1
|
Dubrovin IA, Hirsch LO, Chiliveru A, Jukanti A, Rozenfeld S, Schechter A, Cahan R. Microbial Electrolysis Cells Based on a Bacterial Anode Encapsulated with a Dialysis Bag Including Graphite Particles. Microorganisms 2024; 12:1486. [PMID: 39065254 PMCID: PMC11278843 DOI: 10.3390/microorganisms12071486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
One of the main barriers to MEC applicability is the bacterial anode. Usually, the bacterial anode contains non-exoelectrogenic bacteria that act as a physical barrier by settling on the anode surface and displacing the exoelectrogenic microorganisms. Those non-exoelectrogens can also compete with exoelectrogenic microorganisms for nutrients and reduce hydrogen production. In this study, the bacterial anode was encapsulated by a dialysis bag including suspended graphite particles to improve current transfer from the bacteria to the anode material. An anode encapsulated in a dialysis bag without graphite particles, and a bare anode, were used as controls. The MEC with the graphite-dialysis-bag anode was fed with artificial wastewater, leading to a current density, hydrogen production rate, and areal capacitance of 2.73 A·m-2, 134.13 F·m-2, and 7.6 × 10-2 m3·m-3·d-1, respectively. These were highest when compared to the MECs based on the dialysis-bag anode and bare anode (1.73 and 0.33 A·m-2, 82.50 and 13.75 F·m-2, 4.2 × 10-2 and 5.2 × 10-3 m3·m-3·d-1, respectively). The electrochemical impedance spectroscopy of the modified graphite-dialysis-bag anode showed the lowest charge transfer resistance of 35 Ω. The COD removal results on the 25th day were higher when the MEC based on the graphite-dialysis-bag anode was fed with Geobacter medium (53%) than when it was fed with artificial wastewater (40%). The coulombic efficiency of the MEC based on the graphite-dialysis-bag anode was 12% when was fed with Geobacter medium and 15% when was fed with artificial wastewater.
Collapse
Affiliation(s)
- Irina Amar Dubrovin
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (I.A.D.); (L.O.H.); (A.C.); (A.J.); (S.R.)
| | - Lea Ouaknin Hirsch
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (I.A.D.); (L.O.H.); (A.C.); (A.J.); (S.R.)
| | - Abhishiktha Chiliveru
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (I.A.D.); (L.O.H.); (A.C.); (A.J.); (S.R.)
| | - Avinash Jukanti
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (I.A.D.); (L.O.H.); (A.C.); (A.J.); (S.R.)
| | - Shmuel Rozenfeld
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (I.A.D.); (L.O.H.); (A.C.); (A.J.); (S.R.)
| | - Alex Schechter
- Department of Chemistry, Ariel University, Ariel 40700, Israel;
| | - Rivka Cahan
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (I.A.D.); (L.O.H.); (A.C.); (A.J.); (S.R.)
| |
Collapse
|
2
|
Guo ZC, Cui MH, Yang CX, Dai HL, Yang TY, Zhai LZ, Chen Y, Liu WZ, Wang AJ. Electrical stress and acid orange 7 synergistically clear the blockage of electron flow in the methanogenesis of low-strength wastewater. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100410. [PMID: 38572083 PMCID: PMC10987894 DOI: 10.1016/j.ese.2024.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
Energy recovery from low-strength wastewater through anaerobic methanogenesis is constrained by limited substrate availability. The development of efficient methanogenic communities is critical but challenging. Here we develop a strategy to acclimate methanogenic communities using conductive carrier (CC), electrical stress (ES), and Acid Orange 7 (AO7) in a modified biofilter. The synergistic integration of CC, ES, and AO7 precipitated a remarkable 72-fold surge in methane production rate compared to the baseline. This increase was attributed to an altered methanogenic community function, independent of the continuous presence of AO7 and ES. AO7 acted as an external electron acceptor, accelerating acetogenesis from fermentation intermediates, restructuring the bacterial community, and enriching electroactive bacteria (EAB). Meanwhile, CC and ES orchestrated the assembly of the archaeal community and promoted electrotrophic methanogens, enhancing acetotrophic methanogenesis electron flow via a mechanism distinct from direct electrochemical interactions. The collective application of CC, ES, and AO7 effectively mitigated electron flow impediments in low-strength wastewater methanogenesis, achieving an additional 34% electron recovery from the substrate. This study proposes a new method of amending anaerobic digestion systems with conductive materials to advance wastewater treatment, sustainability, and energy self-sufficiency.
Collapse
Affiliation(s)
- Ze-Chong Guo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Min-Hua Cui
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chun-Xue Yang
- School of Geography and Tourism, Harbin University, Harbin, 150001, China
| | - Hong-Liang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Tong-Yi Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Lin-Zhi Zhai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wen-Zong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
3
|
Jin C, Tang Q, Xu H, Sheng Y. Effects of anode materials on nitrate reduction and microbial community in a three-dimensional electrode biofilm reactor with sulfate. CHEMOSPHERE 2023; 340:139909. [PMID: 37611758 DOI: 10.1016/j.chemosphere.2023.139909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/22/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Graphite rod corrosion and peeling are serious problems in three-dimensional electrode biofilm reactors (3D-BERs). In this study, titanium rods, titanium suboxide-coated titanium rods and graphite rods were used as anodes to investigate the effect of anodic materials on the electrochemical and bioelectrochemical reduction of nitrate and sulfate. The results showed that the reactor with the titanium suboxide-coated titanium rod anode (3D-ER-T) exhibited a stable NO3--N removal efficiency (46%-95%) with a current range of 160-320 mA in the electrochemical reduction process. In the bioelectrochemical reduction, the removal efficiencies of NO3--N and SO42- and nitrogen selectivity in the 3D-BER with titanium suboxide-coated titanium rod anode (3D-BER-T) were higher than those in the 3D-BER with titanium suboxide-coated graphite rod anode (3D-BER-G). The removal efficiencies of NO3--N and SO42- and nitrogen selectivity were 92%, 43% and 86%, respectively, in 3D-BER-T under 320 mA and HRT 12 h. Anode materials affected the microbial community. Hydrogenophaga and Dethiobacter were the dominant bacteria in 3D-BER-T, while OPB41 and Sulfurospirillum were dominant in 3D-BER-G. Nitrate and sulfate were effectively removed in 3D-BER-T by the synergistic work of electrochemical reduction, bioelectrochemical reduction and indirect electrochemical reduction. The resupply/reserve mode of the electron donor promoted the load of shock resistance of 3D-BER-T via the sulfur cycle. Titanium suboxide coating could significantly enhance the anti-corrosion ability of matrix anodes.
Collapse
Affiliation(s)
- Chunhong Jin
- CAS Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Qi Tang
- CAS Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hengduo Xu
- CAS Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yanqing Sheng
- CAS Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
4
|
Wang L, Liu C, Sangeetha T, Yan WM, Sun F, Li Z, Wang X, Pan K, Wang A, Bi X, Liu W. Integrated microbial electrolysis with high-alkali pretreated sludge digestion: Insight into the effect of voltage on methanogenesis and substrate metabolism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118007. [PMID: 37148763 DOI: 10.1016/j.jenvman.2023.118007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/11/2023] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
Integrated microbial electrolysis with anaerobic digestion is proved to be an effective way to improve methanogenesis efficiency of waste activated sludge (WAS). WAS requires pretreatment for efficient improvement of acidification or methanogenesis efficiency, but excessive acidification may inhibit the methanogenesis. In order to balance these two stages, a method for efficient WAS hydrolysis and methanogenesis has been proposed in this study by high-alkaline pretreatment integrated with microbial electrolysis system. The effects of pretreatment methods and voltage on the normal temperature digestion of WAS have also been further investigated with emphasis on the effects of voltage and substrate metabolism. The results show that compared to low-alkaline pretreatment (pH = 10), high-alkaline pretreatment (pH > 14) can double the SCOD release and promote the VFAs accumulation to 5657 ± 392 mg COD/L, but inhibit the methanogenesis process. Microbial electrolysis can alleviate this inhibition effectively through the rapid consumption of VFAs and speeding up of the methanogenesis process. The optimal methane yield of the integrated system is 120.4 ± 8.4 mL/g VSS at the voltage of 0.5 V. Enzyme activities, high-throughput and gene function prediction analysis reveal that the cathode and anode maintain the activity of methanogens under high substrate concentrations. Voltage positively responded to improved methane yield from 0.3 to 0.8 V, but higher than 1.1 V is found to be unfavorable for cathodic methanogenesis and results in additional power loss. These findings provide a perspective idea for rapid and maximum biogas recovery from WAS.
Collapse
Affiliation(s)
- Ling Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266000, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150000, PR China
| | - Chang Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266000, PR China
| | - Thangavel Sangeetha
- Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, National Taipei University of Technology, Taipei 10608, Taiwan; Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Wei Mon Yan
- Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, National Taipei University of Technology, Taipei 10608, Taiwan; Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Fang Sun
- Heilongjiang Province Key Laboratory of Superhard Materials, Department of Physics, Mudanjiang Normal University, Mudanjiang, 157012, PR China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150000, PR China
| | - Xiaodong Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266000, PR China
| | - Kailing Pan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266000, PR China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150000, PR China; School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518000, PR China
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266000, PR China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150000, PR China; School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518000, PR China.
| |
Collapse
|
5
|
Yang CX, He ZW, Liu WZ, Wang AJ, Wang L, Liu J, Liu BL, Ren NQ, Yu SP, Guo ZC. Chronic effects of benzalkonium chlorides on short chain fatty acids and methane production in semi-continuous anaerobic digestion of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157619. [PMID: 35901877 DOI: 10.1016/j.scitotenv.2022.157619] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
As an emerging pollutant, benzalkonium chlorides (BACs) potentially enriched in waste activated sludge (WAS). However, the microbial response mechanism under chronic effects of BACs on acidogenesis and methanogenesis in anaerobic digestion (AD) has not been clearly disclosed. This study investigated the AD (by-)products and microbial evolution under low to high BACs concentrations from bioreactor startup to steady running. It was found that BACs can lead to an increase of WAS hydrolysis and fermentation, but a disturbance to acidogenic bacteria also occurred at low BACs concentration. A noticeable inhibition to methanogenesis occurred when BAC concentration was up to 15 mg/g TSS. Metagenomic analysis revealed the key genes involved in acetic acid (HAc) biosynthesis (i.e. phosphate acetyltransferase, PTA), β-oxidation pathway (acetyl-CoA C-acetyltransferase) and propionic acid (HPr) conversion was slightly promoted compared with control. Furthermore, BACs inhibited the acetotrophic methanogenesis (i.e. acetyl-CoA synthetase), especially BAC concentration was up to 15 mg/g TSS, thereby enhanced short chain fatty acids (SCFAs) accumulation. Overall, chronic stimulation of functional microorganisms with increasing concentrations of BACs impact WAS fermentation.
Collapse
Affiliation(s)
- Chun-Xue Yang
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, School of Geography and Tourism, Harbin University, Harbin, 150086, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhang-Wei He
- Shanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wen-Zong Liu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Ling Wang
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Jia Liu
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, School of Geography and Tourism, Harbin University, Harbin, 150086, China
| | - Bao-Ling Liu
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, School of Geography and Tourism, Harbin University, Harbin, 150086, China
| | - Nan-Qi Ren
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Shao-Peng Yu
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, School of Geography and Tourism, Harbin University, Harbin, 150086, China
| | - Ze-Chong Guo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| |
Collapse
|
6
|
Su D, Chen Y. Advanced bioelectrochemical system for nitrogen removal in wastewater. CHEMOSPHERE 2022; 292:133206. [PMID: 34922956 DOI: 10.1016/j.chemosphere.2021.133206] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) pollution in water has become a serious issue that cannot be ignored due to the harm posed by excessive nitrogen to environmental safety and human health; as such, N concentrations in water are strictly limited. The bioelectrochemical system (BES) is a new method to remove excessive N from water, and has attracted considerable attention. Compared with other methods, it is highly efficient and has low energy consumption. However, the BES has not been applied for N removal in practice due to lack of in-depth research on the mechanism and construction of high-performance electrodes, separators, and reactor configurations; this highlights a need to review and examine the efforts in this field. This paper provides a comprehensive review on the current BES research for N removal focusing on the reaction principles, reactor configurations, electrodes and separators, and treatment of actual wastewater; the corresponding performances in these realms are also discussed. Finally, the prospects for N removal in water using the BES are presented.
Collapse
Affiliation(s)
- Dexin Su
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China
| | - Yupeng Chen
- School of Chemistry, Beihang University, Beijing, 100191, PR China.
| |
Collapse
|
7
|
Zhi Z, Pan Y, Lu X, Wang J, Zhen G. Bioelectrochemical regulation accelerates biomethane production from waste activated sludge: Focusing on operational performance and microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152736. [PMID: 34974012 DOI: 10.1016/j.scitotenv.2021.152736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Bioelectrochemical regulation represents a newly emerging strategy to enhance anaerobic digestion (AD) of biowastes. Herein, a novel microbial electrolysis cell (MEC) system, equipped with a pair of carbon brush anode and hybrid Ti/RuO2-graphite felt cathode, was developed to explore the role of bioelectrochemical regulation in the proliferation/enrichment of functional microbes and methanation of waste activated sludge. The methane production was significantly improved by applying bioelectrochemical regulation. The maximum methane yield was 16.4 mL/L-reactor at the applied external voltage 1.2 V and solids retention time 15 d, 8.6-time higher than that of a single AD. Further analysis demonstrated that bioelectrochemical regulation selectively enriched electroactive fermentative partners and methanogens (especially Thermincola, Methanobacterium) in the MEC-AD system and built up a robust syntrophic interaction. This drove the decomposition of complex organics and concurrent bioelectroreduction of CO2 in biogas and subsequently enhanced methane generation. Besides, bioelectrochemical simulation attenuated N2O emissions and enhanced the dewaterability of digested sludge.
Collapse
Affiliation(s)
- Zhongxiang Zhi
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai 200092, PR China
| | - Yang Pan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Nanjing Innovation Center for Environmental Protection Industry Co. Ltd., Nanjing 211106, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, PR China
| | - Jianhui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China.
| |
Collapse
|
8
|
Yang CX, Wang L, Zhong YJ, Guo ZC, Liu J, Yu SP, Sangeetha T, Liu BL, Ni C, Guo H. Efficient methane production from waste activated sludge and Fenton-like pretreated rice straw in an integrated bio-electrochemical system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152411. [PMID: 34942263 DOI: 10.1016/j.scitotenv.2021.152411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Integrated microbial electrolysis cell-anaerobic digestion (MEC-AD) systems have demonstrated potential advantages for methane production in the presence of small amounts of residual inhibitors. In this study, a series of tests were conducted to analyse the acidification and methanogenesis performance of pretreated rice straw (RS) in anaerobic digestion (AD) and MEC-AD systems after the addition of Fenton-like reagents. The results indicated that the short-chain acids (SCFAs) accumulations reached 2284.64 ± 21.57 mg COD/L with a dosage ratio of 1/4 (g RS/g VSS sludge) in the MEC-AD system and that methane production increased by 63.8% compared with that of an individual AD system. In the interim, the net energy output reached 1.09 × 103 J/g TCOD, which was 1.23 times higher than that of the AD system. The residual Fe3+/Fe2+ in the pretreatment reagent was capable of promoting acidification and methanogenesis in sludge and RS fermentation. The RS hydrolysis products could constrain methanogenesis, which can be mitigated by introducing an MEC. The microbiological analyses revealed that the MEC strongly increased the enrichment of hydrogenotrophic methanogens, especially Methanobacterium (61.16%). Meanwhile, the Syntrophomonas and Acetobacterium abundances increased to 2.81% and 2.65%, respectively, which suggested the reinforcement of acetogenesis and methanogenesis. Therefore, the enhanced hydrogenotrophic methanogens might have served as the key for enhancing the efficiency of methanogenesis due to the introduction of an MEC.
Collapse
Affiliation(s)
- Chun-Xue Yang
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, School of Geography and Tourism, Harbin University, Harbin, PR China
| | - Ling Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, PR China.
| | - Yi-Jian Zhong
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, PR China
| | - Ze-Chong Guo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, PR China
| | - Jia Liu
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, School of Geography and Tourism, Harbin University, Harbin, PR China
| | - Shao-Peng Yu
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, School of Geography and Tourism, Harbin University, Harbin, PR China.
| | - Thangavel Sangeetha
- Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, National Taipei University of Technology, Taipei 10608, Taiwan, PR China; Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 10608, Taiwan, PR China
| | - Bao-Ling Liu
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, School of Geography and Tourism, Harbin University, Harbin, PR China
| | - Chao Ni
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, School of Geography and Tourism, Harbin University, Harbin, PR China
| | - Hong Guo
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, School of Geography and Tourism, Harbin University, Harbin, PR China
| |
Collapse
|
9
|
Litti YV, Russkova YI, Zhuravleva EA, Parshina SN, Kovalev AA, Kovalev DA, Nozhevnikova AN. Electromethanogenesis: a Promising Biotechnology for the Anaerobic Treatment of Organic Waste. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
He ZW, Jin HY, Ren YX, Yang WJ, Tang CC, Yang CX, Zhou AJ, Liu WZ, Wang AJ. Stepwise alkaline treatment coupled with ammonia stripping to enhance short-chain fatty acids production from waste activated sludge. BIORESOURCE TECHNOLOGY 2021; 341:125824. [PMID: 34450443 DOI: 10.1016/j.biortech.2021.125824] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
To recover resource from waste activated sludge (WAS) is of great significance. This study proposed a promising way, i.e., stepwise alkaline treatment coupled with ammonia stripping, to remarkably enhance short-chain fatty acids (SCFAs) production from WAS anaerobic digestion. The maximal production of SCFAs, with the value of 323 mg COD/g volatile suspended solid, was obtained with first initial pH = 10 adjustment followed by second initial pH = 10 adjustment on third day coupled with ammonia stripping. Mechanistic studies showed that solubilization of both extracellular polymeric substances and cells could be accelerated by stepwise initial pH = 10 adjustment. However, without ammonia stripping, the activities of either acidogens or methanogens could be inhibited by free ammonia formed under alkaline conditions; positively, anaerobes related to SCFAs production were enriched with ammonia stripping. Moreover, the proposed strategy can simultaneously achieve nitrogen and carbon recovery, providing some solutions for the carbon-neutral operation of wastewater treatment plants.
Collapse
Affiliation(s)
- Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hong-Yu Jin
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Wen-Jing Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chun-Xue Yang
- Heilongjiang Cold Region Wetland Ecology and Environment Research Key Laboratory, School of Geography and Tourism, Harbin University, Harbin 150086, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wen-Zong Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ai-Jie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| |
Collapse
|
11
|
He ZW, Liu WZ, Tang CC, Liang B, Zhou AJ, Chen F, Ren YX, Wang AJ. Responses of anaerobic digestion of waste activated sludge to long-term stress of benzalkonium chlorides: Insights to extracellular polymeric substances and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148957. [PMID: 34274658 DOI: 10.1016/j.scitotenv.2021.148957] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Quaternary ammonium compounds have gained widespread attention due to their extensive enrichment in waste activated sludge (WAS) and potentially adverse effect to anaerobes. This study selected benzalkonium chlorides (BACs) as model to reveal the responses of anaerobic digestion of WAS to long-term stress of BACs. Results showed that the solubilization enhancement of WAS contributed by BACs was the acceleration of cell lysis, rather than the disruption of extracellular polymeric substances, and the accumulation improvement of short chain fatty acids (SCFAs) attributed to hydrolysis improvement and methanogenesis inhibition at either medium -or high level of BACs. In addition, a low level had no significant effect on the production of methane compared to control, with averages of 0.059 and 0.055 m3/(m3·d), respectively, whereas a medium level reduced methane production to 20% of control, and a high level almost completely inhibited methanogenesis. Correspondingly, BACs could shift microbial communities related to SCFAs and methane productions. For the bacterial community, a high level of BACs led to abundance reductions of Firmicutes, Bacteroidetes, Acidobacteria and Chloroflexi, but Synergistetes was increased to 10.5%, which was almost not detected either in control or at a low level of BACs. And for dominant archaeal community, they tended to be shifted from acetotrophic to hydrogenotrophic methanogens with BACs increasing from low to high level. These findings provided some new insights for the role of BACs in anaerobic digestion, as well as resource recovery from WAS.
Collapse
Affiliation(s)
- Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wen-Zong Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Bin Liang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Fan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
12
|
Mier AA, Olvera-Vargas H, Mejía-López M, Longoria A, Verea L, Sebastian PJ, Arias DM. A review of recent advances in electrode materials for emerging bioelectrochemical systems: From biofilm-bearing anodes to specialized cathodes. CHEMOSPHERE 2021; 283:131138. [PMID: 34146871 DOI: 10.1016/j.chemosphere.2021.131138] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
Bioelectrochemical systems (BES), mainly microbial fuel cells (MEC) and microbial electrolysis cells (MFC), are unique biosystems that use electroactive bacteria (EAB) to produce electrons in the form of electric energy for different applications. BES have attracted increasing attention as a sustainable, low-cost, and neutral-carbon option for energy production, wastewater treatment, and biosynthesis. Complex interactions between EAB and the electrode materials play a crucial role in system performance and scalability. The electron transfer processes from the EAB to the anode surface or from the cathode surface to the EAB have been the object of numerous investigations in BES, and the development of new materials to maximize energy production and overall performance has been a hot topic in the last years. The present review paper discusses the advances on innovative electrode materials for emerging BES, which include MEC coupled to anaerobic digestion (MEC-AD), Microbial Desalination Cells (MDC), plant-MFC (P-MFC), constructed wetlands-MFC (CW-MFC), and microbial electro-Fenton (BEF). Detailed insights on innovative electrode modification strategies to improve the electrode transfer kinetics on each emerging BES are provided. The effect of materials on microbial population is also discussed in this review. Furthermore, the challenges and opportunities for materials scientists and engineers working in BES are presented at the end of this work aiming at scaling up and industrialization of such versatile systems.
Collapse
Affiliation(s)
- Alicia A Mier
- Bioenergy Lab, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| | - Hugo Olvera-Vargas
- Bioenergy Lab, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| | - M Mejía-López
- Bioenergy Lab, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| | - Adriana Longoria
- Bioenergy Lab, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| | - Laura Verea
- Instituto de Investigación e Innovación en Energías Renovables, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 1150, 29039, Tuxtla Gutiérrez, Chiapas, Mexico
| | - P J Sebastian
- Bioenergy Lab, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico
| | - Dulce María Arias
- Bioenergy Lab, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico.
| |
Collapse
|
13
|
Ning X, Lin R, O'Shea R, Wall D, Deng C, Wu B, Murphy JD. Emerging bioelectrochemical technologies for biogas production and upgrading in cascading circular bioenergy systems. iScience 2021; 24:102998. [PMID: 34522851 PMCID: PMC8426204 DOI: 10.1016/j.isci.2021.102998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biomethane is suggested as an advanced biofuel for the hard-to-abate sectors such as heavy transport. However, future systems that optimize the resource and production of biomethane have yet to be definitively defined. This paper assesses the opportunity of integrating anaerobic digestion (AD) with three emerging bioelectrochemical technologies in a circular cascading bioeconomy, including for power-to-gas AD (P2G-AD), microbial electrolysis cell AD (MEC-AD), and AD microbial electrosynthesis (AD-MES). The mass and energy flow of the three bioelectrochemical systems are compared with the conventional AD amine scrubber system depending on the availability of renewable electricity. An energy balance assessment indicates that P2G-AD, MEC-AD, and AD-MES circular cascading bioelectrochemical systems gain positive energy outputs by using electricity that would have been curtailed or constrained (equivalent to a primary energy factor of zero). This analysis of technological innovation, aids in the design of future cascading circular biosystems to produce sustainable advanced biofuels.
Collapse
Affiliation(s)
- Xue Ning
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
| | - Richen Lin
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
- Corresponding author
| | - Richard O'Shea
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
| | - David Wall
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
| | - Chen Deng
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
| | - Benteng Wu
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
| | - Jerry D. Murphy
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork T23XE10, Ireland
- Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T23XE10, Ireland
| |
Collapse
|
14
|
He ZW, Yang WJ, Ren YX, Jin HY, Tang CC, Liu WZ, Yang CX, Zhou AJ, Wang AJ. Occurrence, effect, and fate of residual microplastics in anaerobic digestion of waste activated sludge: A state-of-the-art review. BIORESOURCE TECHNOLOGY 2021; 331:125035. [PMID: 33820702 DOI: 10.1016/j.biortech.2021.125035] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
The plastic products have large consumption over last decades, resulting in a serious microplastics (MPs) pollution. Specially, the main removal way of MPs from wastewater is to transfer MPs from liquid to solid phase, leading to its enrichment in waste activated sludge (WAS). Anaerobic digestion has been served as the most potential technique to achieve both resource recovery and sludge reduction, herein this review provides current information on occurrence, effect, and fate of MPs in anaerobic digestion of WAS. The effects of MPs on WAS anaerobic digestion are greatly related to forms, particles sizes, contents, compositions and leachates of MPs. Also, the presence of MPs not only can change the effects of other pollutants on anaerobic digestion of WAS, but also can affect the fates of them. Besides, the future perspectives focused on the fate, effect and final removal of MPs during WAS anaerobic digestion process are outlined.
Collapse
Affiliation(s)
- Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wen-Jing Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hong-Yu Jin
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wen-Zong Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Chun-Xue Yang
- Heilongjiang Cold Region Wetland Ecology and Environment Research Key Laboratory, School of Geography and Tourism, Harbin University, Harbin 150086, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| |
Collapse
|
15
|
Wang H, Liu Y, Du H, Zhu J, Peng L, Yang C, Luo F. Exploring the effect of voltage on biogas production performance and the methanogenic pathway of microbial electrosynthesis. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Gao L, Liu W, Cui M, Zhu Y, Wang L, Wang A, Huang C. Enhanced methane production in an up-flow microbial electrolysis assisted reactors: Hydrodynamics characteristics and electron balance under different spatial distributions of bioelectrodes. WATER RESEARCH 2021; 191:116813. [PMID: 33454649 DOI: 10.1016/j.watres.2021.116813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/26/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Compared with common anaerobic digestion, microbial electrolysis has been proven feasibly to accelerate biodegradation and methanogenesis with the advantages of effective electron flow regulation. However, its actual application and scale-up required a full understanding and further investigation on electrode size and distribution. For making full use of the space of the integrated reactor and improve methane recovery, an effective interior configuration was significant. In this work, three types of reactors with different cathode spatial distributions, that is, different cathode space ratios (ratio of cathode surface area to reaction region volume), were studied to form a good flow pattern for obtaining high methane production. Tracer experiments and numerical simulation were employed simultaneously for understanding the hydrodynamics characters of the interior flow field. The results showed that by increasing the cathode space ratio to 1.33 cm2/cm3 and 2 cm2/cm3, respectively, better flow patterns with the residence time of 1.336 times and 1.363 times of theoretical hydraulic retention time could be obtained. The stacked structure of nickel meshes was beneficial to prolong the contact time of contaminant and improve the mass transfer. Increasing the cathode space ratio could also enhance the electrochemical performance. Considering the organic removal, methane recovery, electrons generation, and material consumption, the recommended cathode space ratio was 1.33 cm2/cm3. With this structure, COD removal efficiency reached 93.2 ± 1.9% and 94.1 ± 1.5%, methane production rate reached 332.0 and 334.8 mL CH4/L reactor/day, and methane yield was 171.3 and 246.4 mL CH4/g COD under the HRT of 24 h and 36 h, respectively.
Collapse
Affiliation(s)
- Lei Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China; School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| | - Minhua Cui
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yingshi Zhu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Ling Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China; School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| | - Cong Huang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, 300308, China
| |
Collapse
|
17
|
He ZW, Yang CX, Tang CC, Liu WZ, Zhou AJ, Ren YX, Wang AJ. Response of anaerobic digestion of waste activated sludge to residual ferric ions. BIORESOURCE TECHNOLOGY 2021; 322:124536. [PMID: 33341712 DOI: 10.1016/j.biortech.2020.124536] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
This study was conducted to investigate the effects of residual ferric ions (FI), released from iron or its oxides for wastewater or waste activated sludge (WAS) treatment, on anaerobic digestion of WAS. Herein it was found that the anaerobic digestion process was greatly affected by FI dosages as well as FI distributions. The responses of performance and microorganism suggested that a low FI (e.g., 0.125 mmol/g volatile suspended solid (VSS)) enhanced methane production by 29.3%, and a medium FI (e.g., 0.3 mmol/g VSS) promoted short chain fatty acids accumulation to reach the maximum of 247 mg chemical oxygen demand /g VSS, conversely, a high FI (e.g., 0.9 mmol/g VSS) led to severe inhibition on acidogenesis and methanogenesis. The findings may provide some new insights for mechanism understanding on anaerobic digestion process influenced by iron or its oxides, as well as the disposal of WAS contained FI.
Collapse
Affiliation(s)
- Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chun-Xue Yang
- Heilongjiang Cold Region Wetland Ecology and Environment Research Key Laboratory, School of Geography and Tourism, Harbin University, Harbin 150086, China
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wen-Zong Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 51805, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 51805, China.
| |
Collapse
|
18
|
Wang S, Wang J, Li J, Hou Y, Shi L, Lian C, Shen Z, Chen Y. Evaluation of biogas production potential of trace element-contaminated plants via anaerobic digestion. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111598. [PMID: 33396119 DOI: 10.1016/j.ecoenv.2020.111598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 05/24/2023]
Abstract
Within the domain of phytoremediation research, the proper disposal of harvestable plant parts, that remove pollutants from contaminated soil, has been attracted extensive attention. Here, the bioenergy generation capability of trace metals (Cu, Pb, Zn, Cd, Mn, and As) polluted plants was assessed. The biogas production potential of accumulators or hyperaccumulator plants, Elsholtzia haichowensis, Sedum alfredii, Solanum nigrum, Phytolacca americana and Pteris vittata were 259.2 ± 1.9, 238.7 ± 4.2, 135.9 ± 0.9, 129.5 ± 2.9 and 106.8 ± 2.1 mL/g, respectively. The presence of Cu (at approximately 1000 mg/kg) increased the cumulative biogas production, the daily methane production and the methane yield of E. haichowensis. For S. alfredii, the presence of Zn (≥500 mg/kg) showed a significant negative impact on the methane content in biogas, and the daily methane production, which decreased the biogas and methane yield. The biogas production potential increased when the content of Mn was at 5 000-10,000 mg/kg, subsequently, decreased when the value of Mn at 20,000 mg/kg. However, Cd (1-200 mg/kg), Pb (125-2000 mg/kg) and As (1250-10,000 mg/kg) showed no distinctive change in the cumulative biogas production of S. nigrum, S. alfredii and P. vittata, respectively. The methane yield showed a strong positive correlation (R2 =0.9704) with cumulative biogas production, and the energy potential of the plant residues were at 415-985 kWh/ton. Thus, the anaerobic digestion has bright potential for the disposal of trace metal contaminated plants, and has promising prospects for the use in energy production.
Collapse
Affiliation(s)
- Shengxiao Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianmin Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanan Hou
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunlan Lian
- Asian Natural Environmental Science Center, The University of Tokyo, 1-1-8 Midori-cho, Nishitokyoshi, Tokyo 188-0002, Japan
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing 210095, China; National Joint Local Engineering Research Center for Rural Land Resources Use and Consolidation, Nanjing Agricultural University, Nanjing 210095, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing 210095, China; Asian Natural Environmental Science Center, The University of Tokyo, 1-1-8 Midori-cho, Nishitokyoshi, Tokyo 188-0002, Japan.
| |
Collapse
|
19
|
Wang H, Du H, Zeng S, Pan X, Cheng H, Liu L, Luo F. Explore the difference between the single-chamber and dual-chamber microbial electrosynthesis for biogas production performance. Bioelectrochemistry 2021; 138:107726. [PMID: 33421897 DOI: 10.1016/j.bioelechem.2020.107726] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
Microbial electrosynthesis (MES) is an advanced technology for efficient treatment of organic wastewater and recovery of new energy, with the advantages and disadvantages of single-chamber and dual-chamber MES reactors being less understood. Therefore, we explored the effects of single-chamber and dual-chamber structures on the methane production performance and microbial community structure of MES. Results indicated that methane concentration and current density of single-chamber MES were higher than those of dual-chamber MES, and the system stability was better, while chemical oxygen demand (COD) removal rate and cumulative methane production were not significantly different. Analysis of microbial community structure showed the abundance of acidogens and H2-producing bacteria was higher in single-chamber MES, while fermentation bacteria and methanogens was lower. The abundance of methanogens of dual-chamber MES (21.74-24.70%) was superior to the single-chamber MES (8.23-10.10%). Moreover, in dual-chamber MES, methane was produced primarily through acetoclastic methanogenic pathway, while in single-chamber MES cathode, methane production was mainly by hydrogenotrophic methanogenic pathway. Information provided will be useful to select suitable reactors and optimize reaction design.
Collapse
Affiliation(s)
- Hui Wang
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Hongxia Du
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Shufang Zeng
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xiaoli Pan
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Hao Cheng
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Lei Liu
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Feng Luo
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|