1
|
Im C, Kim M, Kim JR, Valgepea K, Modin O, Nygård Y, Franzén CJ. Low electric current in a bioelectrochemical system facilitates ethanol production from CO using CO-enriched mixed culture. Front Microbiol 2024; 15:1438758. [PMID: 39268540 PMCID: PMC11390636 DOI: 10.3389/fmicb.2024.1438758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/24/2024] [Indexed: 09/15/2024] Open
Abstract
Fossil resources must be replaced by renewable resources in production systems to mitigate green-house gas emissions and combat climate change. Electro-fermentation utilizes a bioelectrochemical system (BES) to valorize industrial and municipal waste. Current electro-fermentation research is mainly focused on microbial electrosynthesis using CO2 for producing commodity chemicals and replacing petroleum-based infrastructures. However, slow production rates and low titers of metabolites during CO2-based microbial electrosynthesis impede its implementation to the real application in the near future. On the other hand, CO is a highly reactive gas and an abundant feedstock discharged from fossil fuel-based industry. Here, we investigated CO and CO2 electro-fermentation, using a CO-enriched culture. Fresh cow fecal waste was enriched under an atmosphere of 50% CO and 20% CO2 in N2 using serial cultivation. The CO-enriched culture was dominated by Clostridium autoethanogenum (≥89%) and showed electro-activity in a BES reactor with CO2 sparging. When 50% CO was included in the 20% CO2 gas with 10 mA applied current, acetate and ethanol were produced up to 12.9 ± 2.7 mM and 2.7 ± 1.1 mM, respectively. The coulombic efficiency was estimated to 148% ± 8% without an electron mediator. At 25 mA, the culture showed faster initial growth and acetate production but no ethanol production, and only at 86% ± 4% coulombic efficiency. The maximum optical density (OD) of 10 mA and 25 mA reactors were 0.29 ± 0.07 and 0.41 ± 0.03, respectively, whereas it was 0.77 ± 0.19 without electric current. These results show that CO electro-fermentation at low current can be an alternative way of valorizing industrial waste gas using a bioelectrochemical system.
Collapse
Affiliation(s)
- Chaeho Im
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Minsoo Kim
- School of Chemical Engineering, Pusan National University, Busan, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, Busan, Republic of Korea
| | - Kaspar Valgepea
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Yvonne Nygård
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Carl Johan Franzén
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
2
|
Fang Z, Hu J, Xu MY, Li SW, Li C, Zhou X, Wei J. A biocompatible electrode/exoelectrogens interface augments bidirectional electron transfer and bioelectrochemical reactions. Bioelectrochemistry 2024; 158:108723. [PMID: 38733720 DOI: 10.1016/j.bioelechem.2024.108723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Bidirectional electron transfer is about that exoelectrogens produce bioelectricity via extracellular electron transfer at anode and drive cytoplasmic biochemical reactions via extracellular electron uptake at cathode. The key factor to determine above bioelectrochemical performances is the electron transfer efficiency under biocompatible abiotic/biotic interface. Here, a graphene/polyaniline (GO/PANI) nanocomposite electrode specially interfacing exoelectrogens (Shewanella loihica) and augmenting bidirectional electron transfer was conducted by in-situ electrochemical modification on carbon paper (CP). Impressively, the GO/PANI@CP electrode tremendously improved the performance of exoelectrogens at anode for wastewater treatment and bioelectricity generation (about 54 folds increase of power density compared to blank CP electrode). The bacteria on electrode surface not only showed fast electron release but also exhibited high electricity density of extracellular electron uptake through the proposed direct electron transfer pathway. Thus, the cathode applications of microbial electrosynthesis and bio-denitrification were developed via GO/PANI@CP electrode, which assisted the close contact between microbial outer-membrane cytochromes and nanocomposite electrode for efficient nitrate removal (0.333 mM/h). Overall, nanocomposite modified electrode with biocompatible interfaces has great potential to enhance bioelectrochemical reactions with exoelectrogens.
Collapse
Affiliation(s)
- Zhen Fang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiani Hu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Meng-Yuan Xu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan-Wei Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Chunmei Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangtong Zhou
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| | - Jing Wei
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| |
Collapse
|
3
|
Chen Y, Chen Y, Dai DZ, Li XL, Song T, Xie J. ZnMo-MOF as anti-CO hydrogen electrocatalyst enhance microbial electrosynthesis for CO/CO 2 conversion. CHEMOSPHERE 2024; 358:142157. [PMID: 38679181 DOI: 10.1016/j.chemosphere.2024.142157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Microbial electrosynthesis (MES) is an electrically driven technology that can be used for converting CO/CO2 into chemicals. The unique electronic and substrate properties of CO make it an important research target for MES. However, CO can poison the cathode and increase the overpotential of hydrogen evolution reaction (HER), thus reducing the electron transfer rate via H2. This work evaluated the effect of an anti-CO HER catalyst on the performance of MES for CO/CO2 conversion. ZnMo-metal-organic framework (MOF) materials with different calcination temperatures were synthesized. ZnMo-MOF-800 with Mo2C nanoparticles as active centers exhibited excellent resistance to CO toxicity. It also obtained the highest hydrogen evolution and enhanced electron transfer rate in CO atmosphere. MES with ZnMo-MOF-800 cathode and Clostridium ljungdahlii as biocatalyst obtained 0.31 g L-1 d-1 acetate yield, 0.1 g L-1 d-1 butyrate yield, and 0.09 g L-1 d-1 2,3-butanediol yield in CO/CO2, while Pt/C only get 0.076 g L-1 d-1 acetate yield, 0.05 g L-1 d-1 butyrate yield and 0.02 g L-1 d-1 2,3-butanediol yield. ZnMo-MOF-800 was conducive to biofilm formation, enabling it to better resist CO toxicity. This work provides new opportunities for constructing a highly efficient cathode with an anti-CO hydrogen evolution catalyst to enhance CO/CO2 conversion in MES.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yuhang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | | | - Xiang Ling Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Tianshun Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Jingjing Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing 211816, PR China.
| |
Collapse
|
4
|
Mutyala S, Li S, Khandelwal H, Kong DS, Kim JR. Citrate Synthase Overexpression of Pseudomonas putida Increases Succinate Production from Acetate in Microaerobic Cultivation. ACS OMEGA 2023; 8:26231-26242. [PMID: 37521642 PMCID: PMC10373214 DOI: 10.1021/acsomega.3c02520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Acetate is an end-product of anaerobic biodegradation and one of the major metabolites of microbial fermentation and lingo-cellulosic hydrolysate. Recently, acetate has been highlighted as a feedstock to produce value-added chemicals. This study examined acetate conversion to succinate by citrate synthase (gltA)-overexpressed Pseudomonas putida under microaerobic conditions. The acetate metabolism is initiated with the gltA enzyme, which converts acetyl-CoA to citrate. gltA-overexpressing P. putida (gltA-KT) showed an ∼50% improvement in succinate production compared to the wild type. Under the optimal pH of 7.5, the accumulation of succinate (4.73 ± 0.6 mM in 36 h) was ∼400% higher than that of the wild type. Overall, gltA overexpression alone resulted in 9.5% of the maximum theoretical yield in a minimal medium with acetate as the sole carbon source. This result shows that citrate synthase is important in acetate conversion to succinate by P. putida under microaerobic conditions.
Collapse
|
5
|
Mutyala S, Kim JR. Recent advances and challenges in the bioconversion of acetate to value-added chemicals. BIORESOURCE TECHNOLOGY 2022; 364:128064. [PMID: 36195215 DOI: 10.1016/j.biortech.2022.128064] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Acetate is a major byproduct of the bioconversion of the greenhouse gas carbon dioxide, pretreatment of lignocellulose biomass, and microbial fermentation. The utilization and valorization of acetate have been emphasized in transforming waste to clean energy and value-added platform chemicals, contributing to the development of a closed carbon loop toward a low-carbon circular bio-economy. Acetate has been used to produce several platform chemicals, including succinate, 3-hydroxypropionate, and itaconic acid, highlighting the potential of acetate to synthesize many biochemicals and biofuels. On the other hand, the yields and titers have not reached the theoretical maximum. Recently, recombinant strain development and pathway regulation have been suggested to overcome this limitation. This review provides insights into the important constraints limiting the yields and titers of the biochemical and metabolic pathways of bacteria capable of metabolizing acetate for acetate bioconversion. The current developments in recombinant strain engineering are also discussed.
Collapse
Affiliation(s)
- Sakuntala Mutyala
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea.
| |
Collapse
|
6
|
Li S, Kim M, Jae J, Jang M, Jeon BH, Kim JR. Solid neutral red/Nafion conductive layer on carbon felt electrode enhances acetate production from CO 2 and energy efficiency in microbial electrosynthesis system. BIORESOURCE TECHNOLOGY 2022; 363:127983. [PMID: 36126849 DOI: 10.1016/j.biortech.2022.127983] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Renewable electricity-based microbial electrosynthesis can upgrade CO2 into value-added chemicals and simultaneously increase the number of biocatalysts by cell growth, helping to achieve sustainable carbon-negative processes. In most studies, the main strategy for improving the MES performance was to enhance H2-based electron uptake by decreasing the overpotential and electrical conductivity of the electrode. Less is known about the electrode-based direct electron uptake for CO2 conversion in MES. In this study, a solid neutral red/Nafion conductive layer was developed on the carbon electrode surface using a feasible dip and dry method. The modified electrode showed higher HER overpotential and lower capacitance but enhanced redox capability and hydrophobicity, which increased direct electron transport to the bacteria rather than hydrogen-based indirect electron delivery. The Neutral red/Nafion-implemented MES showed faster start-up, higher acetate production, and energy efficiency than the non-modified electrode.
Collapse
Affiliation(s)
- Shuwei Li
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Minsoo Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jungho Jae
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
7
|
Paniagua S, Lebrero R, Muñoz R. Syngas biomethanation: Current state and future perspectives. BIORESOURCE TECHNOLOGY 2022; 358:127436. [PMID: 35680093 DOI: 10.1016/j.biortech.2022.127436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
In regions highly dependent on fossil fuels imports, biomethane represents a promising biofuel for the transition to a bio-based circular economy. While biomethane is typically produced via anaerobic digestion and upgrading, biomethanation of the synthesis gas (syngas) derived from the gasification of recalcitrant solid waste has emerged as a promising alternative. This work presents a comprehensive and in-depth analysis of the state-of-the-art and most recent advances in the field, compiling the potential of this technology along with the bottlenecks requiring further research. The key design and operational parameters governing syngas production and biomethanation (e.g. organic feedstock, gasifier design, microbiology, bioreactor configuration, etc.) are critically analysed.
Collapse
Affiliation(s)
- Sergio Paniagua
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Raquel Lebrero
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| |
Collapse
|
8
|
Khandelwal H, Mutyala S, Kim M, Eun Song Y, Li S, Jang M, Oh SE, Rae Kim J. Colorimetric isolation of a novel electrochemically active Pseudomonas strain using tungsten nanorods for bioelectrochemical applications. Bioelectrochemistry 2022; 146:108136. [DOI: 10.1016/j.bioelechem.2022.108136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/15/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022]
|
9
|
Thapa BS, Kim T, Pandit S, Song YE, Afsharian YP, Rahimnejad M, Kim JR, Oh SE. Overview of electroactive microorganisms and electron transfer mechanisms in microbial electrochemistry. BIORESOURCE TECHNOLOGY 2022; 347:126579. [PMID: 34921921 DOI: 10.1016/j.biortech.2021.126579] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Electroactive microorganisms acting as microbial electrocatalysts have intrinsic metabolisms that mediate a redox potential difference between solid electrodes and microbes, leading to spontaneous electron transfer to the electrode (exo-electron transfer) or electron uptake from the electrode (endo-electron transfer). These microbes biochemically convert various organic and/or inorganic compounds to electricity and/or biochemicals in bioelectrochemical systems (BESs) such as microbial fuel cells (MFCs) and microbial electrosynthesis cells (MECs). For the past two decades, intense studies have converged to clarify electron transfer mechanisms of electroactive microbes in BESs, which thereby have led to improved bioelectrochemical performance. Also, many novel exoelectrogenic eukaryotes as well as prokaryotes with electroactive properties are being continuously discovered. This review presents an overview of electroactive microorganisms (bacteria, microalgae and fungi) and their exo- and endo-electron transfer mechanisms in BESs for optimizing and advancing bioelectrochemical techniques.
Collapse
Affiliation(s)
- Bhim Sen Thapa
- Department of Biological Environment, Kangwon National University, Chuncheon, Gangwondo 24341, Republic of Korea
| | - Taeyoung Kim
- Department of Environmental Engineering, Chosun University, Gwangju 61452, Republic of Korea
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201306, India
| | - Young Eun Song
- Advanced Biofuel and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA
| | - Yasamin Pesaran Afsharian
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, Chuncheon, Gangwondo 24341, Republic of Korea.
| |
Collapse
|
10
|
Beyenal H, Chang IS, Venkata Mohan S, Pant D. Microbial fuel cells: Current trends and emerging applications. BIORESOURCE TECHNOLOGY 2021; 324:124687. [PMID: 33451878 DOI: 10.1016/j.biortech.2021.124687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - In Seop Chang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences (BEES), Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| |
Collapse
|