1
|
Mupindu P, Zhao YG, Pan C, Zhang Y, Liu J. Enhancement of aerobic denitrification process on antibiotics removal: Mechanism and efficiency: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70050. [PMID: 40065507 DOI: 10.1002/wer.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 05/13/2025]
Abstract
Traditionally, the removal of nitrogenous pollutants from wastewater relied on conventional anaerobic denitrification as well as aerobic nitrification and anoxic denitrification. However, anaerobic denitrification is complicated since it requires stringent environmental conditions as well as a large land, therefore, denitrification and nitrification were performed in two separate reactors. Although high pollutant removal efficiency has been achieved via aerobic nitrification and anoxic denitrification, the demerits of this approach include high operational costs. Other traditional nitrogen removal methods include air stripping, reverse osmosis, adsorption, ion exchange, chemical precipitation, advanced oxidation process, and breakpoint chlorination. Traditional nitrogen removal methods are not only complicated but they are also uneconomical due to the high operational costs. Researchers have discovered that denitrification can be carried out by heterotrophic nitrification-aerobic denitrification (HNAD) microorganisms which remove nitrogen in a single aerobic reactor that does not require stringent operating conditions. Despite the significant effort that researchers have put in, there is still little information known about the mechanisms of antibiotic removal during HNAD. This review begins with an update on the current state of knowledge on the removal of nitrogenous pollutants and antibiotics from wastewater by HNAD. The mechanisms of antibiotic removal via HNAD were examined in detail. Followed by, the enhancement of antibiotics removal via co-metabolism and oxidation of sulfamethoxazole (SMX) as well as the response of microbial communities to antibiotic toxicity. Lastly, the conditions favorable for antibiotic biodegradation and mechanisms for nitrogen removal via HNAD were examined. The findings in this review show that co-metabolism and oxidation of SMX were the main antibiotic biodegradation mechanisms, pathways for antibiotic removal by co-metabolism and oxidation of SMX were also proposed in the discussion. This research indicated the potential of aerobic denitrification in the removal of antibiotics from wastewater. Understanding the mechanisms and pathways of antibiotic removal by HNAD helps wastewater engineers and researchers apply the technology more efficiently. PRACTITIONER POINTS: The mechanisms of antibiotic removal via HNAD were examined in detail. Co-metabolism and oxidation of SMX were the main antibiotic biodegradation mechanisms. Pathways for antibiotic removal by co-metabolism and oxidation of SMX were also proposed. Conditions favorable for antibiotic biodegradation were examined. This research indicated the potential of aerobic denitrification in the removal of antibiotics from wastewater.
Collapse
Affiliation(s)
- Progress Mupindu
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Yang-Guo Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- Key Lab of Marine Environmental Science and Ecology (Ocean University of China), Ministry of Education, Qingdao, China
| | - Chao Pan
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Yanan Zhang
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Jiannan Liu
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
2
|
Pan C, Zhao YG, Mupindu P, Zhao S. The denitrification ability and nitrogen metabolism pathway of aerobic denitrifier Marinobacter alkaliphilus SBY-1 under low C/N ratios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177651. [PMID: 39579907 DOI: 10.1016/j.scitotenv.2024.177651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Mariculture tail water is characterized as the low C/N ratios and thus blocks the conventional heterotrophic denitrification process due to insufficient carbon source. Therefore, oligotrophic marine bacteria with heterotrophic nitrification and aerobic denitrification (HN-AD) are urgently required to bioaugment aerobic biological filter. In this study, Marinobacter alkaliphilus SBY-1 was isolated and confirmed optimal nitrate removal capacity at a rate of 716 mg/L·d without ammonia production or nitrite accumulation under initial nitrate concentration of 800 mg/L, pH 7, salinity 20 ‰, sodium acetate as the carbon source, and low C/N ratios of 3.6. SBY-1 also demonstrated heterotrophic nitrification capability with a maximum ammonia removal rate reaching 69.21 % when ammonia was used as the nitrogen source. The enzymes involved in the HN-AD process including ammonia monooxygenase (AMO), nitrate reductase (NR), and nitrite reductase (NIR) were all detected in SBY-1 with superior activity observed for NR and NIR. Additionally, analysis of EPS and auto-aggregation revealed that SBY-1 exhibited excellent auto-aggregation ability under high influent nitrogen concentration conditions, making it more suitable for biofilm formation and further application in biofilm-based denitrification process. Genome analysis identified genes associated with Nar, Nap, Nas, Nir, Nif, Nrt, Nrf, Nor, Nos which confirmed that SBY-1 possessed a complete HN-AD pathway for nitrogen metabolism. The predicted nitrogen metabolism pathway of SBY-1 was NO3--N → NO2--N → NO→N2O → N2. These findings provide new insights into the efficient removal of nitrate by SBY-1 under lower C/N conditions.
Collapse
Affiliation(s)
- Chao Pan
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yang-Guo Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Lab of Marine Environmental Science and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Progress Mupindu
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuxue Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
3
|
Yang L, He T, Yuan Y, Xiong Y, Lei H, Zhang M, Chen M, Yang L, Zheng C, Wang C. Enhancement of cold-adapted heterotrophic nitrification and denitrification in Pseudomonas sp. NY1 by cupric ions: Performance and mechanism. BIORESOURCE TECHNOLOGY 2024; 414:131574. [PMID: 39378533 DOI: 10.1016/j.biortech.2024.131574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Cupric ions can restrain biological nitrogen removal processes, which comprise nitrite reductase and nitric oxide reductase. Here, Pseudomonas sp. NY1 can efficiently perform heterotrophic nitrification and aerobic denitrification with cupric ions at 15 °C. At optimal culturing conditions, low cupric ion levels accelerated nitrogen degradation, and ammonium and nitrite removal efficiencies increased by 2.33%-4.85% and 6.76%-12.30%, respectively. Moreover, the maximum elimination rates for ammonium and nitrite increased from 9.48 to 10.26 mg/L/h and 6.20 to 6.80 mg/L/h upon adding 0.05 mg/L cupric ions. Additionally, low cupric ion concentrations promoted electron transport system activity (ETSA), especially for nitrite reduction. However, high concentrations of cupric ions decreased the ETSA during nitrogen conversion processes. The crucial enzymes ammonia monooxygenase, nitrate reductase, and nitrite reductase possessed similarly trends as ETSA upon exposure to cupric ion. These findings deepen the understanding for the effect of cupric ions on nitrogen consumption and bioremediation in nitrogen-polluted waters.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Yulan Yuan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Yufen Xiong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Hongxue Lei
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Manman Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Mengping Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Li Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Chunxia Zheng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Cerong Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
4
|
Sun W, Hu C, Wu J, Wei M, Lin JG, Hong Y. Efficient nitrogen removal via simultaneous ammonium assimilation and heterotrophic denitrification of Paracoccus denitrificans R-1. iScience 2024; 27:110599. [PMID: 39220262 PMCID: PMC11365388 DOI: 10.1016/j.isci.2024.110599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Although diverse microorganisms can remove ammonium and nitrate simultaneously, their metabolic mechanisms are not well understood. Paracoccus denitrificans R-1 showed the maximal NH4 + removal rate 9.94 mg L-1·h-1 and 2.91 mg L-1·h-1 under aerobic and anaerobic conditions, respectively. Analysis of the nitrogen balance calculation and isotope tracing experiment indicated that NH4 + was consumed through assimilation. The maximal NO3 - removal rate of strain R-1 was 18.05 and 19.76 mg L-1·h-1 under aerobic and anaerobic conditions, respectively. The stoichiometric consumption ratio of acetate to nitrate was 0.902 and NO3 - was reduced to N2 for strain R-1 through 15NO3 - isotopic tracing experiment, which indicated a respiratory process coupled with the oxidation of electron donors. Genomic analysis showed that strain R-1 contained genes for ammonium assimilation and denitrification, which effectively promoted each other. These findings provide insights into microbial nitrogen transformation and facilitate the simultaneous removal of NH4 + and NO3 - in a single reactor.
Collapse
Affiliation(s)
- Wei Sun
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, P.R. China
| | - Chunchen Hu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Mingken Wei
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, P.R. China
| | - Jih-Gaw Lin
- Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu City 30010, Taiwan
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| |
Collapse
|
5
|
He Q, Tan B, Li M, Su J, Lin B, Wu NP, Shen HN, Chen JJ, Zhang Q. Deciphering the influence of salinity stress on the biological aniline degradation system: Pollutants degradation performance and microbial response. ENVIRONMENTAL RESEARCH 2024; 255:119162. [PMID: 38762003 DOI: 10.1016/j.envres.2024.119162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/14/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
In order to evaluate the impact of salinity gradients on the aniline biodegradation system, six reactors at salinity concentrations (0%-5%) were established. The results presented the salinity except for 5% imposed negligible effects on aniline degradation performance. Nitrification had prominent resistance to salinity (0%-1.5%) while were significantly restrained when salinity increased. The total nitrogen (TN) removal efficiency of Z4 (1.5%) was 20.5% higher than Z1 (0%) during the stable operation phase. Moreover, high throughput sequencing analysis showed that halophilic bacterium, such as Halomonas, Rhodococcus, remained greater survival advantages in high salinity system. The substantial enrichment of Flavobacterium, Dokdonella, Paracoccus observed in Z4 ensured its excellent nitrogen removal performance. The close cooperation among dominant functional bacteria was strengthened when salt content was below 1.5% while exceeding 1.5% led to the collapse of metabolic capacity through integrating the toxicity of aniline and high osmotic pressure.
Collapse
Affiliation(s)
- Qi He
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Bin Tan
- CCCC Second Highway Consultants Co., Ltd., Wuhan, 430056, PR China
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan, 572024, PR China
| | - Junhao Su
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Bing Lin
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Nan-Ping Wu
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Hao-Nan Shen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jia-Jing Chen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan, 572024, PR China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China.
| |
Collapse
|
6
|
He Q, Zhang Q, Su J, Li M, Lin B, Wu N, Shen H, Chen J. Unraveling the mechanisms and responses of aniline-degrading biosystem to salinity stress in high temperature condition: Pollutants removal performance and microbial community. CHEMOSPHERE 2024; 362:142688. [PMID: 38942243 DOI: 10.1016/j.chemosphere.2024.142688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
To explore the intrinsic influence of different salinity content on aniline biodegradation system in high temperature condition of 35 ± 1 °C, six groups at various salinity concentration (0.0%-5.0%) were applied. The results showed that the salinity exerted insignificant impact on aniline removal performance. The low-level salinity (0.5%-1.5%) stimulated the nitrogen metabolism performance. The G5-2.5% had excellent adaptability to salinity while the nitrogen removal capacity of G6-5.0% was almost lost. Moreover, high throughput sequencing analysis revealed that the g__norank_f__NS9_marine_group, g__Thauera and g__unclassified_f__Rhodobacteraceae proliferated wildly and established positive correlation each other in low salinity systems. The g__SM1A02 occupying the dominant position in G5 ensured the nitrification performance. In contrast, the Rhodococcus possessing great survival advantage in tremendous osmotic pressure competed with most functional genus, triggering the collapse of nitrogen metabolism capacity in G6. This work provided valuable guidance for the aniline wastewater treatment under salinity stress in high temperature condition.
Collapse
Affiliation(s)
- Qi He
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan, 572024, PR China.
| | - Junhao Su
- China Energy Engineering Group Guangdong Electric Power Design Institute Co., Ltd., Guangzhou, 510663, Guangdong, PR China
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan, 572024, PR China
| | - Bing Lin
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Nanping Wu
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Haonan Shen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jiajing Chen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan, 572024, PR China
| |
Collapse
|
7
|
Liu W, Wang Q, Wang Y, Zhan W, Wu Z, Zhou H, Cheng H, Chen Z. Effects of Cd(II) on nitrogen removal by a heterotrophic nitrification aerobic denitrification bacterium Pseudomonas sp. XF-4. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116588. [PMID: 38878332 DOI: 10.1016/j.ecoenv.2024.116588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
Simultaneous heterotrophic nitrification and aerobic denitrification (SND) is gaining tremendous attention due to its high efficiency and low cost in water treatment. However, SND on an industrial scale is still immature since effects of coexisting pollutants, for example, heavy metals, on nitrogen removal remains largely unresolved. In this study, a HNAD bacterium (Pseudomonas sp. XF-4) was isolated. It could almost completely remove ammonium and nitrate at pH 5-9 and temperature 20 ℃-35 ℃ within 10 h, and also showed excellently simultaneous nitrification and denitrification efficiency under the coexistence of any two of inorganic nitrogen sources with no intermediate accumulation. XF-4 could rapidly grow again after ammonium vanish when nitrite or nitrate existed. There was no significant effects on nitrification and denitrification when Cd(II) was lower than 10 mg/L, and 95 % of Cd(II) was removed by XF-4. However, electron carrier and electron transport system activity was inhibited, especially at high concentration of Cd(II). Overall, this study reported a novel strain capable of simultaneous nitrification and denitrification coupled with Cd(II) removal efficiently. The results provided new insights into treatment of groundwater or wastewater contaminated by heavy metals and nitrogen.
Collapse
Affiliation(s)
- Wenxian Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Qi Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, Hunan 410083, PR China.
| | - Wenhao Zhan
- National Key Laboratory of Human Factors Engineering, China Astronauts Research and Training Center, Beijing 100094, PR China
| | - Zhiqiang Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, Hunan 410083, PR China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, Hunan 410083, PR China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, Hunan 410083, PR China
| |
Collapse
|
8
|
Yang Y, Gui X, Chen L, Li H, Li Z, Liu T. Acid-tolerant Pseudomonas citronellolis YN-21 exhibits a high heterotrophic nitrification capacity independent of the amo and hao genes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116385. [PMID: 38772137 DOI: 10.1016/j.ecoenv.2024.116385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/23/2024]
Abstract
Heterotrophic nitrifying bacteria are found to be promising candidates for implementation in wastewater treatment systems due to their tolerance to extreme environments. A novel acid-resistant bacterium, Pseudomonas citronellolis YN-21, was isolated and reported to have exceptional heterotrophic nitrification capabilities in acidic condition. At pH 5, the highest NH4+ removal rate of 7.84 mg/L/h was displayed by YN-21, which was significantly higher than the NH4+ removal rates of other strains in neutral and alkaline environments. Remarkably, a distinct accumulation of NH2OH and NO3- was observed during NH4+ removal by strain YN-21, while traditional amo and hao genes were not detected in the genome, suggesting the possible presence of alternative nitrifying genes. Moreover, excellent nitrogen removal performance was displayed by YN-21 even under high concentrations of metal ion stress. Consequently, a broad application prospect in the treatment of leather wastewater and mine tailwater is offered by YN-21.
Collapse
Affiliation(s)
- Yuran Yang
- Chongqing Key Laboratory of Interfacial Processes and Soil Health, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xuwei Gui
- Chongqing Key Laboratory of Interfacial Processes and Soil Health, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Liuyi Chen
- Hanhong college, southwest university, Chongqing 400716, China
| | - Huimiao Li
- Chongqing Key Laboratory of Plant Disease Biology, college of Plant Protection, Southwest University, Chongqing 400716, China
| | - Zhenlun Li
- Chongqing Key Laboratory of Interfacial Processes and Soil Health, College of Resources and Environment, Southwest University, Chongqing 400716, China.
| | - Tuohong Liu
- Chongqing Key Laboratory of Interfacial Processes and Soil Health, College of Resources and Environment, Southwest University, Chongqing 400716, China
| |
Collapse
|
9
|
Zhang M, He T, Wu Q, Chen M, Liang X. Hydroxylamine supplementation accelerated the rates of cell growth, aerobic denitrification and nitrous oxide emission of Pseudomonas taiwanensis EN-F2. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120826. [PMID: 38608579 DOI: 10.1016/j.jenvman.2024.120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Hydroxylamine can disrupt the protein translation process of most reported nitrogen-converting bacteria, and thus hinder the reproduction of bacteria and nitrogen conversion capacity. However, the effect of hydroxylamine on the denitrification ability of strain EN-F2 is unclear. In this study, the cell growth, aerobic denitrification ability, and nitrous oxide (N2O) emission by Pseudomonas taiwanensis were carefully investigated by addition of hydroxylamine at different concentrations. The results demonstrated that the rates of nitrate and nitrite reduction were enhanced by 2.51 and 2.78 mg/L/h after the addition of 8.0 and 12.0 mg/L hydroxylamine, respectively. The N2O production from nitrate and nitrite reaction systems were strongly promoted by 4.39 and 8.62 mg/L, respectively, through the simultaneous acceleration of cell growth and both of nitrite and nitrate reduction. Additionally, the enzymatic activities of nitrate reductase and nitrite reductase climbed from 0.13 and 0.01 to 0.22 and 0.04 U/mg protein when hydroxylamine concentration increased from 0 to 6.0 and 12.0 mg/L. This may be the main mechanism for controlling the observed higher denitrification rate and N2O release. Overall, hydroxylamine supplementation supported the EN-F2 strain cell growth, denitrification and N2O emission rates.
Collapse
Affiliation(s)
- Manman Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| | - Qifeng Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Mengping Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Xiwen Liang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| |
Collapse
|
10
|
Xiong C, K. Singh B, Zhu YG, Hu HW, Li PP, Han YL, Han LL, Zhang QB, Wang JT, Liu SY, Wu CF, Ge AH, Zhang LM, He JZ. Microbial species pool-mediated diazotrophic community assembly in crop microbiomes during plant development. mSystems 2024; 9:e0105523. [PMID: 38501864 PMCID: PMC11019923 DOI: 10.1128/msystems.01055-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Plant-associated diazotrophs strongly relate to plant nitrogen (N) supply and growth. However, our knowledge of diazotrophic community assembly and microbial N metabolism in plant microbiomes is largely limited. Here we examined the assembly and temporal dynamics of diazotrophic communities across multiple compartments (soils, epiphytic and endophytic niches of root and leaf, and grain) of three cereal crops (maize, wheat, and barley) and identified the potential N-cycling pathways in phylloplane microbiomes. Our results demonstrated that the microbial species pool, influenced by site-specific environmental factors (e.g., edaphic factors), had a stronger effect than host selection (i.e., plant species and developmental stage) in shaping diazotrophic communities across the soil-plant continuum. Crop diazotrophic communities were dominated by a few taxa (~0.7% of diazotrophic phylotypes) which were mainly affiliated with Methylobacterium, Azospirillum, Bradyrhizobium, and Rhizobium. Furthermore, eight dominant taxa belonging to Azospirillum and Methylobacterium were identified as keystone diazotrophic taxa for three crops and were potentially associated with microbial network stability and crop yields. Metagenomic binning recovered 58 metagenome-assembled genomes (MAGs) from the phylloplane, and the majority of them were identified as novel species (37 MAGs) and harbored genes potentially related to multiple N metabolism processes (e.g., nitrate reduction). Notably, for the first time, a high-quality MAG harboring genes involved in the complete denitrification process was recovered in the phylloplane and showed high identity to Pseudomonas mendocina. Overall, these findings significantly expand our understanding of ecological drivers of crop diazotrophs and provide new insights into the potential microbial N metabolism in the phyllosphere.IMPORTANCEPlants harbor diverse nitrogen-fixing microorganisms (i.e., diazotrophic communities) in both belowground and aboveground tissues, which play a vital role in plant nitrogen supply and growth promotion. Understanding the assembly and temporal dynamics of crop diazotrophic communities is a prerequisite for harnessing them to promote plant growth. In this study, we show that the site-specific microbial species pool largely shapes the structure of diazotrophic communities in the leaves and roots of three cereal crops. We further identify keystone diazotrophic taxa in crop microbiomes and characterize potential microbial N metabolism pathways in the phyllosphere, which provides essential information for developing microbiome-based tools in future sustainable agricultural production.
Collapse
Affiliation(s)
- Chao Xiong
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Brajesh K. Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, Australia
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pei-Pei Li
- College of Resource and Environmental Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yan-Lai Han
- College of Resource and Environmental Sciences, Henan Agricultural University, Zhengzhou, China
| | - Li-Li Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qin-Bing Zhang
- Soil and Fertilizer Station of Qilin District, Qujing, Yunnan Province, China
| | - Jun-Tao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, Australia
| | - Si-Yi Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chuan-Fa Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environmental Sciences, Henan Agricultural University, Zhengzhou, China
| | - An-Hui Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
11
|
Li D, Sun Z, Luo G, Lu L, Zhang S, Xi J. Enhancing biological conversion of NO to N 2O by utilizing thermophiles instead of mesophiles. CHEMOSPHERE 2024; 350:141037. [PMID: 38147927 DOI: 10.1016/j.chemosphere.2023.141037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/24/2023] [Accepted: 12/23/2023] [Indexed: 12/28/2023]
Abstract
The production of nitrous oxide (N2O) through the biological denitrification of nitric oxide (NO) from flue gases has recently been achieved. Although the temperature of flue gas after desulphurization is usually 45-70 °C, all previous studies conducted microbial denitrification of NO under mesophilic conditions (22-35 °C). This study investigated the biological conversion of NO to N2O in both mesophilic (35-45 °C) and thermophilic conditions (45-50 °C). The results showed that temperature has a great impact on N2O production, with a maximum conversion efficiency (from NO to N2O) of 82% achieved at 45 °C, which is obviously higher than the reported conversion efficiencies (24-71%) under mesophilic conditions. Additionally, high-throughput sequencing result showed that the genera Enterococcus, Clostridium, Romboutsia, and Streptococcus were closely related to NO denitrification and N2O production. Microbial communities at 40 and 45 °C had greater metabolizing capacities for polymeric carbon sources. This study suggests that thermophilic condition (45 °C) is more suitable for biological production of N2O from NO.
Collapse
Affiliation(s)
- Dan Li
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhuqiu Sun
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ga Luo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Lichao Lu
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Shaobo Zhang
- Beijing Capital Sludge Disposal Technology Co. LTD, 100044, Beijing, China
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
12
|
Sui Y, Cui YW, Huang JL, Xu MJ. Feast/famine ratio regulates the succession of heterotrophic nitrification-aerobic denitrification and autotrophic ammonia oxidizing bacteria in halophilic aerobic granular sludge treating saline wastewater. BIORESOURCE TECHNOLOGY 2024; 393:129995. [PMID: 37951552 DOI: 10.1016/j.biortech.2023.129995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Heterotrophic nitrification-aerobic denitrification (HN-AD) shows innovation potential of wastewater treatment process in a single tank. However, how to enrich HN-AD bacteria in activated sludge to enhance their contribution remained unknown. This study explored the impact of the feast/famine (F/F) ratio on the succession of autotrophic ammonia oxidizing bacteria (AOB) and HN-AD bacteria in a halophilic aerobic granular sludge (HAGS) system. As the F/F ratio decreased from 1/9 to 1/15, the total inorganic nitrogen (TIN) removal performance significantly decreased. The proportion of heterotrophic bacteria was dropped from 79.0 % to 33 %. Accordingly, the relative abundance of Paracoccus decreased from 70.8 % to 25.4 %, and the copy number of the napA gene was reduced from 2.2 × 1010 copies/g HAGS to 8.1 × 109 copies/g HAGS. It found the F/F ratio regulated the population succession of autotrophic AOB and HN-AD bacteria, thereby providing a solution to achieve the enrichment of HN-AD bacteria in HAGS.
Collapse
Affiliation(s)
- Yuan Sui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Ji-Lin Huang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Meng-Jiao Xu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
13
|
Zhang L, Wang Z, Su J, Ali A, Li X. Mechanisms of ammonia, calcium and heavy metal removal from nutrient-poor water by Acinetobacter calcoaceticus strain HM12. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119912. [PMID: 38176381 DOI: 10.1016/j.jenvman.2023.119912] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
An Acinetobacter calcoaceticus strain HM12 capable of heterotrophic nitrification-aerobic denitrification (HN-AD) under nutrient-poor conditions was isolated, with an ammonia nitrogen (NH4+-N) removal efficiency of 98.53%. It can also remove heavy metals by microbial induced calcium precipitation (MICP) with a Ca2+ removal efficiency of 75.91%. Optimal conditions for HN-AD and mineralization of the strain were determined by kinetic analysis (pH = 7, C/N = 2.0, Ca2+ = 70.0 mg L-1, NH4+-N = 5.0 mg L-1). Growth curves and nitrogen balance elucidated nitrogen degradation pathways capable of converting NH4+-N to gaseous nitrogen. The analysis of the bioprecipitation showed that Zn2+ and Cd2+ were removed by the MICP process through co-precipitation and adsorption (maximum removal efficiencies of 93.39% and 80.70%, respectively), mainly ZnCO3, CdCO3, ZnHPO4, Zn3(PO4)2 and Cd3(PO4)2. Strain HM12 produces humic and fulvic acids to counteract the toxicity of pollutants, as well as aromatic proteins to increase extracellular polymers (EPS) and promote the biomineralization process. This study provides a experimental evidence for the simultaneous removal of multiple pollutants from nutrient-poor waters.
Collapse
Affiliation(s)
- Lingfei Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
14
|
Wang H, Fan Y, Zhou M, Liu J, Li X, Wang Y. Metagenomics insight into the long-term effect of ferrous ions on the mainstream anammox system. ENVIRONMENTAL RESEARCH 2023; 238:117243. [PMID: 37778610 DOI: 10.1016/j.envres.2023.117243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Anaerobic ammonium oxidation (anammox) bacteria have a high requirement for iron for their growth and metabolism. However, it remains unclear whether iron supplementation can sustain the stability of mainstream anammox systems at varying temperatures. Here, we investigated the long-term effects of Fe2+ on the mainstream anammox systems. Our findings revealed that the nitrogen removal efficiency (NRE) of the anammox system supplemented with 5 mg/L Fe2+ decreased from 76.5 ± 0.76% at 35 °C to 39.0 ± 9.9% at 25 °C. Notably, higher dosages of Fe2+ (15 mg/L and 30 mg/L) inhibited the anammox system, resulting in NREs of 15.9 ± 8.1% and 2.5 ± 1.1% at 25 °C, respectively. The results of microbial communities and function profiles suggested that the high Fe2+ dosage seriously affected the iron assimilation and utilization in the mainstream anammox system. This was evident from the decreased abundance of genes associated with Fe(II) transport and uptake, which in turn hindered the biosynthesis of intracellular iron-cofactors, resulting in decrease in the absolute abundance of Candidatus Brocadia, a key anammox bacterium, as well as a decline in NRE. Furthermore, our results showed that the anammox process was more susceptible to iron supplementation at 25 °C compared to 35 °C, which may be due to the oxidative stress reactions induced by combined lowered temperature and a high Fe2+ dosage. Overall, these findings offer a deeper understanding of the effect of iron in mainstream anammox systems, which can contribute to improved stability maintenance and effectiveness of anammox processes.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Yufei Fan
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Mingda Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Jiawei Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China.
| |
Collapse
|
15
|
Li G, Wei M, Wei G, Chen Z, Shao Z. Efficient heterotrophic nitrification by a novel bacterium Sneathiella aquimaris 216LB-ZA1-12 T isolated from aquaculture seawater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115588. [PMID: 37839193 DOI: 10.1016/j.ecoenv.2023.115588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/10/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
High concentration of ammonia poses a common threat to the healthy breeding of marine aquaculture organisms. Since aquaculture water is rich in organic matter, heterotrophic nitrifying bacteria might play a crucial role in ammonia removal. However, their roles in ammonia oxidation remain unknown. Here, we report a novel strain isolated from shrimp aquaculture seawater, identified as Sneathiella aquimaris 216LB-ZA1-12T, capable of heterotrophic nitrification. It is the first characterized heterotrophic nitrifier of the order Sneathiellales in the class Alphaproteobacteria. It exhibits high activity in heterotrophic nitrification, removing nearly 94% of ammonium-N under carbon-constrained conditions in 8 days with no observed nitrite accumulation. The heterotrophic nitrification pathway, inferred based on detection and genomic data was as follows: NH4+→NH2OH→NO→NO2-→NO3-. While this pathway aligns with the classical nitrification pathway, while the significant difference lies in the absence of classical HAO and HOX encoding genes in the genome, which is common in heterotrophic nitrifying bacteria. In summary, this bacterium is not only valuable for studying the nitrifying mechanism, but also holds potential for practical applications in ammonia removal in marine aquaculture systems and saline wastewater.
Collapse
Affiliation(s)
- Guizhen Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, China; State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Mengjiao Wei
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, China; State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China; College of Oceans and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Guangshan Wei
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, China; State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China; Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai)/School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Zhen Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, China; State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, China; State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China; Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai)/School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China.
| |
Collapse
|
16
|
Ding C, He T. Bacillus thuringiensis EM-A1: A novel bacterium for high concentration of ammonium elimination with low nitrite accumulation. CHEMOSPHERE 2023; 338:139465. [PMID: 37437615 DOI: 10.1016/j.chemosphere.2023.139465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
The biological elimination of high concentration of ammonium from wastewater has attracted increasing attention in recent years. However, few studies on the efficient elimination of high concentration of ammonium by a single bacterium have been reported. Here, the efficient elimination of NH4+-N (>99%) and total nitrogen (TN) (>77%) were attained by Bacillus thuringiensis EM-A1 under 150 rpm at pH 7.2 with sodium succinate and a carbon/nitrogen ratio of 15 at 30 °C with an inoculum size (as measured by absorbance at 600 nm) of 0.2. Strain EM-A1 effectively eliminated 100 mg/L of inorganic nitrogen with maximal NH4+-N, NO3--N, and NO2--N elimination rates of 4.88, 2.57, and 3.06 mg/L/h, respectively. The elimination efficiencies of NH4+-N were 99.87% and 97.13% at initial concentrations of 500 and 1000 mg/L, respectively. Only 0.91 mg/L of NO2--N was accumulated with the elimination of 1000 mg/L NH4+-N. A concentration of 5 mg/L exogenous hydroxylamine was toxic and further inhibited heterotrophic nitrification and aerobic denitrification (HN-AD). The NH4+-N and NO2--N elimination capacities of strain EM-A1 were specifically inhibited by 2-Octyne (OCT) over 4 μmol/L and diethyldithiocarbamate (DDC) over 0.5 mmol/L, respectively. Above 25 mg/L procyanidin (PCY) inhibited the bioconversion of NO3--N and NO2--N. The results demonstrated that strain EM-A1 had HN-AD capacity under halophilic conditions, and has great potential for use in the treatment of nitrogen pollution wastewater; this study also provides new insights into this strain's nitrogen elimination mechanism, helping advance environmental biotechnology.
Collapse
Affiliation(s)
- Chenyu Ding
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Zhijuan East Road, Huaxi, Guiyang, 550025, Guizhou Province, China.
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Zhijuan East Road, Huaxi, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
17
|
Zuo X, Xu W, Wei S, Jiang S, Luo Y, Ling M, Zhang K, Gao Y, Wang Z, Hu J, Grossart HP, Luo Z. Aerobic denitrifying bacterial-fungal consortium mediating nitrate removal: Dynamics, network patterns and interactions. iScience 2023; 26:106824. [PMID: 37250796 PMCID: PMC10212969 DOI: 10.1016/j.isci.2023.106824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
In recent years, nitrogen removal by mixed microbial cultures has received increasing attention owing to cooperative metabolism. A natural bacterial-fungal consortium was isolated from mariculture, which exhibited an excellent aerobic denitrification capacity. Under aerobic conditions, nitrate removal and denitrification efficiencies were up to 100% and 44.27%, respectively. High-throughput sequencing and network analysis suggested that aerobic denitrification was potentially driven by the co-occurrence of the following bacterial and fungal genera: Vibrio, Fusarium, Gibberella, Meyerozyma, Exophiala and Pseudoalteromonas, with the dominance of Vibrio and Fusarium in bacterial and fungal communities, respectively. In addition, the isolated consortium had a high steady aerobic denitrification performance in our sub-culturing experiments. Our results provide new insights on the dynamics, network patterns and interactions of aerobic denitrifying microbial consortia with a high potential for new biotechnology applications.
Collapse
Affiliation(s)
- Xiaotian Zuo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- School of Marine Sciences, China University of Geosciences, Beijing 100083, China
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Shiping Wei
- School of Marine Sciences, China University of Geosciences, Beijing 100083, China
| | - Shuangcheng Jiang
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China
| | - Yu Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Minghuang Ling
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Kai Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yuanhao Gao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zhichao Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jiege Hu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin 16775, Germany
- Institute of Biochemistry and Biology, Postdam University, Potsdam 14469, Germany
| | - Zhuhua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
- Marine Biology College, Xiamen Ocean Vocational College, Xiamen 361012, China
- Co-Innovation Center of Jiangsu Marine Bioindustry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
18
|
Wang A, Luo X, Li X, Huang D, Huang Q, Zhang XX, Chen W. Bioaugmentation of woodchip bioreactors by Pseudomonas nicosulfuronedens D1-1 with functional species enrichment. BIORESOURCE TECHNOLOGY 2023:129309. [PMID: 37311530 DOI: 10.1016/j.biortech.2023.129309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
A novel heterotrophic nitrification and aerobic denitrification (HN-AD) bacterium D1-1 was identified as Pseudomonas nicosulfuronedens D1-1. Strain D1-1 removed 97.24%, 97.25%, and 77.12% of 100 mg/L NH4+-N, NO3--N, and NO2--N, with corresponding maximum removal rates of 7.42, 8.69, and 7.15 mg·L-1·h-1, respectively. Strain D1-1 bioaugmentation enhanced woodchip bioreactor performance with an average NO3--N removal efficiency of 93.8%. Bioaugmentation enriched N cyclers along with increased bacterial diversity and predicted genes for denitrification, DNRA (dissimilatory nitrate reduction to ammonium), and ammonium oxidation. It also reduced local selection and network modularity from 4.336 to 0.934, resulting in predicted nitrogen (N) cycling genes shared by more modules. These observations suggested that bioaugmentation could enhance the functional redundancy to stabilize the NO3--N removal performance. This study provides insights into the potential applications of HN-AD bacteria in bioremediation or other environmental engineering fields, relying on their ability to shape bacterial communities.
Collapse
Affiliation(s)
- Achen Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuesong Luo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Daqing Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xue-Xian Zhang
- School of Natural Sciences, Massey University at Albany, Auckland 0745, New Zealand
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
19
|
Zhang K, Zeng Q, Jiang R, Shi S, Yang J, Long L, Tian X. Three Novel Marine Species of Paracoccus, P. aerodenitrificans sp. nov., P. sediminicola sp. nov. and P. albus sp. nov., and the Characterization of Their Capability to Perform Heterotrophic Nitrification and Aerobic Denitrification. Microorganisms 2023; 11:1532. [PMID: 37375034 DOI: 10.3390/microorganisms11061532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Heterotrophic nitrification-aerobic denitrification (HN-AD) is an efficient nitrogen removal process and the genus Paracoccus is one important group of the HN-AD bacteria. During an investigation of the microbial diversity in marine ranching of the Pearl River Estuary (PR China), three bacterial strains, designated SCSIO 75817T, SCSIO 76264T and SCSIO 80058T, were isolated from sediments. Phylogenetic analyses based on 16S rRNA gene sequences indicated that the three strains belonged to the genus Paracoccus and their closest neighbors were P. isoporae DSM 22220T (97.6-98.0%), P. aurantiacus CGMCC 1.13898T (97.3-97.6%) and P. xiamenensis MCCC 1A16381T (97.1-97.4%), respectively. The analysis results of 16S rRNA gene similarity, ANI, AAI and dDDH showed that the pairwise similarities between these three strains and their closest neighbors were 97.4-98.5%, 76.9-81.0%, 75.5-79.6% and 20.3-23.3%, respectively. Polyphasic taxonomic data of the phylogenetic, phenotypic and chemotaxonomic analyses indicate that these strains represent three novel species in the genus Paracoccus, for which the names Paracoccus aerodenitrificans sp. nov., Paracoccus sediminicola sp. nov. and Paracoccus albus sp. nov. are proposed, respectively. The study also demonstrated the heterotrophic nitrification-aerobic denitrification (HN-AD) ability of the novel species P. aerodenitrificans SCSIO 75817T. When it was aerobically cultivated at 28 °C using NH4+-N, NO3--N and NO2--N as the sole nitrogen sources, the nitrogen removal efficiencies were 73.4, 55.27 and 49.2%, respectively, and the maximum removal rates were 3.05, 1.82 and 1.63 mg/L/h, respectively. The results suggest that it has promising potential for wastewater treatment.
Collapse
Affiliation(s)
- Kun Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, SCSIO, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zeng
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, SCSIO, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rouyun Jiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, SCSIO, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songbiao Shi
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, SCSIO, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, SCSIO, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, SCSIO, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Xinpeng Tian
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, SCSIO, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, China
| |
Collapse
|
20
|
Zhou H, Cheng L, Xia L, Deng G, Zhang Y, Shi X. Rapid simultaneous removal of nitrogen and phosphorous by a novel isolated Pseudomonas mendocina SCZ-2. ENVIRONMENTAL RESEARCH 2023; 231:116062. [PMID: 37149028 DOI: 10.1016/j.envres.2023.116062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Nitrogen (N) and phosphorous (P) removal by a single bacterium could improve the biological reaction efficiency and reduce the operating cost and complexity in wastewater treatment plants (WWTPs). Here, an isolated strain was identified as Pseudomonas mendocina SCZ-2 and showed high performance of heterotrophic nitrification (HN) and aerobic denitrification (AD) without intermediate accumulation. During the AD process, the nitrate removal efficiency and rate reached a maximum of 100% and 47.70 mg/L/h, respectively, under optimal conditions of sodium citrate as carbon source, a carbon-to-nitrogen ratio of 10, a temperature of 35 °C, and shaking a speed of 200 rpm. Most importantly, the strain SCZ-2 could rapidly and simultaneously eliminate N and P with maximum NH4+-N, NO3--N, NO2--N, and PO43--P removal rates of 14.38, 17.77, 20.13 mg N/L/h, and 2.93 mg P/L/h, respectively. Both the N and P degradation curves matched well with the modified Gompertz model. Moreover, the amplification results of functional genes, whole genome sequencing, and enzyme activity tests provided theoretical support for simultaneous N and P removal pathways. This study deepens our understanding of the role of HN-AD bacteria and provides more options for simultaneous N and P removal from actual sewage.
Collapse
Affiliation(s)
- Hongfeng Zhou
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Lei Cheng
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
| | - Lisong Xia
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Guozhi Deng
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Youde Zhang
- Anhui Xinyu Environmental Protection Technology Co., Ltd., Hefei, 230051, China
| | - Xianyang Shi
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
| |
Collapse
|
21
|
Wei T, Wang Z, Yang Y, Xiang W, Liu Y, Wu B, Cui X, Guo B, Zhou Y. Microbial niches and dynamics of antibiotic resistance genes in a bio-enhanced granular-activated carbon biofilm treating greywater. CHEMOSPHERE 2023; 331:138774. [PMID: 37100251 DOI: 10.1016/j.chemosphere.2023.138774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/22/2023] [Indexed: 05/03/2023]
Abstract
Accumulation and transmission of antibiotic resistance genes (ARGs) in greywater treatment systems present risks for its reuse. In this study, a gravity flow self-supplying oxygen (O2) bio-enhanced granular activated carbon dynamic biofilm reactor (BhGAC-DBfR) was developed to treat greywater. Maximum removal efficiencies were achieved at saturated/unsaturated ratios (RSt/Ust) of 1:1.1 for chemical oxygen demand (97.6 ± 1.5%), linear alkylbenzene sulfonates (LAS) (99.2 ± 0.5%), NH4+-N (99.3 ± 0.7%) and total nitrogen (85.3 ± 3.2%). Microbial communities were significantly different at various RSt/Ust and reactor positions (P < 0.05). The unsaturated zone with low RSt/Ust showed more abundant microorganisms than the saturated zone with high RSt/Ust. The reactor-top community was predominant by aerobic nitrification (Nitrospira) and LAS biodegradation (Pseudomonas, Rhodobacter and Hydrogenophaga) related genera; but reactor-bottom community was predominant by anaerobic denitrification and organics removal related genera (Dechloromonas and Desulfovibrio). Most of the ARGs (e.g., intI-1, sul1, sul2 and korB) were accumulated in the biofilm, which were closely associated with microbial communities at reactor top and stratification. The saturated zone can achieve over 80% removal of the tested ARGs at all operation Phases. Results suggested that BhGAC-DBfR can provide assistance in blocking the environment dissemination of ARGs during greywater treatment.
Collapse
Affiliation(s)
- Ting Wei
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ziqi Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Yang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wanchen Xiang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Beibei Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaocai Cui
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bing Guo
- Department of Civil and Environmental Engineering, University of Surrey, Surrey, GU2 7XH, United Kingdom.
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
22
|
Bai Y, Wang S, Zhussupbekova A, Shvets IV, Lee PH, Zhan X. High-rate iron sulfide and sulfur-coupled autotrophic denitrification system: Nutrients removal performance and microbial characterization. WATER RESEARCH 2023; 231:119619. [PMID: 36689879 DOI: 10.1016/j.watres.2023.119619] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/06/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Iron sulfides-based autotrophic denitrification (IAD) is a promising technology for nitrate and phosphate removal from low C:N ratio wastewater due to its cost-effectiveness and low sludge production. However, the slow kinetics of IAD, compared to other sulfur-based autotrophic denitrification (SAD) processes, limits its engineering application. This study constructed a co-electron-donor (FeS and S0 with a volume ratio of 2:1) iron sulfur autotrophic denitrification (ISAD) biofilter and operated at as short as 1 hr hydraulic retention time (HRT). Long-term operation results showed that the superior total nitrogen and phosphate removals of the ISAD biofilter were 90-100% at 1-12 h HRT, with the highest denitrification rate up to 960 mg/L/d. Considering low sulfate production, HRT of 3 h could be the optimal condition. Such superior performance in the ISAD biofilter was achieved due to the interactions between FeS and S0, which accelerated the denitrification process and maintained the acidity-alkalinity balance. Metagenomic analysis found that the enriched nitrate-dependent iron-oxidizing (NDFO) bacteria (Acinetobacter and Acidovorax), sulfur-oxidizing bacteria (SOB), and dissimilatory nitrate reduction to ammonia (DNRA) bacteria likely supported stable nitrate reduction. The metabolic pathway analysis showed that completely denitrification and DNRA, coupled with sulfur oxidation, disproportionation, iron oxidation and phosphate precipitation with FeS and S0 as co-electron donors, were responsible for the high-rate nitrate and phosphate removal. This study provides the potential of ISAD as a highly efficient post-denitrification technology and sheds light on the balanced microbial S-N-Fe transformation.
Collapse
Affiliation(s)
- Yang Bai
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Shun Wang
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | | | - Igor V Shvets
- CRANN, School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | - Po-Heng Lee
- Imperial College London, London SW7 2AZ, United Kingdom
| | - Xinmin Zhan
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
23
|
Nie M, Li K, Li Z. β-Alanine Metabolism Leads to Increased Extracellular pH during the Heterotrophic Ammonia Oxidation of Pseudomonas putida Y-9. Microorganisms 2023; 11:microorganisms11020356. [PMID: 36838321 PMCID: PMC9963543 DOI: 10.3390/microorganisms11020356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
The mechanisms underlying the increase in external pH caused by heterotrophic nitrification and aerobic denitrification microorganisms during ammonia oxidation were unclear. This work demonstrated that after culturing Pseudomonas putida Y-9 for 60 h in a medium with ammonium nitrogen as the sole nitrogen source at an initial pH of 7.20, the pH value increased to 9.21. GC-TOF-MS analysis was used to compare the significantly regulated metabolites and related metabolic pathways between different time points. The results showed that the consumption of H+ in the conversion of malonic acid to 3-hydroxypropionic acid in the β-alanine metabolic pathway was the main reason for the increase in pH. RT-qPCR confirmed that the functional gene ydfG dominated the consumption of H+. This study provides new research ideas for the change of external pH caused by bacterial metabolism and further expands the understanding of the interaction between bacteria and the environment.
Collapse
Affiliation(s)
- Ming Nie
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Kaili Li
- School of Chemical Engineering, University of Queensland, Brisbane 4072, Australia
| | - Zhenlun Li
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400716, China
- Correspondence: ; Tel.: +86-138-8337-2713
| |
Collapse
|
24
|
Chen D, Samwini AMN, Manirakiza B, Addo FG, Numafo-Brempong L, Baah WA. Effect of erythromycin on epiphytic bacterial communities and water quality in wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159008. [PMID: 36162586 DOI: 10.1016/j.scitotenv.2022.159008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The occurrence of antibiotics such as erythromycin (ERY) under macrolide group, has long been acknowledged for negatively affecting ecosystems in freshwater environments. However, the effects of ERY on water quality and microbial communities in epiphytic biofilms are poorly understood. Here, Scanning Electron Microscopy (SEM), High-throughput sequencing, and physicochemical analytical methods were employed to unravel the impact of ERY on the water quality and bacterial morphology, biodiversity, composition, interaction, and ecological function in epiphytic biofilms attached to Vallisneria natans and artificial plants in mesocosmic wetlands. The study showed that ERY exposure significantly impaired the nutrient removal capacity (TN, TP, and COD) and altered the epiphytic bacterial morphology of V. natans and artificial plants. ERY did not affect the bacterial α-diversity. Notwithstanding ERY decreased the bacterial composition, but the relative abundance of Proteobacteria and Patescibacteria spiked by 62.2 % and 54 %, respectively, in V. natans, while Desulfobacteria and Chloroflexi increased by 8.9 % and 11.2 %, respectively, in artificial plants. Notably, ERY disturbed the food web structure and metabolic pathways such as carbohydrate metabolism, amino acid metabolism, energy metabolism, cofactor and vitamin metabolism, membrane transport, and signal transduction. This study revealed that ERY exposure disrupted the bacterial morphology, composition, interaction or food web structure, and metabolic functions in epiphytic biofilm. These data underlined that ERY negatively impacts epiphytic bacterial communities and nutrient removal in wetlands.
Collapse
Affiliation(s)
- Deqiang Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Abigail Mwin-Nea Samwini
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Benjamin Manirakiza
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; University of Rwanda (UR), College of Science and Technology (CST), Department of Biology, P.O. Box 3900, Kigali, Rwanda.
| | - Felix Gyawu Addo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Lydia Numafo-Brempong
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Wambley Adomako Baah
- College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China
| |
Collapse
|
25
|
He T, Zhang M, Chen M, Wu Q, Yang L, Yang L. Klebsiella oxytoca (EN-B2): A novel type of simultaneous nitrification and denitrification strain for excellent total nitrogen removal during multiple nitrogen pollution wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 367:128236. [PMID: 36332872 DOI: 10.1016/j.biortech.2022.128236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The poor total nitrogen (TN) removal rate achieved using microorganisms to treat wastewater polluted with multiple types of nitrogen was improved using a novel simultaneous nitrification and denitrification strain (Klebsiella oxytoca EN-B2). Strain EN-B2 rapidly eliminated ammonium, nitrate, and nitrite, giving maximum elimination rates of 4.58, 7.46, and 7.83 mg/(L h), respectively, equivalent to TN elimination rates of 4.35, 6.92, and 7.11 mg/(L h), respectively. The simultaneous nitrification and denitrification system gave ammonium and nitrite elimination rates of 7.14 and 9.17 mg/(L h), respectively, and a TN elimination rate ≥ 9.0 mg/(L h). Nitrogen balance calculations indicated that 51.22 %, 31.62 % and 46.82 % of TN in systems containing only ammonium, nitrite, and nitrate, respectively, were lost as nitrogenous gases. The ammonia monooxygenase, hydroxylamine oxidoreductase, nitrate reductase and nitrite reductase enzyme activities were determined. The results indicated that strain EN-B2 can be used to treat wastewater polluted with multiple types of nitrogen.
Collapse
Affiliation(s)
- Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Manman Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Mengping Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Qifeng Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Li Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Lu Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
26
|
Zhang M, He T, Wu Q, Chen M. Efficient detoxication of hydroxylamine and nitrite through heterotrophic nitrification and aerobic denitrification by Acinetobacter johnsonii EN-J1. Front Microbiol 2023; 14:1130512. [PMID: 37138626 PMCID: PMC10149794 DOI: 10.3389/fmicb.2023.1130512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
The co-existence of hydroxylamine (NH2OH) and nitrite (NO2 --N) can aggravate the difficulty of wastewater treatment. The roles of hydroxylamine (NH2OH) and nitrite (NO2 --N) in accelerating the elimination of multiple nitrogen sources by a novel isolated strain of Acinetobacter johnsonii EN-J1 were investigated in this study. The results demonstrated that strain EN-J1 could eliminate 100.00% of NH2OH (22.73 mg/L) and 90.09% of NO2 --N (55.32 mg/L), with maximum consumption rates of 1.22 and 6.75 mg/L/h, respectively. Prominently, the toxic substances NH2OH and NO2 --N could both facilitate nitrogen removal rates. Compared with the control treatment, the elimination rates of nitrate (NO3 --N) and NO2 --N were enhanced by 3.44 and 2.36 mg/L/h after supplementation with 10.00 mg/L NH2OH, and those of ammonium (NH4 +-N) and NO3 --N were improved by 0.65 and 1.00 mg/L/h after the addition of 50.00 mg/L NO2 --N. Furthermore, the nitrogen balance results indicated that over 55.00% of the initial total nitrogen was transformed into gaseous nitrogen by heterotrophic nitrification and aerobic denitrification (HN-AD). Ammonia monooxygenase (AMO), hydroxylamine oxidoreductase (HAO), nitrate reductase (NR), and nitrite reductase (NIR), which are essential for HN-AD, were detected at levels of 0.54, 0.15, 0.14, and 0.01 U/mg protein, respectively. All findings confirmed that strain EN-J1 could efficiently execute HN-AD, detoxify NH2OH and NO2 --N, and ultimately promote nitrogen removal rates.
Collapse
|
27
|
Niu S, Gong W, Li Z, Zhang K, Wang G, Yu E, Xia Y, Tian J, Li H, Ni J, Xie J. Complete genome analysis of Pseudomonas furukawaii ZS1 isolated from grass carp ( Ctenopharyngodon idellus) culture water. Genome 2023; 66:11-20. [PMID: 36395476 DOI: 10.1139/gen-2022-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas furukawaii ZS1, isolated from grass carp (Ctenopharyngodon idellus) culture water, exhibits efficient aerobic nitrate reduction without nitrite accumulation; however, the molecular pathway underlying this aerobic nitrate reduction remains unclear. In this study, we constructed a complete genome map of P. furukawaii ZS1 and performed a comparative genomic analysis with a reference strain. The results showed that P. furukawaii ZS1 genome was 6 026 050 bp in size and contained 5427 predicted protein-coding sequences. The genome contained all the necessary genes for the dissimilatory nitrate reduction to ammonia pathway but lacked those for the assimilatory nitrate reduction pathway; additionally, genes that convert ammonia to organic nitrogen were also identified. The presence of putative genes associated with the nitrogen and oxidative phosphorylation pathways implied that ZS1 can perform respiration and nitrate reduction simultaneously under aerobic conditions, so that nitrite is rapidly consumed for detoxication by denitrification. The aim of this study is to indicate the great potential of strain ZS1 for future full-scale applications in aquaculture. This work provided insights at the molecular level on the nitrogen metabolic pathways in Pseudomonas species. The understanding of nitrogen metabolic pathways also provides significant molecular information for further Pseudomonas species modification and development.
Collapse
Affiliation(s)
- Shuhui Niu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wangbao Gong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Zhifei Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Kai Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Guangjun Wang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Ermeng Yu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Yun Xia
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Jingjing Tian
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Hongyan Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Jiajia Ni
- Research and Development Center, Guangdong Meilikang Bio-Sciences Ltd., Dongguan, China.,Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China.,Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| |
Collapse
|
28
|
Styczynski M, Rogowska A, Nyabayo C, Decewicz P, Romaniuk F, Pączkowski C, Szakiel A, Suessmuth R, Dziewit L. Heterologous production and characterization of a pyomelanin of Antarctic Pseudomonas sp. ANT_H4: a metabolite protecting against UV and free radicals, interacting with iron from minerals and exhibiting priming properties toward plant hairy roots. Microb Cell Fact 2022; 21:261. [PMID: 36527127 PMCID: PMC9756463 DOI: 10.1186/s12934-022-01990-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Antarctica has one of the most extreme environments in the world. This region is inhabited by specifically adapted microorganisms that produce various unique secondary metabolites (e.g. pigments) enabling their survival under the harsh environmental conditions. It was already shown that these natural, biologically active molecules may find application in various fields of biotechnology. RESULTS In this study, a cold-active brown-pigment-producing Pseudomonas sp. ANT_H4 strain was characterized. In-depth genomic analysis combined with the application of a fosmid expression system revealed two different pathways of melanin-like compounds biosynthesis by the ANT_H4 strain. The chromatographic behavior and Fourier-transform infrared spectroscopic analyses allowed for the identification of the extracted melanin-like compound as a pyomelanin. Furthermore, optimization of the production and thorough functional analyses of the pyomelanin were performed to test its usability in biotechnology. It was confirmed that ANT_H4-derived pyomelanin increases the sun protection factor, enables scavenging of free radicals, and interacts with the iron from minerals. Moreover, it was shown for the first time that pyomelanin exhibits priming properties toward Calendula officinalis hairy roots in in vitro cultures. CONCLUSIONS Results of the study indicate the significant biotechnological potential of ANT_H4-derived pyomelanin and open opportunities for future applications. Taking into account protective features of analyzed pyomelanin it may be potentially used in medical biotechnology and cosmetology. Especially interesting was showing that pyomelanin exhibits priming properties toward hairy roots, which creates a perspective for its usage for the development of novel and sustainable agrotechnical solutions.
Collapse
Affiliation(s)
- Michal Styczynski
- grid.12847.380000 0004 1937 1290Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agata Rogowska
- grid.12847.380000 0004 1937 1290Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Christine Nyabayo
- grid.6734.60000 0001 2292 8254Institute of Chemistry, Technical University of Berlin, Berlin, Germany
| | - Przemyslaw Decewicz
- grid.12847.380000 0004 1937 1290Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Filip Romaniuk
- grid.12847.380000 0004 1937 1290Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Cezary Pączkowski
- grid.12847.380000 0004 1937 1290Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Szakiel
- grid.12847.380000 0004 1937 1290Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Roderich Suessmuth
- grid.6734.60000 0001 2292 8254Institute of Chemistry, Technical University of Berlin, Berlin, Germany
| | - Lukasz Dziewit
- grid.12847.380000 0004 1937 1290Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
29
|
Bian X, Wu Y, Li J, Yin M, Li D, Pei H, Chang S, Guo W. Effect of dissolved oxygen on high C/N wastewater treatment in moving bed biofilm reactors based on heterotrophic nitrification and aerobic denitrification: Nitrogen removal performance and potential mechanisms. BIORESOURCE TECHNOLOGY 2022; 365:128147. [PMID: 36265789 DOI: 10.1016/j.biortech.2022.128147] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
In this study, it was investigated the nitrogen removal (NR) performance and potential mechanism for high C/N wastewater treatment under different dissolved oxygen (DO) concentrations. The results showed that DO concentration significantly affected the removal efficiency of total nitrogen (TN). When the initial DO increased from 0.5 to 1.5 mg/L, TN removal efficiency significantly increased from 65 % to 85 %. However, a further DO increase did not promote TN removal, and the NR was only 80 % with an initial DO concentration of 3.5 mg/L. The effect of DO concentration on NR was influenced by the combined action of functional bacteria and electron flow. Excessive DO concentration did not positively affect NR efficiency but promoted electron utilization and respiratory proliferation. When the DO concentration was 1.5 mg/L, more electrons generated by sodium acetate metabolism were transferred to the aerobic denitrification process, compared to when the DO concentration was 3.5 mg/L.
Collapse
Affiliation(s)
- Xueying Bian
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yaodong Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Muchen Yin
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Dongyue Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Hanbo Pei
- China Light Industry International Engineering Co., Ltd., Beijing 100026, China
| | - Song Chang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Wei Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
30
|
Wu Q, He T, Chen M, Zhang M. Nitrogen removal characterization and functional enzymes identification of a hypothermia bacterium Pseudomonas fragi EH-H1. BIORESOURCE TECHNOLOGY 2022; 365:128156. [PMID: 36272678 DOI: 10.1016/j.biortech.2022.128156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
A novel hypothermic strain, Pseudomonas fragi EH-H1, was found to effectively perform heterotrophic nitrification and aerobic denitrification at 15 °C. This strain could consume 100 %, 100 % and 99.95 % of ammonium (54.90 mg∙L-1), nitrate (56.12 mg∙L-1) and nitrite (54.15 mg∙L-1), accompanied by peak removal rates of 5.51, 3.63 and 3.14 mg/L/h, respectively. The ammonium was removed preferentially during simultaneous nitrification and denitrification. Notably, the elimination rate of the toxic nitrite nitrogen remained approximately 3.14 mg/L/h, whether supplemented with ammonium or not. Stepwise inhibition experiments revealed that the key enzymes of ammonia monooxygenase (AMO) and nitrite oxidoreductase (NiR) for nitrification and denitrification coexisted in strain EH-H1. AMO, nitrate reductase and NiR were successfully expressed and detected at 0.637, 0.239 and 0.018 U/mg proteins, respectively. Overall, strain EH-H1 had an outstanding ability to remove nitrogen at low temperatures and could provide guidance for cryogenic wastewater treatment.
Collapse
Affiliation(s)
- Qifeng Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Mengping Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Manman Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
31
|
Characterization of Achromobacter denitrificans QHR-5 for heterotrophic nitrification-aerobic denitrification with iron oxidation function isolated from BSIS:Nitrogen removal performance and enhanced SND capability of BSIS. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Cao Q, Li X, Chen Y, Li X, Xie Z, Li D. Nitrification resistance and functional redundancy maintain the system stability of partial nitrification in high-strength ammonium wastewater system. BIORESOURCE TECHNOLOGY 2022; 365:128157. [PMID: 36272680 DOI: 10.1016/j.biortech.2022.128157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The sudden change of ammonia loading in high-strength ammonium wastewater treatment can directly affect the system stability by altering microbial community dynamics. To maintain the system stability, the effects of ammonia shock loading on microbial community dynamics must be studied. Two sets of sequencing batch reactors were operated with 6 shock cycles (maximum volumetric loading rate of 1928 mg N/(L·d)). CN system contained both organic carbon and ammonia and N system contained only ammonia. Comparing with N system, CN system operated more stably and had higher nitrite accumulation rate. Free ammonia (FA) was the select stress for the turnover of CN microbial communities, while the N communities didn t shift much. The increase of Nitrosomonas and the appearance of heterotrophic nitrification-aerobic denitrification bacteria in CN system presented its resistance and redundancy against FA impact, while the increase of functional genes exhibited functional genes redundancy which maintained the system stability.
Collapse
Affiliation(s)
- Qin Cao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangzhen Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yichao Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xin Li
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhijie Xie
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Dong Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
33
|
Karuriya S, Choudhary S. Simultaneous heterotrophic nitrification and aerobic denitrification potential of Paenibacillus sp. strain GLM-08 isolated from lignite mine waste and its role ammonia removal from mine waste water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:3223-3235. [PMID: 36579880 DOI: 10.2166/wst.2022.401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Paenibacillus sp. strain GLM-08 was isolated from a lignite mine waste site in the Barmer basin, Rajasthan, India. The strain is efficient in heterotrophic nitrification and aerobic denitrification. This bacterium could remove approximately more than 95% of NH4+, NO3-, and NO2- in 24 h. The average nitrogen (N) removal rate of the strain was found to be 4.775 mg/L/H, 5.66 mg/L/H, and 5.01 mg/L/H for NH4+, NO3-, and NO2-, respectively. Bioaugmentation of mine wastewater with Paenibacillus sp. strain GLM-08 demonstrated N removal of 86.6% under conditions of a high load of NH4+. The presence of potential genetic determinants (nxrB, nirS, and nosZ) having role in heterotrophic nitrification and aerobic denitrification was confirmed by PCR based analysis. The findings show that this bacterium performs simultaneous nitrification and denitrification and has a high nitrogen removal efficiency indicating the potential application of the strain in the treatment of wastewater.
Collapse
Affiliation(s)
- Silisti Karuriya
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, P.O. Banasthali Vidyapith, Rajasthan 304022, India E-mail:
| | - Sangeeta Choudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, P.O. Banasthali Vidyapith, Rajasthan 304022, India E-mail:
| |
Collapse
|
34
|
Huan C, Yan Z, Sun J, Liu Y, Zeng Y, Qin W, Cheng Y, Tian X, Tan Z, Lyu Q. Nitrogen removal characteristics of efficient heterotrophic nitrification-aerobic denitrification bacterium and application in biological deodorization. BIORESOURCE TECHNOLOGY 2022; 363:128007. [PMID: 36155812 DOI: 10.1016/j.biortech.2022.128007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
A heterotrophic nitrifying aerobic denitrifying (HN-AD) strain HY-1 with excellent capacity, identified as Paracoccus denitrificans, was isolated from activated sludge. HY-1 was capable of removing NH4+, NO2-, and NO3- with the corresponding rate of 17.33 mg-N L-1 h-1, 21.83 mg-N L-1 h-1, and 32.37 mg-N L-1 h-1, as well as the mixture of multiple nitrogen sources. Meanwhile, HY-1 could execute denitrification function under anaerobic conditions with a rate of 14.56 mg-N L-1 h-1. HY-1 required less energy investment, which exhibited average denitrification rate of 5.19 mg-N L-1 h-1 at carbon-nitrogen ratio was 1. After nitrification-denitrification metabolic pathway analysis, HY-1 was applied in a biological trickling filter reactor for compost deodorization. The results showed that adding of HY-1 greatly reduced the ionic concentration of NH4+ and NO3- in the circulating liquid without impairing the deodorization effect (NH3 removal rate>98.07%). These findings extend the field of application of HN-AD and provide new insights for biological deodorization.
Collapse
Affiliation(s)
- Chenchen Huan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, Shaanxi Province 710064, China; School of Water and Environment, Chang'an University, Xi'an, Shaanxi Province 710064, China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jiang Sun
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yong Zeng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei Qin
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yapeng Cheng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xueping Tian
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhouliang Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
35
|
Han F, Zhou W. Nitrogen recovery from wastewater by microbial assimilation - A review. BIORESOURCE TECHNOLOGY 2022; 363:127933. [PMID: 36100188 DOI: 10.1016/j.biortech.2022.127933] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The increased nitrogen (N) input with low utilization rate in artificial N management has led to massive reactive N (Nr) flows, putting the Earth in a high-risk state. It is essential to recover and recycle Nr during or after Nr removal from wastewater to reduce N input while simultaneously mitigate Nr pollution in addressing the N stress. However, mechanisms for efficient Nr recovery during or after Nr removal remain unclear. Here, the occurrence of N risk and progress in wastewater treatment in recent years as well as challenges of the current technologies for N recovery from wastewater were reviewed. Through analyzing N conversion fluxes in biogeochemical N-cycling networks, microbial N assimilation through photosynthetic and heterotrophic microorganisms was highlighted as promising alternative for synergistic N removal and recovery in wastewater treatment. In addition, the prospects and gaps of Nr recovery from wastewater through microbial assimilation are discussed.
Collapse
Affiliation(s)
- Fei Han
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong 250002, China.
| |
Collapse
|
36
|
Jiang B, Zeng Q, Li J, Shi S, Chen Z, Cui Y, Hu D, Sui Y, Ge H, Che S, Qi Y. Performance enhancement, membrane fouling mitigation and eco-friendly strategy by electric field coupled membrane bioreactor for treating mariculture wastewater. BIORESOURCE TECHNOLOGY 2022; 361:127725. [PMID: 35926557 DOI: 10.1016/j.biortech.2022.127725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
An eco-friendly strategy for mariculture wastewater treatment using an electric field attached membrane bioreactor (E-MBR) was evaluated and compared with a conventional membrane bioreactor (C-MBR). The removal efficiencies of total nitrogen (TN) and chemical oxygen demand (COD) increased significantly and the membrane fouling rate reduced by 44.8% in the E-MBR. The underlying mechanisms included the enriched nitrifiers and denitrifiers, the enhanced salinity-resistance, the increased activities and upregulated genes of key enzymes involved in nitrification and denitrification for improving the performance of mariculture wastewater treatment, and the enriched extracellular polymeric substance (EPS)-degrading genera, the downregulated EPS biosynthesis genes, the repressed biofilm-forming bacteria, the enhanced zeta potential absolute value and the generated H2O2 for membrane fouling mitigation by electrical stimulation. Compared with the C-MBR, the energy consumption, carbon emissions, and nitrogen footprint were reduced. These findings provide novel insights into mariculture wastewater treatment using an applied electric field.
Collapse
Affiliation(s)
- Bei Jiang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, Dalian 116600, China
| | - Qianzhi Zeng
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Jinming Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, Dalian 116600, China
| | - Shengnan Shi
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Zhaobo Chen
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, Dalian 116600, China.
| | - Yubo Cui
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, Dalian 116600, China
| | - Dongxue Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, Dalian 116600, China
| | - Yanan Sui
- Yingkou Port Group CORP, Yingkou 115007, China
| | - Hui Ge
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, Dalian 116600, China
| | - Shun Che
- Yingkou Port Group CORP, Yingkou 115007, China
| | - Yu Qi
- Yingkou Port Group CORP, Yingkou 115007, China
| |
Collapse
|
37
|
Zhang X, Xia Y, Zeng Y, Sun X, Tao R, Mei Y, Qu M. Simultaneous nitrification and denitrification by Pseudomonas sp. Y-5 in a high nitrogen environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69491-69501. [PMID: 35562612 DOI: 10.1007/s11356-022-20708-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Pseudomonas sp. Y-5, a strain with simultaneous nitrification and denitrification (SND) capacity, was isolated from the Wuhan Municipal Sewage Treatment Plant. This strain could rapidly remove high concentrations of inorganic nitrogen. Specifically, Pseudomonas sp. Y-5 removed 103 mg/L of NH4+-N in 24 h without nitrate or nitrite accumulation when NH4+-N was its sole nitrogen source. The NH4+-N removal efficiency (RE) was 97.26%, and the average removal rate (RR) was 4.30 mg/L/h. Strain Y-5 also removed NO3--N and NO2--N even in aerobic conditions, with average RRs of 4.39 and 4.23 mg/L/h, respectively, and REs of up to 99.34% and 95.81% within 24 h. When cultured in SND medium (SNDM-1), strain Y-5 achieved an NH4+-N RE of up to 97.80% and a total nitrogen (TN) RE of 93.01%, whereas NO3--N was fully depleted in 48 h. Interestingly, high nitrite concentrations did not inhibit the nitrification capacity of Y-5 when grown in SNDM-2, the RE of NH4+-N and TN reached 96.29% and 94.26%, respectively, and nitrite was consumed completely. Strain Y-5 also adapted well to high concentrations of ammonia (~401.68 mg NH4+-N/L) or organic nitrogen (~315.12 mg TN/L). Our results suggested that Pseudomonas sp. Y-5 achieved efficient simultaneous nitrification and denitrification, thus demonstrating its potential applicability in the treatment of nitrogen-polluted wastewater.
Collapse
Affiliation(s)
- Xiaoying Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yuxiang Xia
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yiwei Zeng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xia Sun
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Ruidong Tao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yunjun Mei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Mengjie Qu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| |
Collapse
|
38
|
Luan YN, Yin Y, An Y, Zhang F, Wang X, Zhao F, Xiao Y, Liu C. Investigation of an intermittently-aerated moving bed biofilm reactor in rural wastewater treatment under low dissolved oxygen and C/N condition. BIORESOURCE TECHNOLOGY 2022; 358:127405. [PMID: 35660455 DOI: 10.1016/j.biortech.2022.127405] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
An intermittently-aerated moving bed biofilm reactor (MBBR) was proposed for nitrogen and carbon removal from low C/N synthetic rural wastewater. In purposes of low energy consumption and costs, the intermittent aeration modes were changed and the dissolved oxygen was reduced gradually during the operation. The results showed that effluent concentrations of ammonia nitrogen and chemical oxygen demand were lower than 15 and 50 mg/L, respectively, even under microaerobic condition (0.1-1.0 mg/L). Meanwhile, the simultaneous nitrification-denitrification was achieved by intermittent aeration. The activity of functional bacteria was still high and the proportion of autotrophic biomass increased significantly under intermittent micro-aeration mode, which improved the nitrification performance. Aerobic denitrifier Hydrogenophaga, anoxic denitrifier Thiothrix, and heterotrophic nitrifier such as Rhodobacter were enriched in the intermittently micro-aerated MBBR, which will provide an applicable solution for rural wastewater treatment under low C/N and costs.
Collapse
Affiliation(s)
- Ya-Nan Luan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777Jialingjiang East Road, Qingdao 266520, China
| | - Yue Yin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777Jialingjiang East Road, Qingdao 266520, China
| | - Yuning An
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777Jialingjiang East Road, Qingdao 266520, China
| | - Feng Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777Jialingjiang East Road, Qingdao 266520, China
| | - Xiaodong Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777Jialingjiang East Road, Qingdao 266520, China
| | - Fangchao Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777Jialingjiang East Road, Qingdao 266520, China
| | - Yihua Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777Jialingjiang East Road, Qingdao 266520, China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 777Jialingjiang East Road, Qingdao 266520, China.
| |
Collapse
|
39
|
Ma B, Zhang H, Huang T, Chen S, Sun W, Yang W, Liu H, Liu X, Niu L, Yang F, Yu J. Cooperation triggers nitrogen removal and algal inhibition by actinomycetes during landscape water treatment: Performance and metabolic activity. BIORESOURCE TECHNOLOGY 2022; 356:127313. [PMID: 35577220 DOI: 10.1016/j.biortech.2022.127313] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The actinomycetes strain Streptomyces sp. XD-11-9-3 and Streptomyces sp. 5 were isolated and presented poor denitrification performance. Co-culture of actinomycetes triggers nitrogen removal capacity under aerobic conditions (reduced 96% of total nitrogen). Nitrogen balance analysis presented that 71% of initial nitrogen converted as gaseous nitrogen. Moreover, co-culture increased the concentrations of adenosine triphosphate (>2.1 folds) and electron-transmission system activity (>1.5 folds) significantly. The co-culture presented excellent carbon source metabolism activity (especially amines and carboxylic acids) compared with monoculture. The removal efficiency of total nitrogen in the micro-polluted landscape water water reached 61% in the co-culture system, and the algal survival could be inhibited significantly. However, the dominant niche of the co-culture system restrained the diversity of the indigenous nirS-type denitrifying bacterial community. This study provided a novel pathway to the research of co-culture inefficiency aerobic denitrifier and further application in the restoration of polluted water.
Collapse
Affiliation(s)
- Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shengnan Chen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fan Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jimeng Yu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
40
|
Wang N, Gao J, Wang Q, Xiao S, Zhuang G. Antimicrobial peptide antibiotics inhibit aerobic denitrification via affecting electron transportation and remolding carbon metabolism. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128616. [PMID: 35359112 DOI: 10.1016/j.jhazmat.2022.128616] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/17/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The harmful effects of antibiotics on biological denitrification have attracted widespread attention due to their excessive usage. Polymyxin B (PMB) as the typical antimicrobial peptides having been regarded as the "last hope" for treatment of multidrug-resistance bacteria, has also been detected in wastewater. However, little is known about the influence of PMB on aerobic denitrification. In this study, the impact of PMB on aerobic denitrification performance was investigated. Results showed 0.50 mg/L PMB decreased nitrate removal efficiency from 97.4% to 85.3%, and drove denitrifiers to transform more nitrate to biomass instead of producing gas-N. The live/dead staining method showed PMB damaged bacterial membrane. Transcriptome analysis further indicated the key enzymes participating in denitrification and aerobic respiratory chains were suppressed by PMB. To resist the PMB stress, denitrifiers formed thicker biofilm to protect cells from PMB damaging and thus remodeling the central carbon metabolism. Further investigation revealed denitrifiers have different preference on various carbon sources when PMB is present. Subsequently, the underlying mechanism of the distinctive carbon sources preference was explored by the combination of transcriptome and metabolism analysis. Overall, our data suggested denitrifiers have distinctive carbon sources preference under PMB treatment conditions, reminding us that carbon source selection should be cautious in practical applications.
Collapse
Affiliation(s)
- Na Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiuying Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujie Xiao
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Zhuang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
41
|
Zhang M, Li A, Yao Q, Xiao B, Zhu H. Pseudomonas oligotrophica sp. nov., a Novel Denitrifying Bacterium Possessing Nitrogen Removal Capability Under Low Carbon–Nitrogen Ratio Condition. Front Microbiol 2022; 13:882890. [PMID: 35668762 PMCID: PMC9164167 DOI: 10.3389/fmicb.2022.882890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/25/2022] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas is a large and diverse genus within the Gammaproteobacteria known for its important ecological role in the environment. These bacteria exhibit versatile features of which the ability of heterotrophic nitrification and aerobic denitrification can be applied for nitrogen removal from the wastewater. A novel denitrifying bacterium, designated JM10B5aT, was isolated from the pond water for juvenile Litopenaeus vannamei. The phylogenetic, genomic, physiological, and biochemical analyses illustrated that strain JM10B5aT represented a novel species of the genus Pseudomonas, for which the name Pseudomonas oligotrophica sp. nov. was proposed. The effects of carbon sources and C/N ratios on denitrification performance of strain JM10B5aT were investigated. In addition, the results revealed that sodium acetate was selected as the optimum carbon source for denitrification of this strain. Besides, strain JM10B5aT could exhibit complete nitrate removal at the low C/N ratio of 3. Genomic analyses revealed that JM10B5aT possessed the functional genes including napA, narG, nirS, norB, and nosZ, which might participate in the complete denitrification process. Comparative genomic analyses indicated that many genes related to aggregation, utilization of alkylphosphonate and tricarballylate, biosynthesis of cofactors, and vitamins were contained in the genome of strain JM10B5aT. These genomic features were indicative of its adaption to various niches. Moreover, strain JM10B5aT harbored the complete operons required for the biosynthesis of vibrioferrin, a siderophore, which might be conducive to the high denitrification efficiency of denitrifying bacterium at low C/N ratio. Our findings demonstrated that the strain JM10B5aT could be a promising candidate for treating wastewater with a low C/N ratio.
Collapse
Affiliation(s)
- Mingxia Zhang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Anzhang Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong BOWOTE BioSciTech, Co., Ltd., Zhaoqing, China
| | - Qing Yao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Botao Xiao
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Botao Xiao
| | - Honghui Zhu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- *Correspondence: Honghui Zhu
| |
Collapse
|
42
|
Nitrogen Removal Characteristics of a Cold-Tolerant Aerobic Denitrification Bacterium, Pseudomonas sp. 41. Catalysts 2022. [DOI: 10.3390/catal12040412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nitrogen pollution of surface water is the main cause of water eutrophication, and is considered a worldwide challenge in surface water treatment. Currently, the total nitrogen (TN) content in the effluent of wastewater treatment plants (WWTPs) is still high at low winter temperatures, mainly as a result of the incomplete removal of nitrate (NO3−-N). In this research, a novel aerobic denitrifier identified as Pseudomonas sp. 41 was isolated from municipal activated sludge; this strain could rapidly degrade a high concentration of NO3−-N at low temperature. Strain 41 completely converted 100 mg/L NO3−-N in 48 h at 15 °C, and the maximum removal rate reached 4.0 mg/L/h. The functional genes napA, nirS, norB and nosZ were successfully amplified, which provided a theoretical support for the aerobic denitrification capacity of strain 41. In particular, the results of denitrification experiments showed that strain 41 could perform aerobic denitrification under the catalysis of NAP. Nitrogen balance analysis revealed that strain 41 degraded NO3−-N mainly through assimilation (52.35%) and aerobic denitrification (44.02%), and combined with the gene amplification results, the nitrate metabolism pathway of strain 41 was proposed. Single-factor experiments confirmed that strain 41 possessed the best nitrogen removal performance under the conditions of sodium citrate as carbon source, C/N ratio 10, pH 8, temperature 15–30 °C and rotation speed 120 rpm. Meanwhile, the bioaugmentation test manifested that the immobilized strain 41 remarkably improved the denitrification efficiency and shortened the reaction time in the treatment of synthetic wastewater.
Collapse
|
43
|
Zhang M, He T, Chen M, Wu Q. Ammonium and hydroxylamine can be preferentially removed during simultaneous nitrification and denitrification by Pseudomonas taiwanensis EN-F2. BIORESOURCE TECHNOLOGY 2022; 350:126912. [PMID: 35231598 DOI: 10.1016/j.biortech.2022.126912] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
To overcome a large amount of nitrite accumulation and poor removal rate for hydroxylamine, a simultaneous nitrification and denitrification (SND) bacterium was isolated and identified as Pseudomonas taiwanensis EN-F2 by DNA sequencing. Strain EN-F2 could remove 100% of ammonium (52.90 mg/L), 100% of hydroxylamine (23.32 mg/L), 86.99% of nitrite (56.32 mg/L) and 89.21% of nitrate (56.18 mg/L) with a maximum removal rate of 8.72, 2.12, 4.55 and 5.80 mg/L/h, respectively. Ammonium and hydroxylamine could be preferentially removed during the SND process. The nitrite removal rate and cell growth were substantially enhanced by 2.10 mg/L/h and 0.45 after supplementation of hydroxylamine. The specific activities of ammonia monooxygenase (AMO), hydroxylamine oxidoreductase (HAO), nitrate reductase (NR), nitrite reductase (NIR) were successfully detected as 0.95, 0.31, 0.42 and 0.03 U/mg protein, respectively. All results demonstrated that strain EN-F2 could perform SND to remove multiple nitrogen sources from wastewater.
Collapse
Affiliation(s)
- Manman Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Mengping Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Qifeng Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
44
|
Nitrogen Removal Performance of Novel Isolated Bacillus sp. Capable of Simultaneous Heterotrophic Nitrification and Aerobic Denitrification. Appl Biochem Biotechnol 2022; 194:3196-3211. [PMID: 35349088 DOI: 10.1007/s12010-022-03877-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/14/2022] [Indexed: 01/12/2023]
Abstract
The control of nitrogenous pollutants is a key concern in aquaculture production. Bacillus spp. are commonly used as probiotics in aquaculture, but only a few reports have focused on the simultaneous heterotrophic nitrification and aerobic denitrification (SND) capacity of Bacillus sp. strains. In order to improve nitrogen biodegradation efficiency in the aquaculture industry, the SND capacity of Bacillus sp. strains was evaluated using both individual and mixed nitrogen sources and different sources of organic carbon. Twelve Bacillus sp. isolates were screened from aquaculture pond sediments and shrimp guts for nitrogen biodegradation. Six strains exhibited especially efficient inorganic nitrogen removal capacities in media with individual and mixed nitrogen sources. These strains comprise K8, N2, and N5 (B. subtilis), HYS (B. albus), H4 (B. amyloliquefaciens), and S1 (B. velezensis). The strains grew better when the sole nitrogen source was NH4+-N, but degraded nitrogen in the following order: nitrite nitrogen (NO2--N), ammonium nitrogen (NH4+-N), and nitrate nitrogen (NO3--N). There was no associated NO2--N accumulation, regardless of the nitrogen source. The optimal carbon source for nitrogen removal varied based on different nitrogen sources and associated metabolic pathways. The optimal carbon sources for the removal of NO3--N, NO2--N, and NH4+-N were sodium citrate, sodium acetate, and sucrose, respectively. The application of H4 in recirculating aquaculture water further demonstrated that NO2--N and NH4+-N could be effectively removed. This study thus provides valuable technical support for the bioremediation of aquaculture water.
Collapse
|
45
|
Ali A, Li M, Su J, Li Y, Wang Z, Bai Y, Ali EF, Shaheen SM. Brevundimonas diminuta isolated from mines polluted soil immobilized cadmium (Cd 2+) and zinc (Zn 2+) through calcium carbonate precipitation: Microscopic and spectroscopic investigations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152668. [PMID: 34963589 DOI: 10.1016/j.scitotenv.2021.152668] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The toxic metal(loid)s TMs resistant bacterium Brevundimonas diminuta was isolated for the first time from mines polluted soil in Fengxian, China, and assessed for its potential for Cd and Zn precipitation in Cd and Zn co-contaminated aqueous solution at various Cd and Zn levels (20, 40, 80, 160, and 200 mg L-1), pH values (5, 6, 7, 8, and 9), and temperatures (20, 25, 30, and 35 °C). B. diminuta showed a high resistance to both Cd and Zn and was able to precipitate up to 99.2 and 99.7% of dissolved Cd and Zn respectively, at a pH of 7 and temperature of 30 °C. B. diminuta reduced the dissolved concentrations of Cd and Zn below the threshold levels in water. The 3D-EEM analysis revealed the presence of extracellular polymeric substances (EPS) such as tryptophan indicating bacterial growth under Cd/Zn stress. FTIR showed polysaccharides, CO32-, CaCO3, PO43-, and proteins, which may enhance bacterial growth and metal precipitation. SEM-EDS confirmed the leaf-like and granular shape of the biological precipitation and reduction in the percent weight of TMs, which promoted the adhesion/adsorption of Cd2+, Zn2+, and Ca2+. Moreover, XRD analysis confirmed the precipitation of Cd, Zn, and Ca in the form of CdCO3/Cd3(PO4)2, ZnCO3/ZnHPO4/Zn2(OH)PO4/Zn3(PO4)2, and CaCO3/Ca5(PO3)4OH, respectively. These findings indicate that Brevundimonas diminuta can be used for the bioremediation of TMs-contaminated aquatic environments.
Collapse
Affiliation(s)
- Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Min Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yifei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, 11099, Taif 21944, Saudi Arabia
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| |
Collapse
|
46
|
He T, Zhang M, Ding C, Wu Q, Chen M, Mou S, Cheng D, Duan S, Wang Y. New insight into the nitrogen removal capacity and mechanism of Streptomyces mediolani EM-B2. BIORESOURCE TECHNOLOGY 2022; 348:126819. [PMID: 35134523 DOI: 10.1016/j.biortech.2022.126819] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The utilization of actinomycetes as the bioresources for heterotrophic nitrification and aerobic denitrification is rarely reported due to the lack of work to explore their nitrogen biodegradation capabilities. Streptomyces mediolani EM-B2 belonging to actinomycetes could effectively remove high concentration of multiple nitrogen forms, and the maximum removal rates of ammonium, nitrate and nitrite reached 3.46 mg/(L·h), 1.71 mg/(L·h) and 1.73 mg/(L·h), respectively. Nitrite was preferentially consumed from the simultaneous nitrification and denitrification reaction system. Nitrogen balance analysis uncovered that more than 37% of the initial total nitrogen was converted to nitrogenous gas by aerobic denitrification. Experiments with specific inhibitors of nitrification and denitrification revealed that strain EM-B2 contained ammonia monooxygenase, hydroxylamine oxidoreductase, nitrate reductase and nitrite oxidoreductase, which were successfully expressed and detected as 0.43, 0.59, 0.12 and 0.005 U/mg proteins, respectively. These findings may provide new insights into the actinomycetes for bioremediation of nitrogen pollution wastewater.
Collapse
Affiliation(s)
- Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Manman Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Chenyu Ding
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Qifeng Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Mengping Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Shuanglong Mou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Dujuan Cheng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Sijun Duan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Yu Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
47
|
Ma S, Huang S, Tian Y, Lu X. Heterotrophic ammonium assimilation: An important driving force for aerobic denitrification of Rhodococcus erythropolis strain Y10. CHEMOSPHERE 2022; 291:132910. [PMID: 34793844 DOI: 10.1016/j.chemosphere.2021.132910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Studies on microbial ammonium removal have focused on the heterotrophic nitrification of microorganisms and have rarely studied the role of ammonium assimilation. In this study, Rhodococcus erythropolis strain Y10 with the capacity of aerobic denitrification was screened from the surface flow constructed wetlands that treat high-strength ammonium swine wastewater. Instead of through nitrification, this strain removed ammonium through heterotrophic ammonium assimilation, with the removal rate of 9.69 mg/L/h. The KEGG nitrogen metabolism pathway analysis combined with nitrogen balance calculation manifested that the removal of nitrate and nitrite by R. erythropolis Y10 was achieved through two pathways: 1) assimilation reduction to biomass nitrogen and 2) aerobic denitrification reduction to gaseous nitrogen. Ammonium addition improved the aerobic denitrification rate of nitrate and nitrite. The maximal reduction rates of nitrate and nitrite increased from 7.82 and 7.23 mg/L/h to 9.09 and 8.09 mg/L/h respectively, when 100 mg/L ammonium was separately added to 150 mg/L nitrate and nitrite. Furthermore, the removal efficiency of total nitrogen increased from 69.80% and 77.65% to 89.19% and 91.88%, respectively. Heterotrophic ammonium assimilation promoted the aerobic denitrification efficiency of Rhodococcus erythropolis strain Y10.
Collapse
Affiliation(s)
- Shu Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Shiwei Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
48
|
Ke X, Liu C, Tang SQ, Guo TT, Pan L, Xue YP, Zheng YG. Characterization of Acinetobacter indicus ZJB20129 for heterotrophic nitrification and aerobic denitrification isolated from an urban sewage treatment plant. BIORESOURCE TECHNOLOGY 2022; 347:126423. [PMID: 34838964 DOI: 10.1016/j.biortech.2021.126423] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
The Acinetobacter indicus strain ZJB20129 isolated from an urban sewage treatment plant demonstrated the heterotrophic nitrification-aerobic denitrification (HN-AD) ability. Strain ZJB20129 could remove 98.73% of ammonium-N, 97.26% of nitrite-N and 96.55% of nitrate-N, and the maximum removal rate was 3.66, 4.62 and 5.21 mg/L/h, respectively. Ammonium was preferentially used during simultaneous nitrification and denitrification. Strain ZJB20129 exhibited highest ammonium removal capability when carbon source was sodium succinate, C/N ratio was 15, pH was 8.0, and temperature was 35 ℃. Key enzymes involved in HN-AD including hydroxylamine oxidase, periplasmic nitrate reductase and nitrite reductase as well as their encoding genes were detected, and the metabolic pathway of HN-AD was subsequently predicted. Our results suggested that Acinetobacter indicus ZJB20129 displayed superior nitrogen removal performance on actual wastewater and thus made it have a good application prospect in wastewater biological treatment.
Collapse
Affiliation(s)
- Xia Ke
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Cong Liu
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Su-Qin Tang
- Hangzhou Environmental Group Company Limited, Hangzhou 310022, PR China
| | - Ting-Ting Guo
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Li Pan
- Hangzhou Environmental Group Company Limited, Hangzhou 310022, PR China
| | - Ya-Ping Xue
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yu-Guo Zheng
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
49
|
Xi H, Zhou X, Arslan M, Luo Z, Wei J, Wu Z, Gamal El-Din M. Heterotrophic nitrification and aerobic denitrification process: Promising but a long way to go in the wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150212. [PMID: 34536867 DOI: 10.1016/j.scitotenv.2021.150212] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 05/27/2023]
Abstract
The traditional biological nitrogen removal (BNR) follows the conventional scheme of sequential nitrification and denitrification. In recent years, novel processes such as anaerobic ammonia oxidation (anammox), complete oxidation of ammonia to nitrate in one organism (comammox), heterotrophic nitrification and aerobic denitrification (HN-AD), and dissimilatory nitrate reduction to ammonium (DNRA) are gaining tremendous attention after the discovery of metabolically versatile bacteria. Among them, HN-AD offers several advantages because individual bacteria could achieve one-stage nitrogen removal under aerobic conditions in the presence of organic carbon. In this review, besides classical BNR processes, we summarized the existing literature on HN-AD bacteria which have been isolated from diverse habitats. A particular focus was given on the diversity and physiology of HN-AD bacteria, influences of physiological and biochemical factors on their growth, nitrogen removal performances, as well as limitations and strategies in unraveling HN-AD metabolic pathways. We also presented case studies of HN-AD application in wastewater treatment facilities, pointed out forthcoming challenges of HN-AD in these systems, and presented modulation strategies for HN-AD application in engineering. This review may help improve the existing design of wastewater treatment plants by harnessing HN-AD bacteria for effective nitrogen removal.
Collapse
Affiliation(s)
- Haipeng Xi
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Xiangtong Zhou
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Zhijun Luo
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Jing Wei
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Zhiren Wu
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
50
|
Ma B, Zhang H, Ma M, Huang T, Guo H, Yang W, Huang Y, Liu X, Li H. Nitrogen removal by two strains of aerobic denitrification actinomycetes: Denitrification capacity, carbon source metabolic ability, and raw water treatment. BIORESOURCE TECHNOLOGY 2022; 344:126176. [PMID: 34688858 DOI: 10.1016/j.biortech.2021.126176] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
The denitrification characteristics of actinomyetes in aquatic ecosystem under aerobic conditions are not well known. Here, two actinomyetes strains M5 and M6 were separated and annotated as Streptomyces sp. Strains M5 and M6 could reduce 95.02% and 96.84 % of total nitrogen, 98.14 % and 97.02 % of total organic carbon under aerobic condition. Nitrogen balance analysis indicated that 78.60 % and 83.01 % of nitrogen was translated into gaseous, with 13.48 % and 10.77 % of nitrogen was assimilated into biomass for strains M5 and M6. The highest removal efficiency of nitrate of strains M5 and M6 in micro-polluted water bodies were 88.61 % and 82.53 %, respectively. Moreover, strains M5 and M6 exhibited remarkable carbon metabolic capacity, especially for esters. Altogether, this study provides a new perspective for understanding the performance of actinomyetes in aerobic denitrification and micro-polluted water reparation.
Collapse
Affiliation(s)
- Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Manli Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Honghong Guo
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuwei Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haiyun Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|