1
|
Abdo HS, Alnaser IA, Karim MR, Mohammed JA, Aijaz MO, Hassan A, Seikh AH. A study on value addition of cow dung-based anaerobic sludge for biomethane and bio-oil production via co-liquefaction with rice straw and clam shells as a catalyst. RSC Adv 2024; 14:25685-25694. [PMID: 39148760 PMCID: PMC11325144 DOI: 10.1039/d4ra00794h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024] Open
Abstract
The waste management sector is moving towards sustainable approaches for facilitating resource-recovery possibilities. Agriculture residue (rice straw), cow dung (cattle waste), and clam shells from the ocean are the primary waste materials possessing a huge value addition opportunity. In this study, the effective usage of rice straw and anaerobic sludge from cow dung for bio-energy production was studied. Cow dung was initially anaerobically processed for the generation of biomethane and sludge in a digester for a retention time of 40 days. The anaerobic sludge with rice straw was hydrothermally processed in varying proportions of 1 : 0, 0 : 1, 1 : 1,1 : 2, 2 : 1, 3 : 1, 1 : 3 and temperatures of 240-360 °C for 1 hour with varying biomass loads of 50, 75, 100, 125, and 150 g. Additionally, clam shells, one of the best bioresources, were used as a catalyst in the hydrothermal process at concentrations of 0.2-1 wt%. The maximum bio-oil produced was 36.23 wt% at a temperature of 320 °C, with a biomass load of 100 g, mixed proportion of 2 : 1 and catalyst loading of 0.6 wt%. The produced bio-oil comprised hydrocarbons, aldehydes, and carboxylic acids, as confirmed through GC-MS. In the anaerobic study, ≈0.018 m3 cumulative gas was produced at a retention time of 40 days. The biochar had a higher carbon content and its feasibility for further usage shows promise towards sustainability.
Collapse
Affiliation(s)
- Hany S Abdo
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research, King Saud University Riyadh 11421 Saudi Arabia
| | - Ibrahim A Alnaser
- Mechanical Engineering Department, College of Engineering, King Saud University Riyadh 11421 Saudi Arabia
| | - Mohammad R Karim
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research, King Saud University Riyadh 11421 Saudi Arabia
| | - Jabair A Mohammed
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research, King Saud University Riyadh 11421 Saudi Arabia
| | - Muhammad Omer Aijaz
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research, King Saud University Riyadh 11421 Saudi Arabia
| | - Ahmed Hassan
- Mechanical Engineering Department, College of Engineering, King Saud University Riyadh 11421 Saudi Arabia
| | - Asiful H Seikh
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research, King Saud University Riyadh 11421 Saudi Arabia
| |
Collapse
|
2
|
Costa BSY, da Cunha HN, Draszewski CP, Martins-Vieira JC, Brondani M, Zabot GL, Tres MV, de Castilhos F, Abaide ER, Mayer FD, Hoffmann R. Sequential Process of Subcritical Water Hydrolysis and Hydrothermal Liquefaction of Butia Capitata Endocarp to Obtain Fermentable Sugars, Platform Chemicals, Bio-oil, and Biochar. Appl Biochem Biotechnol 2024; 196:4317-4336. [PMID: 37947949 DOI: 10.1007/s12010-023-04776-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Butia capitata endocarp (BCE) is a biomass residue with the potential to produce a wide variety of bio-products. The processing of BCE in a sequential process of subcritical water hydrolysis (SWH) and hydrothermal liquefaction (HTL) was investigated to obtain fermentable sugars, platform chemicals, bio-oil, and biochar. The SWH was evaluated at 230 and 260 °C and solvent: feed mass ratios (R) of 10 and 20 for the production of fermentable sugars and platform chemicals. The solid residue from SWH was sequentially submitted to the HTL at 330 and 360 °C for bio-oil and biochar production. The results were analyzed by comparing the sequential (SWH/HTL) and individual (HTL only) processes. The highest yields of fermentable sugars (5.26 g/ 100 g BCE) were obtained for SWH at 260 °C and R-20 with higher contents of xylose (2.64 g/100 g BCE) and cellobiose (1.75 g/100 g BCE). The highest yields of platform chemicals (2.44 g/100 g BCE) were obtained for SWH at 260 °C and R-10 with higher contents of acetic acid (1.78 g/100 g BCE) and furfural (0.54 g/100 g BCE). The highest yield of bio-oil (25.30 g/100 g BCE) occurred in HTL individual process at 360 °C and R-20. Sequential process SWH/HTL showed a decrease in bio-oil yield but maintained a similar biochar yield compared to HTL, in addition to the production of fermentable sugars and platform chemicals.
Collapse
Affiliation(s)
- Beatriz S Y Costa
- Department of Chemical Engineering, Federal University of Santa Maria, Roraima Avenue, nº 1000, Santa Maria, RS, 97105-900, Brazil
| | - Henrique N da Cunha
- Department of Chemical Engineering, Federal University of Santa Maria, Roraima Avenue, nº 1000, Santa Maria, RS, 97105-900, Brazil
| | - Crisleine P Draszewski
- Department of Chemical Engineering, Federal University of Santa Maria, Roraima Avenue, nº 1000, Santa Maria, RS, 97105-900, Brazil
| | - João C Martins-Vieira
- Department of Chemical Engineering, Federal University of Santa Maria, Roraima Avenue, nº 1000, Santa Maria, RS, 97105-900, Brazil
| | - Michel Brondani
- Department of Chemical Engineering, Federal University of Santa Maria, Roraima Avenue, nº 1000, Santa Maria, RS, 97105-900, Brazil.
| | - Giovani L Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), Sete de Setembro St., Center DC (nº 1040), Cachoeira Do Sul, RS, 96508-010, Brazil
| | - Marcus V Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), Sete de Setembro St., Center DC (nº 1040), Cachoeira Do Sul, RS, 96508-010, Brazil
| | - Fernanda de Castilhos
- Department of Chemical Engineering, Federal University of Santa Maria, Roraima Avenue, nº 1000, Santa Maria, RS, 97105-900, Brazil
| | - Ederson R Abaide
- Department of Chemical Engineering, Federal University of Santa Maria, Roraima Avenue, nº 1000, Santa Maria, RS, 97105-900, Brazil
| | - Flávio D Mayer
- Department of Chemical Engineering, Federal University of Santa Maria, Roraima Avenue, nº 1000, Santa Maria, RS, 97105-900, Brazil
| | - Ronaldo Hoffmann
- Department of Chemical Engineering, Federal University of Santa Maria, Roraima Avenue, nº 1000, Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
3
|
Venkataraman S, Athilakshmi JK, Rajendran DS, Bharathi P, Kumar VV. A comprehensive review of eclectic approaches to the biological synthesis of vanillin and their application towards the food sector. Food Sci Biotechnol 2024; 33:1019-1036. [PMID: 38440686 PMCID: PMC10908958 DOI: 10.1007/s10068-023-01484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 03/06/2024] Open
Abstract
Vanillin, a highly regarded flavor compound, has earned widespread recognition for its natural and aromatic qualities, piquing substantial interest in the scientific community. This comprehensive review delves deeply into the intricate world of vanillin synthesis, encompassing a wide spectrum of methodologies, including enzymatic, microbial, and immobilized systems. This investigation provides a thorough analysis of the precursors of vanillin and also offers a comprehensive overview of its transformation through these diverse processes, making it an invaluable resource for researchers and enthusiasts alike. The elucidation of different substrates such as ferulic acid, eugenol, veratraldehyde, vanillic acid, glucovanillin, and C6-C3 phenylpropanoids adds a layer of depth and insight to the understanding of vanillin synthesis. Moreover, this comprehensive review explores the multifaceted applications of vanillin within the food industry. While commonly known as a flavoring agent, vanillin transcends this role by finding extensive use in food preservation and food packaging. The review meticulously examines the remarkable preservative properties of vanillin, providing a profound understanding of its crucial role in the culinary and food science sectors, thus making it an indispensable reference for professionals and researchers in these domains. Graphical abstract
Collapse
Affiliation(s)
- Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Jothyswarupha Krishnakumar Athilakshmi
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Priyadharshini Bharathi
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| |
Collapse
|
4
|
Saengsuriwong R, Onsree T, Phromphithak S, Tippayawong N. Conversion of tobacco processing waste to biocrude oil via hydrothermal liquefaction in a multiple batch reactor. CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY 2023; 25:397-407. [PMID: 34149340 PMCID: PMC8195226 DOI: 10.1007/s10098-021-02132-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/04/2021] [Indexed: 05/05/2023]
Abstract
Fossil fuels are the primary energy source of almost all societies and economies, but it is finite and scarce. The use of non-renewable fossil fuels threatens earth's environment. At the same time, waste from agricultural and industrial activities is increasing. Most of this waste is discarded or poorly managed, causing many other environmental issues. Converting waste to energy is a promising route to address these challenges. We investigated the hydrothermal liquefaction (HTL) of high moisture content, tobacco-processing waste in a multiple batch thermal reactor to produce biocrude oil. The effects of operating conditions were studied and optimized for maximum liquid biocrude oil yield. HTL operating conditions considered were temperatures from 280 to 340 °C and residence times from 15 to 45 min for a fixed ratio of biomass to deionized water of 1:3. The reaction temperature was found to affect the yields and distribution of products significantly. The maximum yield of the liquid biocrude oil obtained was more than 52% w/w at 310 °C and 15 min. Under these conditions, almost 90% of the energy was recovered in biocrude oil and solid products. The liquid fraction was mainly composed of phenols, ketones, and nitrogenous compounds. This study provides a potential framework for eco-technologies for biomass waste-to-energy conversion with respect to converting tobacco processing residues to liquid biofuels and biochemicals.
Collapse
Affiliation(s)
- Ruetai Saengsuriwong
- Faculty of Engineering, Graduate Program in Energy Engineering, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Thossaporn Onsree
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Sanphawat Phromphithak
- Faculty of Engineering, Graduate Program in Energy Engineering, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nakorn Tippayawong
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200 Thailand
| |
Collapse
|
5
|
Zhang J, Xia A, Chen H, Nizami AS, Huang Y, Zhu X, Zhu X, Liao Q. Biobased carbon dots production via hydrothermal conversion of microalgae Chlorella pyrenoidosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156144. [PMID: 35609698 DOI: 10.1016/j.scitotenv.2022.156144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
A promising green hydrothermal process was used to produce biobased nanomaterials carbon dots (CDs) by using microalgae Chlorella pyrenoidosa (CP) and its main model compounds (i.e., glucose, glycine, and octadecanoic acid). The possible reaction pathway including hydrolysis, Amadori rearrangement, cyclization/aromatization, and polymerization was first proposed for the hydrothermal process to produce microalgae-based CDs. Interactions among carbohydrates and proteins in microalgae were vital intermediate reactions in the generation of CDs. The mass yield of CDs reached 7.2% when the CP was hydrothermally treated with 20:1 of liquid-to-solid ratio at 230 °C for 6 h. It was confirmed that nitrogen, sulfur, phosphorous, and potassium were doped onto CP-based CDs (CD-CP) successfully without additional reagents or treatments. The CD-CP yield was 4.0-24.3 times higher than that of model compound-based CDs. Regarding morphology, CD-CP was constituted by many spherical nanoparticles smaller than 20 nm. These CDs emitted blue fluorescence under ultraviolet light, and the fluorescence quantum yield of CD-CP was 4.7-9.4 times higher than that of CP model compound-based CDs. Last, CD-CP displayed broad application prospects as a sensor for Fe3+ detection in wastewater with high sensitivity.
Collapse
Affiliation(s)
- Jingmiao Zhang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| | - Huize Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Abdul-Sattar Nizami
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan; Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
6
|
Prestigiacomo C, Scialdone O, Galia A. Hydrothermal liquefaction of wet biomass in batch reactors: critical assessment of the role of operating parameters as a function of the nature of the feedstock. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Sarangi PK, Anand Singh T, Joykumar Singh N, Prasad Shadangi K, Srivastava RK, Singh AK, Chandel AK, Pareek N, Vivekanand V. Sustainable utilization of pineapple wastes for production of bioenergy, biochemicals and value-added products: A review. BIORESOURCE TECHNOLOGY 2022; 351:127085. [PMID: 35358673 DOI: 10.1016/j.biortech.2022.127085] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 05/27/2023]
Abstract
Agricultural residues play a pivotal role in meeting the growing energy and bulk chemicals demand and food security of society. There is global concern about the utilization of fossil-based fuels and chemicals which create serious environmental problems. Biobased sustainable fuels can afford energy and fuels for future generations. Agro-industrial waste materials can act as the alternative way for generating bioenergy and biochemicals strengthening low carbon economy. Processing of pineapple generates about 60% of the weight of the original pineapple fruit in the form of peel, core, crown end, and pomace that can be converted into bioenergy sources like bioethanol, biobutanol, biohydrogen, and biomethane along with animal feed and vermicompost as described in this paper. This paper also explains about bioconversion process towards the production of various value-added products such as phenolic anti-oxidants, bromelain enzyme, phenolic flavour compounds, organic acids, and animal feed towards bioeconomy.
Collapse
Affiliation(s)
- Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal 795 004 Manipur, India
| | - Thangjam Anand Singh
- College of Agriculture, Central Agricultural University, Imphal 795 004 Manipur, India
| | - Ng Joykumar Singh
- College of Agriculture, Central Agricultural University, Imphal 795 004 Manipur, India
| | - Krushna Prasad Shadangi
- Department of Chemical Engineering, Veer Surendra Sai University of Technology, Burla Sambalpur 768 018, Odisha, India
| | - Rajesh K Srivastava
- Department of Biotechnology, GIT, GITAM (Deemed to be University) Visakhapatnam, 530 045 Andhra Pradesh, India
| | - Akhilesh K Singh
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845 401 Bihar, India
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo (USP), Lorena, São Paulo, Brazil
| | - Nidhi Pareek
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305 817, Rajasthan, India
| | - Vivekanand Vivekanand
- Center for Energy and Environment, Malaviya National Institute of Technology Jaipur, 302 017 Rajasthan, India.
| |
Collapse
|
8
|
Gnana Prakash D, Gopinath KP, Prasanth SM, Harish S, Rishikesh M, Sivaramakrishnan R, Pugazhendhi A. Extraction methodology of lignin from biomass waste influences the quality of bio-oil obtained by solvothermal depolymerization process. CHEMOSPHERE 2022; 293:133473. [PMID: 34974039 DOI: 10.1016/j.chemosphere.2021.133473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Lignin from sugarcane bagasse was extracted using three different methods such as Alkaline, Ethanosolv, and Hydrotropic extraction and the effect of each method on yield and quality of bio-oil obtained when the lignin was depolymerized through solvothermal liquefaction was studied using ethanol as solvent. The maximum lignin yield was obtained in the hydrotropic extraction method when Sodium Xylene Sulfonate was used as the hydrotropic solvent at a concentration of 1.43 M and a temperature of 90 °C. Hydrothermal experiments were performed at temperature of 250 °C with a residence time of 30 min and lignin to ethanol ratio of 1:200 g/mL respectively. Among the methods used, the Ethanosolv lignin showed the highest extent of depolymerization (86.7%) to yield bio-oil at 250 °C with reduced biochar formation at lignin to solvent ratio of 1:200. Biochar obtained was used in adsorption studies of Cadmium (Cd), Lead (Pb), Nickel (Ni), and Zinc (Zn) and results showed that more than 85% removal of all the metals under lower concentration levels.
Collapse
Affiliation(s)
- Dhakshinamoorthy Gnana Prakash
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Chennai, Tamil Nadu, India
| | - Kannappan Panchamoorthy Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Chennai, Tamil Nadu, India.
| | - Sevalur Mahendran Prasanth
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Chennai, Tamil Nadu, India
| | - Sivakumaran Harish
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Chennai, Tamil Nadu, India
| | - Muthamilselvam Rishikesh
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Chennai, Tamil Nadu, India
| | - Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai, 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
9
|
Bio-Crude Production from Protein-Extracted Grass Residue through Hydrothermal Liquefaction. ENERGIES 2022. [DOI: 10.3390/en15010364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, the protein-extracted grass residue (press cake) was processed through hydrothermal liquefaction under sub and supercritical temperatures (300, 350 and 400 °C) with and without using a potassium carbonate catalyst. The results revealed that bio-crude yield was influenced by both temperature and the catalyst. The catalyst was found to be effective at 350 °C (350 Cat) for enhancing the bio-crude yield, whereas supercritical state in both catalytic and non-catalytic conditions improved the quality of bio-crude with reasonable HHVs (33 to 36 MJ/kg). The thermal behaviour of bio-crude was analysed and higher volatile contents (more than 50% under the range of 350 °C) were found at supercritical conditions. The overall TOC values in the residual aqueous phase varied from 22 to 38 g/L. Higher carbon loss was noticed in the aqueous phase in supercritical conditions. Furthermore, GCMS analysis showed ketones, acids and ester, aromatics and hydrocarbon with negligible nitrogen-containing compounds in bio-crude. In conclusion, the catalytic conversion of grass residue under subcritical conditions (350 Cat) is favourable in terms of high bio-crude yield, however, supercritical conditions promote the deoxygenation of oxygen-containing compounds in biomass and thus improve HHVs of bio-crude.
Collapse
|
10
|
Shyam S, Arun J, Gopinath KP, Ribhu G, Ashish M, Ajay S. Biomass as source for hydrochar and biochar production to recover phosphates from wastewater: A review on challenges, commercialization, and future perspectives. CHEMOSPHERE 2022; 286:131490. [PMID: 34293561 DOI: 10.1016/j.chemosphere.2021.131490] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Excessive phosphate run-off with total phosphorus concentration greater than 20 μg P L-1 triggers the growth of harmful algal species in waterbodies and potentially leads to eutrophication. This has severe negative implications on aquatic environment and impacts human health. The annual economic impact of harmful algal blooms is reported to be as high as $25 million for public health and commercial fishery sector, $29 million for recreation/tourism sector and $2 million for monitoring and management. Adsorption is widely considered as an effective and economic strategy to achieve extremely low concentration of phosphorus. The char produced by valorizing various waste biomasses have been gaining attention in phosphorus remediation owing to their availability, their ability to regenerate and reuse. This review paper exclusively focuses on utilizing hydrochar and biochar synthesized from waste biomass, respectively, through hydrothermal carbonization and slow pyrolysis to mitigate phosphorus concentration and potential strategies for handling the spent char. The key mechanisms involved in phosphate adsorption are electrostatic interaction, ion exchange and complexation. The maximum adsorption capacity of hydrochar and biochar ranges from 14-386 mg g-1 and 3-887 mg g-1, respectively. Hydrochar and biochar are cost-effective alternative to commercial activated carbon and spent char can be used for multiple adsorption cycles. Furthermore, extensive research studies on optimizing the feedstock, reaction and activation conditions coupled with technoeconomic analysis and life cycle assessment could pave way for commercialization of char-based adsorption technology.
Collapse
Affiliation(s)
- Sivaprasad Shyam
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, OH, United States
| | - Jayaseelan Arun
- Centre for Waste Management - International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600 119, India
| | | | - Gautam Ribhu
- Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Manandhar Ashish
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, OH, United States
| | - Shah Ajay
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, OH, United States.
| |
Collapse
|
11
|
Heath RS, Ruscoe RE, Turner NJ. The beauty of biocatalysis: sustainable synthesis of ingredients in cosmetics. Nat Prod Rep 2021; 39:335-388. [PMID: 34879125 DOI: 10.1039/d1np00027f] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2015 up to July 2021The market for cosmetics is consumer driven and the desire for green, sustainable and natural ingredients is increasing. The use of isolated enzymes and whole-cell organisms to synthesise these products is congruent with these values, especially when combined with the use of renewable, recyclable or waste feedstocks. The literature of biocatalysis for the synthesis of ingredients in cosmetics in the past five years is herein reviewed.
Collapse
Affiliation(s)
- Rachel S Heath
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Rebecca E Ruscoe
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nicholas J Turner
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
12
|
Wang C, Wu C, Zhang H, Lai J, Luo X, Liang Y, Tian J. Hydrothermal treatment of petrochemical sludge in subcritical and supercritical water: Oil phase degradation and syngas production. CHEMOSPHERE 2021; 278:130392. [PMID: 33819894 DOI: 10.1016/j.chemosphere.2021.130392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
The reaction process of petrochemical sludge under hydrothermal conditions was investigated to explore the feasibility of its disposal using hydrothermal treatment. Experiments were conducted in an autoclave for 30 min at 350-450 °C. During the hydrothermal treat of petrochemical sludge, 44.98%-59.64% of the oil (organic matter) in the sludge was decomposed into aqueous and gas products. The gas yield reached 1.37 mol/kg of organic matter at reaction temperature of 450 °C. The H2 yield was 0.26 mol/kg of organic matter. The primary product was still in the aqueous phase. The TOC concentration of the aqueous product was in the range of 14,960-19,050 mg/L. The concentration of COD, total phenol, and total nitrogen of product were in the ranges of 9029-10,870, 13.83-20.10, and 497.5-599.0 mg/L, respectively. The group analysis and GC-MS analysis of the residual oil indicated that the saturated long chain hydrocarbons (C18-C21) in petrochemical sludge had decomposed to form saturated short chain hydrocarbons (C11-C17); however, the short chain saturated hydrocarbons in the sludge had decomposed thoroughly. The removal rate of asphaltenes, resins and aromatic hydrocarbons were low. Finally, a mechanism for treating petrochemical sludge under hydrothermal conditions was proposed. The study provides an experimental basis for the hydrothermal treatment of petrochemical sludge.
Collapse
Affiliation(s)
- Chenyu Wang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Chaoyue Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, PR China
| | - Hao Zhang
- College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Junbei Lai
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Xinyue Luo
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Yaoyun Liang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Jinshui Tian
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| |
Collapse
|
13
|
Liu H, Qin S, Sirohi R, Ahluwalia V, Zhou Y, Sindhu R, Binod P, Rani Singhnia R, Kumar Patel A, Juneja A, Kumar D, Zhang Z, Kumar J, Taherzadeh MJ, Kumar Awasthi M. Sustainable blueberry waste recycling towards biorefinery strategy and circular bioeconomy: A review. BIORESOURCE TECHNOLOGY 2021; 332:125181. [PMID: 33888357 DOI: 10.1016/j.biortech.2021.125181] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Waste valorization using biological methods for value addition as well as environmental management is becoming popular approach for sustainable development. The present review addresses the availability of blueberry crop residues (BCR), applications of this feedstock in bioprocess for obtaining range of value-added products, to offer economic viability, business development and market potential, challenges and future perspectives. To the best of our knowledge, this is the first article addressing the blueberry waste valorization for a sustainable circular bioeconomy. Furthermore, it covers the information on the alternative BCR valorization methods and production of biochar for environmental management through removal or mitigation of organic and inorganic pollutants from contaminated sites. The review also discusses the ample opportunities of strategic utilization of BCR to offer solutions for environmental sustenance, covers the emerging trends to produce multi-products and techno-economic prospective for sustainable agronomy.
Collapse
Affiliation(s)
- Huimin Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Shiyi Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| | - Vivek Ahluwalia
- Institute of Pesticide Formulation Technology, Gurugram, Haryana 122 016, India
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Reeta Rani Singhnia
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ankita Juneja
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, 402 Walters Hall, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jitendra Kumar
- Institute of Pesticide Formulation Technology, Gurugram, Haryana 122 016, India
| | | | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden.
| |
Collapse
|