1
|
Martinez-Quintela M, Casas G, Carramal M, Vega E, Llenas L, Paredes L. Valorizing meat processing industry brines to produce added-value organic acids. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:122982. [PMID: 39476677 DOI: 10.1016/j.jenvman.2024.122982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/14/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
During the production of certain meat processed products, such as cured ham and cold meat, large amounts of wastewater with high organic matter and salt content are generated. In contrast with the conventional management processes, which involves high energy consumption, this study proposes the valorisation of such meat brines through anaerobic fermentation to produce added-value organic acids. Several brines coming from different meat processing processes were tested to evaluate their acidification potential as well as to establish the main operation parameters in the fermenter: pH and the substrate-to-inoculum ratio. The brine with the best acidification results in both experiments was selected to be fed into a fed-batch fermenter at pH close to neutrality (6.5-7.3) and with an HRT of 6 d. With such conditions, a 27% of acidification in average was observed under an electrical conductivity up to 155 mS cm-1. Acetic and propionic acid were the most produced volatile fatty acids (VFAs) (39% and 22.0%, respectively), being the rest (up to 40%) ≥ C4 (including butyric, valeric and their isomeric forms). Finally, a selective separation between the salt and the VFAs were achieved working at low current density (<100 A m-2) in an electrodialysis system (80% of recovery in the diluate). The technological approach proposed in this study can be considered as a starting point to valorize high-salinity industrial wastewater, aligning with the circular economy model principles.
Collapse
Affiliation(s)
- Miguel Martinez-Quintela
- BETA Technological Center (TECNIO Network), University of Vic - Central University of Catalonia (UVic-UCC), Carretera de Roda 70, 08500, Vic, Spain.
| | - Gemma Casas
- BETA Technological Center (TECNIO Network), University of Vic - Central University of Catalonia (UVic-UCC), Carretera de Roda 70, 08500, Vic, Spain
| | - Manuel Carramal
- BETA Technological Center (TECNIO Network), University of Vic - Central University of Catalonia (UVic-UCC), Carretera de Roda 70, 08500, Vic, Spain
| | - Esther Vega
- BETA Technological Center (TECNIO Network), University of Vic - Central University of Catalonia (UVic-UCC), Carretera de Roda 70, 08500, Vic, Spain
| | - Laia Llenas
- BETA Technological Center (TECNIO Network), University of Vic - Central University of Catalonia (UVic-UCC), Carretera de Roda 70, 08500, Vic, Spain
| | - Lidia Paredes
- BETA Technological Center (TECNIO Network), University of Vic - Central University of Catalonia (UVic-UCC), Carretera de Roda 70, 08500, Vic, Spain
| |
Collapse
|
2
|
Zhang W, Shi J, Li Y, Ma Y, Khanzada AK, Al-Hazmi HE, Xu X, Li X, Hassan GK, Xue G, Makinia J. A novel approach to enhance high optically active L-lactate production from food waste by landfill leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122497. [PMID: 39278020 DOI: 10.1016/j.jenvman.2024.122497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The recycling of food waste (FW) through anaerobic fermentation into lactic acid (LA), with two isomers L-LA and D-LA, aligns with the principles of a bio-based circular economy. However, FW fermentation is often limited by competing pathways, acidification inhibition, and trace metals deficiency. This study investigates the introduction of landfill leachate, containing buffering agents (ammonia) and trace metals, into FW fermentation. Various dosages of landfill leachate, ranging from 90 (LN-90) to 450 mg/L (LN-450) based on inclusive ammonia calculation, were employed. Results showed that LA production peaked at 43.65 ± 0.57 g COD/L in LN-180 on day 6, with a high optical activity of L-LA at 92.40 ± 1.15 %. Fermentation pathway analysis revealed that landfill leachate amendment enhances hydrolysis (as evidenced by increased activity of amylase, α-glucosidase, and protease) and glycolysis (resulting in enhanced utilization of carbohydrates and glucose). The inclusive ammonia in leachate plays a crucial role as a buffer, maintaining optimal pH conditions (5-7), thereby reducing volatile fatty acid production and thus intensifying LA orientations. The increased activity of L-lactate dehydrogenase (L-LA generation) and decreased NAD-independent lactate dehydrogenase (LA consumption) in properly dosed leachate further explained the high accumulation of L-LA. Dominance of lactic acid bacteria, including Streptococcus, Enterococcus, Klebsiella, Bifidobacterium, Bavariicoccus, and Lacticaseibacillus, accounted for 91.08% (LN-90), while inhibitory effects were observed in LN-450 (4.45%). Functional gene analysis further supported the enhanced glycolysis, L-lactate dehydrogenase, and nitrogen assimilation. Finally, a network analysis indicates a beneficial effect on the genus Enterococcus and Klebsiella by landfill leachate addition. This study demonstrates the efficiency of utilizing landfill leachate to enhance LA recycling from FW fermentation, aligning with the concept of circular economy by transforming waste into valuable resources.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Shanghai University of Engineering Science, School of Chemistry and Chemical Engineering, Shanghai, 201620, China
| | - Jiaxin Shi
- Shanghai University of Engineering Science, School of Chemistry and Chemical Engineering, Shanghai, 201620, China
| | - Yue Li
- Shanghai University of Engineering Science, School of Chemistry and Chemical Engineering, Shanghai, 201620, China
| | - Yonghong Ma
- State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Aisha Khan Khanzada
- Eko-Tech Center, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland; Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Hussein E Al-Hazmi
- Eko-Tech Center, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland; Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233, Gdansk, Poland; BioCo Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Xianbao Xu
- Eko-Tech Center, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland; Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233, Gdansk, Poland.
| | - Xiang Li
- State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.
| | - Gamal Kamel Hassan
- Water Pollution Research Department, National Research Centre, 33El-Bohouth St. (Former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Gang Xue
- State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Jacek Makinia
- Eko-Tech Center, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland; Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233, Gdansk, Poland
| |
Collapse
|
3
|
Lian T, Yin F, Zhang W, Cao Q, Wang S, Zhou T, Zhang F, Li R, Dong H. Enhanced lactic acid production through enzymatic hydrolysis: Assessing impact of varied enzyme loadings on co-fermentation of swine manure and apple waste. BIORESOURCE TECHNOLOGY 2024; 406:131012. [PMID: 38908762 DOI: 10.1016/j.biortech.2024.131012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Anaerobic co-fermentation of swine manure (SM) and apple waste (AW) restricts by the slow hydrolysis of substrates with complex structures, which subsequently leads to low lactic acid (LA) production. Therefore, a novel strategy based on enzymatic pretreatment for improving LA production from anaerobic co-fermentation of SM and AW was proposed in this study. The results indicated that the maximal LA concentration increased from 35.89 ± 1.84 to 42.70 ± 2.18 g/L with the increase of enzyme loading from 0 to 300 U/g VSsubstrate. Mechanism exploration indicated that enzymatic pretreatment significantly promoted the release and hydrolysis of insoluble organic matter from fermentation substrate, thus providing an abundance of reaction intermediates that were directly available for LA production. Additionally, bacteria analysis revealed that the high concentration of LA was associated with the prevalence of Lactobacillus. This study offered an environmental-friendly strategy for promoting SM and AW hydrolysis and provided a viable approach for recovering valuable products.
Collapse
Affiliation(s)
- Tianjing Lian
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Fubin Yin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wanqin Zhang
- China Huadian Engineering Co. Ltd., Beijing 100160, China
| | - Qitao Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tanlong Zhou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fangyu Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Zhang X, Zhang D, Yan Y, Wang R, Chi Y, Zhang D, Zhou P, Chu S. Enhancing aerobic composting performance of high-salt oily food waste with Bacillus safensis YM1. BIORESOURCE TECHNOLOGY 2024; 397:130475. [PMID: 38387845 DOI: 10.1016/j.biortech.2024.130475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
To alleviate the inhibitory effects of salt and oil on food waste compost, the compost was inoculated with salt-tolerant and oil-degrading Bacillus safensis YM1. The YM1 inoculation could effectively improve compost maturation index. Compared with uninoculated group, the oil content and Cl- concentration in the 0.5% YM1-inoculated compost decreased significantly by 19.7% and 8.1%, respectively. The addition of the YM1 inoculant substantially altered the richness and composition of the microbial community during composting, as evidenced by the identification of 47 bacterial and 42 fungal biomarker taxa. The enrichment of some oil-degrading salt-tolerant microbes (Bacillus, Haloplasma, etc.) enhanced nutrient conversion, which is crucial for the improved maturity of the YM1 compost. This study demonstrated that YM1 could regulate both abiotic and biotic processes to improve high-salt and oily food waste composting, which may be an effective inoculant in the industrial-scale composting.
Collapse
Affiliation(s)
- Xia Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Bor S. Luh Food Safety Research Center, Shanghai 200240, People's Republic of China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Bor S. Luh Food Safety Research Center, Shanghai 200240, People's Republic of China
| | - Yiru Yan
- School of Agriculture and Biology, Shanghai Jiaotong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Bor S. Luh Food Safety Research Center, Shanghai 200240, People's Republic of China
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiaotong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Bor S. Luh Food Safety Research Center, Shanghai 200240, People's Republic of China
| | - Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiaotong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Bor S. Luh Food Safety Research Center, Shanghai 200240, People's Republic of China
| | - Dongwei Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Bor S. Luh Food Safety Research Center, Shanghai 200240, People's Republic of China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiaotong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Bor S. Luh Food Safety Research Center, Shanghai 200240, People's Republic of China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiaotong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Bor S. Luh Food Safety Research Center, Shanghai 200240, People's Republic of China.
| |
Collapse
|
5
|
Zhang X, Wang Y, Jiao P, Zhang M, Deng Y, Jiang C, Liu XW, Lou L, Li Y, Zhang XX, Ma L. Microbiome-functionality in anaerobic digesters: A critical review. WATER RESEARCH 2024; 249:120891. [PMID: 38016221 DOI: 10.1016/j.watres.2023.120891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
Abstract
Microbially driven anaerobic digestion (AD) processes are of immense interest due to their role in the biovalorization of biowastes into renewable energy resources. The function-versatile microbiome, interspecies syntrophic interactions, and trophic-level metabolic pathways are important microbial components of AD. However, the lack of a comprehensive understanding of the process hampers efforts to improve AD efficiency. This study presents a holistic review of research on the microbial and metabolic "black box" of AD processes. Recent research on microbiology, functional traits, and metabolic pathways in AD, as well as the responses of functional microbiota and metabolic capabilities to optimization strategies are reviewed. The diverse ecophysiological traits and cooperation/competition interactions of the functional guilds and the biomanipulation of microbial ecology to generate valuable products other than methane during AD are outlined. The results show that AD communities prioritize cooperation to improve functional redundancy, and the dominance of specific microbes can be explained by thermodynamics, resource allocation models, and metabolic division of labor during cross-feeding. In addition, the multi-omics approaches used to decipher the ecological principles of AD consortia are summarized in detail. Lastly, future microbial research and engineering applications of AD are proposed. This review presents an in-depth understanding of microbiome-functionality mechanisms of AD and provides critical guidance for the directional and efficient bioconversion of biowastes into methane and other valuable products.
Collapse
Affiliation(s)
- Xingxing Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yiwei Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Pengbo Jiao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ming Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xian-Wei Liu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Liping Ma
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai 200062, PR China.
| |
Collapse
|
6
|
Elsaygh YA, Gouda MK, Elbahloul Y, Hakim MA, El Halfawy NM. Production and structural characterization of eco-friendly bioemulsifier SC04 from Saccharomyces cerevisiae strain MYN04 with potential applications. Microb Cell Fact 2023; 22:176. [PMID: 37679768 PMCID: PMC10485968 DOI: 10.1186/s12934-023-02186-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Bioemulsifiers are natural or microbial-based products with the ability to emulsify hydrophobic compounds in water. These compounds are biodegradable, eco-friendly, and find applications in various industries. RESULTS Thirteen yeasts were isolated from different sources in Alexandria, Egypt, and evaluated for their potential to produce intracellular bioemulsifiers. One yeast, isolated from a local market in Egypt, showed the highest emulsification index (EI24) value. Through 26S rRNA sequencing, this yeast was identified as Saccharomyces cerevisiae strain MYN04. The growth kinetics of the isolate were studied, and after 36 h of incubation, the highest yield of cell dry weight (CDW) was obtained at 3.17 g/L, with an EI24 of 55.6%. Experimental designs were used to investigate the effects of culture parameters on maximizing bioemulsifier SC04 production and CDW. The study achieved a maximum EI24 of 79.0 ± 2.0%. Furthermore, the crude bioemulsifier was precipitated with 50% ethanol and purified using Sephadex G-75 gel filtration chromatography. Bioemulsifier SC04 was found to consist of 27.1% carbohydrates and 72.9% proteins. Structural determination of purified bioemulsifier SC04 was carried out using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), high-performance liquid chromatography (HPLC), and nuclear magnetic resonance spectroscopy (NMR). FTIR spectroscopy revealed characteristic bands associated with carboxyl and hydroxyl groups of carbohydrates, as well as amine groups of proteins. HPLC analysis of monosaccharide composition detected the presence of mannose, galactose, and glucose. Physicochemical characterization of the fraction after gel filtration indicated that bioemulsifier SC04 is a high molecular weight protein-oligosaccharide complex. This bioemulsifier demonstrated stability at different pH values, temperatures, and salinities. At a concentration of 0.5 mg/mL, it exhibited 51.8% scavenging of DPPH radicals. Furthermore, in vitro cytotoxicity evaluation using the MTT assay revealed a noncytotoxic effect of SC04 against normal epithelial kidney cell lines. CONCLUSIONS This study presents a new eco-friendly bioemulsifier, named SC04, which exhibits significant emulsifying ability, antioxidant and anticancer properties, and stabilizing properties. These findings suggest that SC04 is a promising candidate for applications in the food, pharmaceutical, and industrial sectors.
Collapse
Affiliation(s)
- Yasmina A Elsaygh
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Moharam Bek, Alexandria, 21511, Egypt
| | - Mona K Gouda
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Moharam Bek, Alexandria, 21511, Egypt
| | - Yasser Elbahloul
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Moharam Bek, Alexandria, 21511, Egypt
| | | | - Nancy M El Halfawy
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Moharam Bek, Alexandria, 21511, Egypt.
| |
Collapse
|
7
|
Huang J, Chen K, Xia X, Zhu H. Long-term performance on volatile fatty acids production improved in a kitchen wastewater fermenter by co-fermentation of sludge and membrane separation. CHEMOSPHERE 2023:139049. [PMID: 37245599 DOI: 10.1016/j.chemosphere.2023.139049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Kitchen wastewater can be transformed into a valuable resource through anaerobic fermentation. However, the efficiency of this process is hindered by various factors including salt inhibition and nutrient imbalance. In this study, we examined the effects of co-fermentation with sludge and membrane filtration on the anaerobic fermentation of kitchen wastewater. Our findings indicate that co-fermentation with sludge resulted in a 4-fold increase in fermentation rate and a 2-fold increase in short-chain fatty acids (SCFAs) production. This suggests that the addition of sludge helped to alleviate salt and acid inhibition through ammonia buffering and elemental balancing. The membrane filtration retained 60% of soluble carbohydrates and 15% of proteins in the reactor for further fermentation and recovered nearly 100% of NH4+ and SCFAs in the filtrate, which helped to alleviate acid and ammonia inhibition. The combined fermentation system significantly increased the richness and diversity of microorganisms, particularly caproiciproducens and Clostridium_sensu_stricto_12. The membrane flux remained stable and at a relatively high level, indicating that the combined process may be economically feasible. However, scaling up the co-anaerobic fermentation of kitchen wastewater and sludge in a membrane reactor is necessary for further economic evaluation in the future.
Collapse
Affiliation(s)
- Jianghao Huang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; Power China Guizhou Electric Power Design & Research Institute Co., LTD, Guiyang, 550002, China
| | - Kai Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Xiaodong Xia
- Power China Guizhou Electric Power Design & Research Institute Co., LTD, Guiyang, 550002, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
8
|
Swetha TA, Ananthi V, Bora A, Sengottuvelan N, Ponnuchamy K, Muthusamy G, Arun A. A review on biodegradable polylactic acid (PLA) production from fermentative food waste - Its applications and degradation. Int J Biol Macromol 2023; 234:123703. [PMID: 36801291 DOI: 10.1016/j.ijbiomac.2023.123703] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/04/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
Due to its low carbon footprint and environmental friendliness, polylactic acid (PLA) is one of the most widely produced bioplastics in the world. Manufacturing attempts to partially replace petrochemical plastics with PLA are growing year over year. Although this polymer is typically used in high-end applications, its use will increase only if it can be produced at the lowest cost. As a result, food wastes rich in carbohydrates can be used as the primary raw material for the production of PLA. Lactic acid (LA) is typically produced through biological fermentation, but a suitable downstream separation process with low production costs and high product purity is also essential. The global PLA market has been steadily expanding with the increased demand, and PLA has now become the most widely used biopolymer across a range of industries, including packaging, agriculture, and transportation. Therefore, the necessity for an efficient manufacturing method with reduced production costs and a vital separation method is paramount. The primary goal of this study is to examine the various methods of lactic acid synthesis, together with their characteristics and the metabolic processes involved in producing lactic acid from food waste. In addition, the synthesis of PLA, possible difficulties in its biodegradation, and its application in diverse industries have also been discussed.
Collapse
Affiliation(s)
- T Angelin Swetha
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - V Ananthi
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu 630003, India; Department of Molecular Biology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Abhispa Bora
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | | | - Kumar Ponnuchamy
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, 41566 Daegu, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India
| | - A Arun
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu 630003, India.
| |
Collapse
|
9
|
Papadopoulou E, Rodriguez de Evgrafov MC, Kalea A, Tsapekos P, Angelidaki I. Adaptive laboratory evolution to hypersaline conditions of lactic acid bacteria isolated from seaweed. N Biotechnol 2023; 75:21-30. [PMID: 36870677 DOI: 10.1016/j.nbt.2023.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Seaweed biomass has been proposed as a promising alternative carbon source for fermentation processes using microbial factories. However, the high salinity content of seaweed biomass is a limiting factor in large scale fermentation processes. To address this shortcoming, three bacterial species (Pediococcus pentosaceus, Lactobacillus plantarum, and Enterococcus faecium) were isolated from seaweed biomass and evolved to increasing concentrations of NaCl. Following the evolution period, P. pentosaceus reached a plateau at the initial NaCl concentration, whereas L. plantarum, and E. faecium showed a 1.29 and 1.75-fold increase in their salt tolerance, respectively. The impact that salt evolution had on lactic acid production using hypersaline seaweed hydrolysate was investigated. Salinity evolved L. plantarum produced 1.18-fold more lactic acid than the wild type, and salinity evolved E. faecium was able to produce lactic acid, while the wild type could not. No differences in lactic acid production were observed between the P. pentosaceus salinity evolved and wild type strains. Evolved lineages were analyzed for the molecular mechanisms underlying the observed phenotypes. Mutations were observed in genes affecting the ion balance in the cell, the composition of the cell membrane and proteins acting as regulators. This study demonstrates that bacterial isolates from saline niches are promising microbial factories for the fermentation of saline substrates, without the requirement of previous desalination steps, while preserving high final product yields.
Collapse
Affiliation(s)
- Eleftheria Papadopoulou
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | | | - Argyro Kalea
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Panagiotis Tsapekos
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| |
Collapse
|
10
|
Yan Y, Yan M, Angelidaki I, Fu D, Fotidis IA. Osmoprotectants boost adaptation and protect methanogenic microbiome during ammonia toxicity events in continuous processes. BIORESOURCE TECHNOLOGY 2022; 364:128106. [PMID: 36243262 DOI: 10.1016/j.biortech.2022.128106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Different osmoprotectants were used to counteract ammonia toxicity in continuous anaerobic reactors. The anaerobic microbiome osmoadaptation process and its role to the methanogenic recovery are also assessed. Three osmoprotectants (i.e., glycine betaine, MgCl2 and KCl) were respectively introduced in continuous reactors at high ammonia levels, namely RGB, RMg, RK, while a control reactor (RCtrl) was also used. After ammonia was introduced, the RGB, RMg, RK and RCtrl suffered 39.0%, 36.6%, 39.9% and 36.2% methane production loss, respectively. Osmoprotectants addition recovered significantly methane production by up to 68.9%, 54.3% and 32.2% for RGB, RMg and RK, respectively contrary to RCtrl, where production increased only by 13.6%. The recovered methane production was maintained in RGB and RMg for at least four HRTs, even after the addition of osmoprotectants was stopped, due to the formed methanogenic microbiota by osmoadaptation process, with Methanoculleus sp. as the dominant species.
Collapse
Affiliation(s)
- Yixin Yan
- School of Civil Engineering, Southeast University, 210096 Nanjing, China; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Miao Yan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Dafang Fu
- School of Civil Engineering, Southeast University, 210096 Nanjing, China
| | - Ioannis A Fotidis
- School of Civil Engineering, Southeast University, 210096 Nanjing, China; Faculty of Environment, Ionian University, 29100 Zakynthos, Greece.
| |
Collapse
|
11
|
Song L, Liu S, Liu R, Yang D, Dai X. Direct lactic acid production from household food waste by lactic acid bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156479. [PMID: 35679945 DOI: 10.1016/j.scitotenv.2022.156479] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
China is vigorously promoting garbage classification, but the treatment of classified waste, especially household food waste (HFW) has yet to be studied. Lactic acid (LA), a high value-added platform molecule has broad market prospects. Although there have been many studies on the production of LA from food waste, open fermentation often produces lots of by-products, while the traditional fermentation under a pure bacteria system often requires the saccharification process, which increases the production cost. We sought to analyze the comprehensive properties of classified HFW in Shanghai, then to produce LA by inoculating lactic acid bacteria (LAB) directly. The effects of strains, temperature, sterilized or not, initial pH, inoculum size, and substrate concentration on LA production were investigated. HFW was rich in nutrients and growth factors which provided the possibility for direct LA production from HFW by inoculating LAB. The results showed that Lactobacillus rhamnosus ATCC 7469, Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus all could be used as the inoculum, however, no significant synergistic effect of the three strains on LA production was found. LA concentration of 30.25 g/L at 37 °C, pH 6.8 could be obtained by inoculating Lactobacillus rhamnosus ATCC 7469 from sterilized HFW. High inoculum size and substrate concentration resulted in high LA concentration, but not high LA yield. The result of ANOVA indicated that there was a significantly positive relationship between substrate concentration and LA concentration (r = 0.942, p < 0.01), while no statistically significant difference between these groups at different inoculum size was evident (p = 0.318). In addition, an average LA concentration of 26.8 g/L, LA yield of 0.20 g/g TCOD was obtained by repeated batch fermentation for 32 d.
Collapse
Affiliation(s)
- Liang Song
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shiyu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Donghai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
12
|
Duc LV, Miyagawa Y, Inoue D, Ike M. Identification of key steps and associated microbial populations for efficient anaerobic digestion under high ammonium or salinity conditions. BIORESOURCE TECHNOLOGY 2022; 360:127571. [PMID: 35788390 DOI: 10.1016/j.biortech.2022.127571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Ammonium (NH4+) and salinity are major inhibitors of CH4 production in anaerobic digestion. This study evaluated their inhibitory effects on CH4 production and explored the key populations for efficient CH4 production under high NH4+ and NaCl concentrations to understand their inhibition mechanisms. Comparative batch experiments for mesophilic anaerobic digestion were conducted using three seeding sludges under different concentrations of NH4+ (1-5 gNH4-N/L) and NaCl (10-30 g/L). Although all sludges tolerated 3 gNH4-N/L and 10 g/L NaCl, NH4+ or NaCl concentrations higher than these substantially reduced CH4 production, depending on the seeding sludge, primarily by impairing the initial hydrolysis and methanogenesis steps. In addition, propionate was found to be a deterministic factor affecting CH4 production. Based on microbial community analysis, Candidatus Brevefilum was identified as a potential syntrophic propionate-oxidizing bacterium that facilitates the mitigation of propionate accumulation, allowing the maintenance of unaffected CH4 production under high inhibitory conditions.
Collapse
Affiliation(s)
- Luong Van Duc
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuta Miyagawa
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
13
|
Chenebault C, Moscoviz R, Trably E, Escudié R, Percheron B. Lactic acid production from food waste using a microbial consortium: Focus on key parameters for process upscaling and fermentation residues valorization. BIORESOURCE TECHNOLOGY 2022; 354:127230. [PMID: 35483530 DOI: 10.1016/j.biortech.2022.127230] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
In this study, the production of lactic acid from food waste in industrially relevant conditions was investigated. Laboratory assays were first performed in batch conditions to determine the suitable operational parameters for an efficient lactic acid production. The use of compost as inoculum, the regulation of temperature at 35 °C and pH at 5 enhanced the development of Lactobacillus sp. resulting in the production of 70 g/L of lactic acid with a selectivity of 89% over the other carboxylic acids. Those parameters were then applied at pilot scale in successive fed-batch fermentations. The subsequent high concentration (68 g/L), yield (0.38 g/gTS) and selectivity (77%) in lactic acid demonstrated the applicability of the process. To integrate the process into a complete value chain, fermentation residues were then converted into biogas through anaerobic digestion. Lastly, the experiment was successfully replicated using commercial and municipal waste collected in France.
Collapse
Affiliation(s)
| | - Roman Moscoviz
- Suez, CIRSEE, 38 rue du Président Wilson, 78230 Le Pecq, France
| | - Eric Trably
- LBE, INRAE, Univ Montpellier, 102 Avenue des Etangs, Narbonne F-11100, France
| | - Renaud Escudié
- LBE, INRAE, Univ Montpellier, 102 Avenue des Etangs, Narbonne F-11100, France
| | | |
Collapse
|
14
|
Huang J, Pan Y, Liu L, Liang J, Wu L, Zhu H, Zhang P. High salinity slowed organic acid production from acidogenic fermentation of kitchen wastewater by shaping functional bacterial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114765. [PMID: 35202951 DOI: 10.1016/j.jenvman.2022.114765] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The high salinity of kitchen wastewater might have adverse effects on the production of short-chain fatty acids (SCFAs) in anaerobic fermentation. The effects and mechanisms of salinity on SCFA production in the anaerobic fermentation of kitchen wastewater were studied by varying the salt concentration, as follows: 0 g/L (S0), 2 g/L (S2), 6 g/L (S6), 10 g/L (S10), 15 g/L (S15), and 20 g/L (S20). Experimental results showed that hypersaline conditions (>10 g NaCl/L) accelerated the release of soluble proteins at the initial stage of anaerobic fermentation. They also significantly prohibited the hydrolysis and degradation of soluble proteins and carbohydrates. Compared with low salinity tests, the SCFA concentrations under hypersaline conditions (>10 g NaCl/L) only reached approximately 43% of the highest concentration on day 10, although the SCFA concentrations in all tests were very close on day 10 (14 g COD/L). High salinity delayed the production of n-butyric acid but did not change the composition of the total SCFAs. High salinity enriched Enterococcus and Bifidobacterium, the relative abundance levels of which reached 27.57% and 49.71%, respectively, before the depletion of substrate. High salinity showed a negative correlation with the relative abundance of the genera Clostridium_sensu_stricto_1, Prevotella and unclassified_f_Oscillospiraceae which are responsible for SCFA production. This study provided a theoretical basis for the fficient utilization of kitchen wastewater.
Collapse
Affiliation(s)
- Jianghao Huang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yu Pan
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Linyu Wu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
15
|
Son J, Baritugo KA, Lim SH, Lim HJ, Jeong S, Lee JY, Choi JI, Joo JC, Na JG, Park SJ. Microbial cell factories for the production of three-carbon backbone organic acids from agro-industrial wastes. BIORESOURCE TECHNOLOGY 2022; 349:126797. [PMID: 35122981 DOI: 10.1016/j.biortech.2022.126797] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
At present, mass production of basic and valuable commodities is dependent on linear petroleum-based industries, which ultimately makes the depletion of finite natural reserves and accumulation of non-biodegradable and hazardous wastes. Therefore, an ecofriendly and sustainable solution should be established for a circular economy where infinite resources, such as agro-industrial wastes, are fully utilized as substrates in the production of target value-added chemicals. Hereby, recent advances in metabolic engineering strategies and techniques used in the development of microbial cell factories for enhanced production of three-carbon platform chemicals such as lactic acid, propionic acid, and 3-hydroxypropionic acid are discussed. Further developments and future perspectives in the production of these organic acids from agro-industrial wastes from the dairy, sugar, and biodiesel industries are also highlighted to demonstrate the importance of waste-based biorefineries for organic acid production.
Collapse
Affiliation(s)
- Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kei-Anne Baritugo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hye Jin Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seona Jeong
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Yeon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
16
|
Perez-Esteban N, Vinardell S, Vidal-Antich C, Peña-Picola S, Chimenos JM, Peces M, Dosta J, Astals S. Potential of anaerobic co-fermentation in wastewater treatments plants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152498. [PMID: 34968594 DOI: 10.1016/j.scitotenv.2021.152498] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 05/25/2023]
Abstract
Fermentation (not anaerobic digestion) is an emerging biotechnology to transform waste into easily assimilable organic compounds such as volatile fatty acids, lactic acid and alcohols. Co-fermentation, the simultaneous fermentation of two or more waste, is an opportunity for wastewater treatment plants (WWTPs) to increase the yields of sludge mono-fermentation. Most publications have studied waste activated sludge co-fermentation with food waste or agri-industrial waste. Mixing ratio, pH and temperature are the most studied variables. The highest fermentation yields have been generally achieved in mixtures dominated by the most biodegradable substrate at circumneutral pH and mesophilic conditions. Nonetheless, most experiments have been performed in batch assays which results are driven by the capabilities of the starting microbial community and do not allow evaluating the microbial acclimation that occurs under continuous conditions. Temperature, pH, hydraulic retention time and organic load are variables that can be controlled to optimise the performance of continuous co-fermenters (i.e., favour waste hydrolysis and fermentation and limit the proliferation of methanogens). This review also discusses the integration of co-fermentation with other biotechnologies in WWTPs. Overall, this review presents a comprehensive and critical review of the achievements on co-fermentation research and lays the foundation for future research.
Collapse
Affiliation(s)
- N Perez-Esteban
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Vinardell
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - C Vidal-Antich
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; Water Research Institute, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Peña-Picola
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - J M Chimenos
- Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - M Peces
- Department of Chemistry and Bioscience, Centre for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - J Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; Water Research Institute, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| |
Collapse
|
17
|
Conversion of Waste Cooking Oil to Rhamnolipid by a Newly Oleophylic Pseudomonas aeruginosa WO2. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031700. [PMID: 35162723 PMCID: PMC8835509 DOI: 10.3390/ijerph19031700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 02/05/2023]
Abstract
The components of waste cooking oil (WCO) are complex and contain toxic substances, which are difficult to treat biologically. Pseudomonas aeruginosa WO2 was isolated from oily sludge by an anaerobic enrichment–aerobic screening method, which could efficiently utilize WCO and produce rhamnolipid. The effects of nutrients and culture conditions on bacterial growth and lipase activity were investigated to optimize the fermentation of WCO. The results showed that strain WO2 utilized 92.25% of WCO and produced 3.03 g/L of rhamnolipid at 120 h. Compared with inorganic sources, the organic nitrogen source stabilized the pH of fermentation medium, improved lipase activity (up to 19.98 U/mL), and promoted the utilization of WCO. Furthermore, the WO2 strain exhibited inferior utilization ability of the soluble starch contained in food waste, but superior salt stress up to 60 g/L. These unique characteristics demonstrate the potential of Pseudomonas aeruginosa WO2 for the utilization of high-salinity oily organic waste or wastewater.
Collapse
|
18
|
Wang P, Wu D, Su Y, Li X, Xie B. Dissemination of antibiotic resistance under antibiotics pressure during anaerobic co-digestion of food waste and sludge: Insights of driving factors, genetic expression, and regulation mechanism. BIORESOURCE TECHNOLOGY 2022; 344:126257. [PMID: 34752891 DOI: 10.1016/j.biortech.2021.126257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
This study revealed the effects and regulation mechanisms on antibiotic resistance genes (ARGs) dissemination during anaerobic co-digestion (AcoD) of food waste and sludge under the exposure of tetracycline, sulfamethoxazole (SMZ) and erythromycin (ERY). Results indicated antibiotics significantly increased the abundance of ARGs, and selectively enriched integron gene, suggesting antibiotics promoted the dissemination of ARGs. Procrustes analysis indicated that bacterial community, integrons and physicochemical properties displayed significant correlations with ARGs, and they respectively contributed 10.61%, 6.94% and 2.97% of explanations on ARGs variation. Especially, the maximum combined contribution (48.6%) of bacterial community and integrons, implying their significances on ARGs alteration. Metatranscriptomic analysis further demonstrated antibiotics upregulated the expressions of total ARGs and virulence factors, raising potential risks. The proposed mechanisms for ARGs dissemination facilitated by antibiotics might be attributed to the changes of ARGs-regulated functions for inducing DNA/cell damage and DNA conjugation during AcoD.
Collapse
Affiliation(s)
- Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xunan Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
19
|
Volatile Fatty Acids (VFA) Production from Wastewaters with High Salinity—Influence of pH, Salinity and Reactor Configuration. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The hydrocarbon-based economy is moving at a large pace to a decarbonized sustainable bioeconomy based on biorefining all types of secondary carbohydrate-based raw materials. In this work, 50 g L−1 in COD of a mixture of food waste, brine and wastewater derived from a biodiesel production facility were used to produce organic acids, important building-blocks for a biobased industry. High salinity (12–18 g L−1), different reactors configuration operated in batch mode, and different initial pH were tested. In experiment I, a batch stirred reactor (BSR) at atmospheric pressure and a granular sludge bed column (GSBC) were tested with an initial pH of 5. In the end of the experiment, the acidification yield (ηa) was similar in both reactors (22–24%, w/w); nevertheless, lactic acid was in lower concentrations in BSR (6.3 g L−1 in COD), when compared to GSBC (8.0 g L−1 in COD), and valeric was the dominant acid, reaching 17.3% (w/w) in the BSR. In experiment II, the BSR and a pressurized batch stirred reactor (PBSR, operated at 6 bar) were tested with initial pH 7. The ηa and the VFA concentration were higher in the BSR (46%, 22.8 g L−1 in COD) than in the PBSR (41%, 20.3 g/L in COD), and longer chain acids were more predominant in BSR (24.4% butyric, 6.7% valeric, and 6.2% caproic acids) than in PBSR (23.2%, 6.2%, and 4.2%, respectively). The results show that initial pH of 7 allows achieving higher ηa, and the BSR presents the most suitable reactor among tested configurations to produce VFA from wastes/wastewaters with high salinity.
Collapse
|
20
|
Thygesen A, Tsapekos P, Alvarado-Morales M, Angelidaki I. Valorization of municipal organic waste into purified lactic acid. BIORESOURCE TECHNOLOGY 2021; 342:125933. [PMID: 34852434 DOI: 10.1016/j.biortech.2021.125933] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Municipal organic waste (biowaste) consists of food derived starch, protein and sugars, and lignocellulose derived cellulose, hemicellulose, lignin and pectin. Proper management enables nutrient recycling and sustainable production of platform chemicals such as lactic acid (LA). This review gathers the most important information regarding use of biowaste for LA fermentation covering pre-treatment, enzymatic hydrolysis, fermentation and downstream processing to achieve high purity LA. The optimal approach was found to treat the two biowaste fractions separately due to different pre-treatment and enzyme needs for achieving enzymatic hydrolysis and to do continues fermentation to achieve high cell density and high LA productivity up to 12 g/L/h for production of both L and D isomers. The specific productivity was 0.4 to 0.5 h-1 but with recalcitrant biomass, the enzymatic hydrolysis was rate limiting. Novel purification approaches included reactive distillation and emulsion liquid membrane separation yielding purities sufficient for polylactic acid production.
Collapse
Affiliation(s)
- Anders Thygesen
- Bioconversion Group, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, DK-2800 Kgs. Lyngby, Denmark.
| | - Panagiotis Tsapekos
- Bioconversion Group, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, DK-2800 Kgs. Lyngby, Denmark.
| | - Merlin Alvarado-Morales
- Bioconversion Group, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, DK-2800 Kgs. Lyngby, Denmark.
| | - Irini Angelidaki
- Bioconversion Group, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
21
|
Huang S, Xue Y, Yu B, Wang L, Zhou C, Ma Y. A Review of the Recent Developments in the Bioproduction of Polylactic Acid and Its Precursors Optically Pure Lactic Acids. Molecules 2021; 26:molecules26216446. [PMID: 34770854 PMCID: PMC8587312 DOI: 10.3390/molecules26216446] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
Lactic acid (LA) is an important organic acid with broad industrial applications. Considered as an environmentally friendly alternative to petroleum-based plastic with a wide range of applications, polylactic acid has generated a great deal of interest and therefore the demand for optically pure l- or d-lactic acid has increased accordingly. Microbial fermentation is the industrial route for LA production. LA bacteria and certain genetic engineering bacteria are widely used for LA production. Although some fungi, such as Saccharomyces cerevisiae, are not natural LA producers, they have recently received increased attention for LA production because of their acid tolerance. The main challenge for LA bioproduction is the high cost of substrates. The development of LA production from cost-effective biomasses is a potential solution to reduce the cost of LA production. This review examined and discussed recent progress in optically pure l-lactic acid and optically pure d-lactic acid fermentation. The utilization of inexpensive substrates is also focused on. Additionally, for PLA production, a complete biological process by one-step fermentation from renewable resources is also currently being developed by metabolically engineered bacteria. We also summarize the strategies and procedures for metabolically engineering microorganisms producing PLA. In addition, there exists some challenges to efficiently produce PLA, therefore strategies to overcome these challenges through metabolic engineering combined with enzyme engineering are also discussed.
Collapse
Affiliation(s)
- Shiyong Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.H.); (Y.X.); (Y.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.H.); (Y.X.); (Y.M.)
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Limin Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- Correspondence: (L.W.); (C.Z.)
| | - Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.H.); (Y.X.); (Y.M.)
- Correspondence: (L.W.); (C.Z.)
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.H.); (Y.X.); (Y.M.)
| |
Collapse
|
22
|
Lian T, Zhang W, Cao Q, Wang S, Yin F, Chen Y, Zhou T, Dong H. Optimization of lactate production from co-fermentation of swine manure with apple waste and dynamics of microbial communities. BIORESOURCE TECHNOLOGY 2021; 336:125307. [PMID: 34049170 DOI: 10.1016/j.biortech.2021.125307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
Co-anaerobic fermentation (co-AF) of swine manure (SM) and apple waste (AW) has been proved to be beneficial for lactic acid (LA) production. In order to further improve the LA production, three important parameters, namely AW in feedstock, temperature, volatile solids (VS) of feedstock, were evaluated using Box-Behnken design and response surface methodology. The quadratic regression model was developed and interactive effects was found between the three parameters. Results showed that the maximum concentration, 31.18 g LA/L (with LA yield of 0.62 g/g VS), was obtained under optimum conditions of 60.4% AW in feedstock, 34.7 ℃, and 5.0% VS. At the optimum conditions, the solubilization of organic matter was enhanced compared with mono-fermentation of SM. Microbial community structure of the reactor diverged greatly with fermentation time. Clostridium and Lactobacillus were dominant bacteria in the fermentation process, resulting in a remarkably LA accumulation.
Collapse
Affiliation(s)
- Tianjing Lian
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Wanqin Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Qitao Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Fubin Yin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yongxin Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Tanlong Zhou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|