux (50%) compared to Traditional-OsMBR during a 40-operation day. A negligible specific reverse salt flux (0.059 G/L) and a water flux of 2.86 LMH were recorded when a mixture of 0.1 M EDTA-2Na/0.1 M Na2CO3/0.9 mM Triton114 functioned as draw solution (DS). It was found that the Dynamic-OsMBR/NF hybrid system could effectively remove pollutants (∼98% COD, ∼99% PO43-P, ∼93% NH4+-N, > 99% suspended solids) from wastewater. In short, this developed system can be considered a breakthrough technology as it successfully minimizes membrane fouling by shear force, and achieves high water quality for reuse by two membrane- barriers.
Collapse
Affiliation(s)
| | - Hau Thi Nguyen
- Faculty of Chemistry and Environment, Dalat University, Dalat, Vietnam
| | | | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Chung -Hsiao E. Rd, Taipei 106, Taiwan, Republic of China
| | - Huy Quang Le
- Faculty of Chemistry and Environment, Dalat University, Dalat, Vietnam; Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Chung -Hsiao E. Rd, Taipei 106, Taiwan, Republic of China
| | - Chinh Cong Duong
- Southern Institute of Water Resources Research, Ho Chi Ming City, Vietnam
| | - Le Thuy Trang
- Faculty of Environmental and Natural Sciences, Duy Tan University, Vietnam
| | - Chih-Kuei Chen
- Department of Environmental Engineering, National I-Lan University, I-Lan 26047, Taiwan
| | - Phuoc Dan Nguyen
- Centre de Asiatique de Recherche sur l'Eau, Ho Chi Minh City University of Technology-National University-HCM, Vietnam
| | - Xuan Thanh Bui
- Vietnam National University, Ho Chi Minh City, Vietnam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney, Broadway, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney, Broadway, NSW 2007, Australia.
| |
Collapse
|
11
|
Cai Y, Wu Y, Yang YL, Lu YX, Song HL. Minimizing salinity accumulation via regulating draw solute concentration in a bioelectrochemically assisted osmotic membrane bioreactor. CHEMOSPHERE 2021; 272:129613. [PMID: 33465614 DOI: 10.1016/j.chemosphere.2021.129613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/20/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
A suitable draw solute (DS) concentration in bioelectrochemically assisted osmotic membrane bioreactor (BEA-OMBR) can convert the "negative effect" of salinity accumulation into a "beneficial effect" by using the reverse-fluxed DS as a buffer agent or a carbon source supplement. Herein, the effect of DS concentration from acid buffer solution (i.e., ammonium chloride, NH4Cl), alkaline buffer solution (i.e., sodium bicarbonate, NaHCO3), and organic solution (i.e., sodium acetate, NaOAc) on salinity accumulation was systematically investigated. Salinity accumulation with NaHCO3 DS mainly derived from reversal fluxed sodium ion (Na+, major contributor with DS concentration ≤0.25 M) and bicarbonate ion (main contributor with DS concentration ≥0.50 M): Na+ accumulation could be mitigated by Na+ transport dominant by electrically driven migration (i.e., 21.3-62.1% of reverse-fluxed Na+), and bicarbonate accumulation could be reduced by buffer system. A medium-low concentration of 0.25 M NH4Cl DS had a better performance on current density of 165.0 ± 23.0 A m-3 and COD removal efficiency of 91.5 ± 3.4% by taking advantage that 77.7 ± 1.3% of reverse-fluxed ammonium could be removed by biological treatment and ammonium transport. A high NaOAc DS concentration (i.e., ≥0.05 M) exhibited a higher current density of 145.3-146.0 A m-3 but a lower COD removal efficiency due to the limited carbon source utilization capacity of anaerobic bacteria. Both concentration diffusion (20.9-28.3%) and electrically driven migration (29.5-39.4%) promoted reverse-fluxed Na+ transport to catholyte and thus mitigated Na+ accumulation in the feed/anolyte. These findings have provided an optimal DS concentration for BEA-OMBR operation and thus encourage its further development.
Collapse
Affiliation(s)
- Yun Cai
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China
| | - You Wu
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China
| | - Yu-Li Yang
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China.
| | - Yu-Xiang Lu
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China.
| |
Collapse
|
12
|
Alengebawy A, Jin K, Ran Y, Peng J, Zhang X, Ai P. Advanced pre-treatment of stripped biogas slurry by polyaluminum chloride coagulation and biochar adsorption coupled with ceramic membrane filtration. CHEMOSPHERE 2021; 267:129197. [PMID: 33338710 DOI: 10.1016/j.chemosphere.2020.129197] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/04/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Biogas slurry retention is a critical problem that cannot be solved by using the reuse method. Therefore, a new approach was taken to compensate for the shortcomings in the reuse method. In this study, after ammonia stripping, the ammonia nitrogen concentration in the stripped biogas slurry (SBS) still cannot reach the effluent standard (80 mg/L), so a variety of processes were needed to treat the SBS. Polyaluminum chloride (PAC) and rice husk biochar (B) were used to pretreat SBS. The effect of different pre-treatments on the COD value, ammonia nitrogen concentration, turbidity, total phosphorus (TP), and other indicators was investigated. After different pre-treatments by PAC and biochar, the pretreated SBS was filtered by a ceramic membrane, and the indicators of SBS were removed in the next step. After adding PAC and biochar together, ammonia nitrogen concentration was decreased to 68.09 mg/L, with a removal rate of 63%. The total phosphorus (TP) was also decreased, and its removal rate reached 92.5%. When the SBS was pretreated with PAC and biochar and then filtered through a ceramic membrane under different operating pressures, the removal rates of COD, total nitrogen (TN), turbidity, and suspended solids (SS) reached 81%, 88%, 96%, and 99% respectively. Moreover, by increasing the pressure from 0.1 to 0.3 MPa, the membrane flux was improved from 45 to 100.6 L/m2·h. This study proves that the combined pre-treatments of PAC and biochar can comprehensively remove various indicators from SBS while ensuring membrane flux during the membrane filtration process.
Collapse
Affiliation(s)
- Ahmed Alengebawy
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Keda Jin
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi Ran
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China; Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, PR China; Risk Assessment Lab of the Quality Safety of Biomass Fermentation Products (Chengdu), Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China
| | - Jingjing Peng
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuzhi Zhang
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Ai
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
13
|
Yang YL, Wu Y, Lu YX, Cai Y, He Z, Yang XL, Song HL. A comprehensive review of nutrient-energy-water-solute recovery by hybrid osmotic membrane bioreactors. BIORESOURCE TECHNOLOGY 2021; 320:124300. [PMID: 33129093 DOI: 10.1016/j.biortech.2020.124300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 05/26/2023]
Abstract
Hybrid osmotic membrane bioreactor (OMBR) takes advantage of the cooperation of varying biological or desalination processes and can achieve NEWS (nutrient-energy-water-solute) recovery from wastewater. However, a lack of universal parameters hinders our understanding. Herein, system configurations and new parameters are systematically investigated to help better evaluate recovery performance. High-quality water can be produced in reverse osmosis/membrane distillation-based OMBRs, but high operation cost limits their application. Although bioelectrochemical system (BES)/electrodialysis-based OMBRs can effectively achieve solute recovery, operation parameters should be optimized. Nutrients can be recovered from various wastewater by porous membrane-based OMBRs, but additional processes increase operation cost. Electricity recovery can be achieved in BES-based OMBRs, but energy balances are negative. Although anaerobic OMBRs are energy-efficient, salinity accumulation limits methane productions. Additional efforts must be made to alleviate membrane fouling, control salinity accumulation, optimize recovery efficiency, and reduce operation cost. This review will accelerate hybrid OMBR development for real-world applications.
Collapse
Affiliation(s)
- Yu-Li Yang
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | - You Wu
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | - Yu-Xiang Lu
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | - Yun Cai
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China.
| |
Collapse
|