1
|
Zang Y, Hang N, Sui J, Zhao W, Li S, Tao J, Zong S. Achieving "Pesticide-Pest Mutual Management" through pest-derived biochar. Talanta 2025; 293:128028. [PMID: 40158309 DOI: 10.1016/j.talanta.2025.128028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
This study proposes a novel "pesticide-pest mutual management" strategy, transforming the traditional unidirectional impact of pesticides on pests into a sustainable and interactive process. Using the Asian longhorned beetle (Anoplophora glabripennis, ALB) as a precursor, a series of nitrogen-rich biochars (ALB-BC) was synthesized to remove and detect insecticides used in ALB control from water. Among them, acid-modified ALB-BC (HBC 400) exhibited an exceptional adsorption capacity for thiacloprid, reaching 1591.06 mg g-1. Mechanistic studies revealed that Lewis acid-base interactions serve as the primary adsorption mechanism, underpinning ALB-BC's high affinity for thiacloprid. Additional mechanisms, including hydrogen bonding, π-π interactions, and pore filling, further enhanced adsorption performance. These interactions were attributed to the high concentrations of carbonyl and hydroxyl groups, as well as nitrogen species (e.g., pyridinic-N, pyrrolic-N) in ALB-BC, derived from the abundant peptide bonds and polysaccharide structures in ALB. Furthermore, ALB-BC effectively extracted and detected poorly water-soluble insecticides (e.g., cyhalothrin, cypermethrin, and fenitrothion) used in ALB control, alongside thiacloprid, achieving recoveries of 84 %-96 % and detection limits of 0.04-0.09 μg L-1. This study highlights the potential of utilizing forestry pest resources for sustainable applications and demonstrates promising prospects in environmental monitoring and pollution mitigation.
Collapse
Affiliation(s)
- Yuyue Zang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Na Hang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Jiale Sui
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Wanning Zhao
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Songqing Li
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China.
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
2
|
Zhang W, Xu D, Zhao Y, Gao D, Xie Z, Zhang X, Wu B, Huang T, Peng L. Enhancing electricity generation and pollutant degradation in microbial fuel cells using cyanobacteria-derived biochar electrodes. BIORESOURCE TECHNOLOGY 2025; 418:132000. [PMID: 39706306 DOI: 10.1016/j.biortech.2024.132000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Utilizing microbial fuel cells (MFCs) technology to simultaneously achieve efficient biopower generation and pollutant degradation is a persistent pursuit. However, the limited rate of extracellular electron transfer (EET) and the availability of electrode materials remain key factors limiting the practical application of MFCs. In this article, modified carbon derived from cyanobacteria is applied to modify electrodes and assemble MFCs. By outputting voltage, power density, chemical oxygen demand removal rate and Coulombic efficiency the excellent bioelectricity performance of the assembled MFCs is demonstrated. The degradation performance of the assembled MFCs on various typical pollutants represented by tetracycline is illuminated, even up to 95.12%. Moreover, the pollutant removal mechanism by assembled MFCs is elucidated, including biofilm community and degradation pathway analysis. In a word, the enhanced EET process and high accessibility make the proposed MFC anode have fascinating application prospects in achieving efficient biopower generation and pollutant degradation simultaneously.
Collapse
Affiliation(s)
- Wentao Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Daifei Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215002, People's Republic of China
| | - Yue Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215002, People's Republic of China
| | - Degui Gao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Zhaotian Xie
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Xinming Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Bingdang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215002, People's Republic of China; Key Laboratory of Suzhou Sponge City Technology, Suzhou, 215009, People's Republic of China.
| | - Tianyin Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215002, People's Republic of China; Key Laboratory of Suzhou Sponge City Technology, Suzhou, 215009, People's Republic of China
| | - Lele Peng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
3
|
Zhao Z, Liang S, Wu M, Chen Z, Li Z, He L, Wang Q, Wang K, Liu S. Removal of tetracycline by biochar synergistic with ferrate: Influencing mechanism on precursor biomass components. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178175. [PMID: 39721549 DOI: 10.1016/j.scitotenv.2024.178175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/27/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Biochar can serve as an activator for potassium ferrate, significantly enhancing the treatment efficiency to antibiotics. However, the mechanism by which biochar activated potassium ferrate remained unclear, necessitating further investigation. Cellulose biochar (CBC) and lignin biochar (LBC) derived by two model compounds which were the highest proportion of content in biomass were adopted to be study object, to investigate the removal efficiency of tetracycline (TC) by ferrate synergetic with CBC and LBC, respectively for the first time, and thoroughly analyzed the adsorption and degradation processes within the reaction system. It is noteworthy that CBC contributed to this synergy primarily through the phenolic hydroxyl groups which facilitated the decomposition of ferrate and increase the generation of intermediate valence iron species, thereby improving removal rates. Whereas, LBC enhanced removal rates of TC mainly across its own adsorption capabilities. This also resulted in LBC manifesting excellent synergistic effects under various pH environments, while the CBC system was primarily suited for alkaline conditions. This study provided new theoretical support for the efficient utilization of ferrate in organic wastewater treatment and offered a novel perspective on the precise control of structure in the process of biochar material prepared by agricultural and forestry solid waste biomass.
Collapse
Affiliation(s)
- Ziyu Zhao
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Shengdian Liang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Meixuan Wu
- School of Atmospheric Science, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China.
| | - Ziyi Chen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Zhi Li
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Linglin He
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Qinyu Wang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Keke Wang
- Sichuan Academy of Eco-Environmental Sciences, Chengdu, Sichuan 610041, China
| | - Shengyu Liu
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| |
Collapse
|
4
|
Yang R, Li Z, Pitakrattanawong C, Zhu L, Li B, Fang L, Fan L, Song C, Meng S. Magnetic nanoparticle modified moss Biochar: A novel solution for effective removal of enrofloxacin from aquaculture water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123956. [PMID: 39754798 DOI: 10.1016/j.jenvman.2024.123956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/22/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
The presence of residual antibiotics in water constitutes a potential threat to aquatic environments. Therefore, designing environmentally friendly and efficient biochar adsorbents is crucial. Aquaculture by-product moss (bryophyte) was transformed into biochar, which can eliminate antibiotics from wastewater through adsorption. This study successfully fabricated moss biochar (BC) and magnetically modified moss biochar (MBC), and explored their adsorption performance for enrofloxacin (ENR). Characterization analyses revealed that the specific surface area, total pore volume, and the quantity of functional groups of the MBC were significantly larger than those of the BC. The Langmuir isotherm model suggests that the maximum adsorption capacities of BC and MBC for ENR are 7.24 mg g⁻1 and 11.62 mg g⁻1. The adsorption process conforms to a pseudo-second-order kinetic model. Studies carried out at different temperatures disclose the spontaneous and endothermic thermodynamic characteristics of the system. Under neutral conditions, the adsorption efficiency attains its peak. The existence of various coexisting ions in water exerts a negligible influence on the adsorption process; furthermore, when the concentration of humic acid (HA) ranges from 0 to 20 mg/L, the removal rate remains above 90%. In actual water samples, the antibiotic removal rate can be as high as 96.84%. After three cycles of reuse, the structure of MBC remains unchanged while maintaining a high removal efficiency. The primary mechanisms for antibiotic adsorption by MBC involve electrostatic interactions, hydrophobic interactions, pore-filling effects, hydrogen bonding, and π-π interactions. This reusable magnetic moss biochar provides a promising research direction for effectively eliminating antibiotics from water sources.
Collapse
Affiliation(s)
- Ruonan Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China.
| | - Zhonghua Li
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China.
| | | | - Lei Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China.
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China.
| | - Longxiang Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, PR China.
| | - Limin Fan
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, PR China.
| | - Chao Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China; Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, PR China.
| | - Shunlong Meng
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, PR China.
| |
Collapse
|
5
|
Deng H, Ma X, Wang Y, Zhou S, Li X, Li W, Liu Z. Preparation of multi-modified/carbonized/gelatinized starch and its de-risking effect on Cd(II) and hymexazol in wastewater. Int J Biol Macromol 2024; 278:134768. [PMID: 39151865 DOI: 10.1016/j.ijbiomac.2024.134768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
In this study, starch (S) was gelatinized and carbonized to prepare carbonized/gelatinized S (CGS) as the research material. Then, peat extract (Pe) and surfactants with different ratios were single- and multi-modified on CGS, respectively, to prepare Pe-modified CGS (Pe-CGS) and multi-modified CGS, respectively. The microscopic morphology of multi-modified CGS was studied using various testing methods. The de-risking effect on Cd(II) and hymexazol in wastewater was investigated, and the effects of temperature, pH, and ionic strength were compared. The spheroidal structure of S was destroyed after carbonization, and Pe and surfactants were modified on the surface and changed the surface properties of CGS. The adsorption processes of Cd(II) and hymexazol were suitable to be described by the Langmuir and Freundlich models, respectively. The maximum adsorption capacities (qm) of Cd(II) and adsorption capacity parameter (k) of hymexazol on different modified CGSs presented the peak value at BS/Pe-CGS. With the increase in the modification ratio of Pe, BS, and SDS, qm and k increased, which showed a high value at 100 % modification. Increases in temperature and pH were beneficial to Cd(II) adsorption but were not conducive to hymexazol adsorption. The adsorption amount decreased for Cd(II) and increased first and then reduced for hymexazol with the rise in ionic strength. The adsorption process exhibited spontaneity, endothermic behavior for Cd(II), exothermic behavior for hymexazol, and an entropy-increasing reaction. The adsorption amount of Cd(II) and hymexazol by multi-modified CGS maintained approximately 81 % of the original sample after three rounds of regeneration.
Collapse
Affiliation(s)
- Hongyan Deng
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan 637009, China; Key Laboratory of Nanchong City of Ecological Environment Protection and Pollution Prevention in Jialing River Basin, Nanchong, Sichuan 637009, China
| | - Xiuying Ma
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan 637009, China
| | - Yinfei Wang
- College of Chemical Engineering, Xinjiang University, Urumchi, Xinjiang 830046, China
| | - Sheng Zhou
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan 637009, China
| | - Xinlei Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan 637009, China
| | - Wenbin Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan 637009, China; Key Laboratory of Nanchong City of Ecological Environment Protection and Pollution Prevention in Jialing River Basin, Nanchong, Sichuan 637009, China.
| | - Zhifeng Liu
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, Hanzhong, Shaanxi 723001, China
| |
Collapse
|
6
|
Wu W, Zhang J, Zhu W, Zhao S, Gao Y, Li Y, Ding L, Ding H. Novel manganese and nitrogen co-doped biochar based on sodium bicarbonate activation for efficient removal of bisphenol A: Mechanism insight and role analysis of manganese and nitrogen by combination of characterizations, experiments and density functional theory calculations. BIORESOURCE TECHNOLOGY 2024; 399:130608. [PMID: 38499202 DOI: 10.1016/j.biortech.2024.130608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 03/20/2024]
Abstract
A novel porous manganese and nitrogen co-doped biochar (Mn-N@SBC) was synthesized via one-step pyrolysis, utilizing loofah agricultural waste as the precursor and NaHCO3 as the activator. The behavior of bisphenol A adsorbed on Mn-N@SBC was evaluated using static batch adsorption experiments. Compared to direct manganese-nitrogen co-doping, co-doping based on NaHCO3 activation significantly increased the specific surface area (231 to 1027 m2·g-1) and adsorption capacity (15 to 351 mg·g-1). Wide pH (2-10) and good resistance to cation/anion, humic acid and actual water demonstrated the robust adaptability of Mn-N@SBC to environmental factors. The significantly reduced specific surface area after adsorption, adverse effects of ethanol and phenanthrene on the removal of bisphenol A, and theoretically predicted interaction sites indicated the primary adsorption mechanisms involved pore filling, hydrophobicity, and π-π-electron-donor-acceptor interaction. This work presented an approach to create high-efficiency adsorbents from agricultural waste, offering theoretical and practical guidance for the removal of pollutants.
Collapse
Affiliation(s)
- Wenlong Wu
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243032, China
| | - Jinwei Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Weijie Zhu
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Shouhui Zhao
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Yuchen Gao
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Yan Li
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China
| | - Lei Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China.
| | - Heng Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China.
| |
Collapse
|
7
|
Chen B, Chen Y, Chen S, Duan X, Gao J, Zhang N, He L, Wang X, Huang J, Chen X, Pan X. Iron‑calcium dual crosslinked graphene oxide/alginate aerogel microspheres for extraordinary elimination of tetracycline in complex wastewater: Performance, mechanism, and applications. Int J Biol Macromol 2024; 264:130554. [PMID: 38431001 DOI: 10.1016/j.ijbiomac.2024.130554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/12/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Antibiotics have been considered as a group of emerging contaminants for their stable chemical structure, significant pseudo-persistence, and biological toxicity. Tetracycline (TC), as one of the typical antibiotics frequently detected in environmental media, can cause the dissemination and accumulation of antibiotic resistance gene (ARG), ultimately threatening human health and environmental safety. Herein, a novel iron‑calcium di-crosslinked graphene oxide/alginate (GO/SA-Fe3+-Ca2+) aerogel was facilely synthesized for TC uptake. It was found that the introduction of GO nanosheets and Fe3+ sites into composite enormously enhanced TC removal. Specifically, TC can be stably and efficiently eliminated over the wide pH range of 5-8. The fitted maximum qe with Liu isotherm model at 308 K reached 1664.05 mg/g, surpassing almost all reported sorbents. The pseudo-second-order kinetic model with chemical sorption characteristics better fitted TC adsorption process, which was endothermic and spontaneous in nature. Multifarious adsorptive sites of GO/SA-Fe3+-Ca2+ synergically participated in TC uptake through multi-mechanisms (e.g., π-π EDA, cation-π bonding, H-bonding, Fe3+-coordination, and electrostatic attraction, etc.). The as-prepared composite showed satisfactory TC removal in several runs of adsorption-desorption operations, high salinity, and model aquaculture wastewater. Moreover, the packed-column could continuously run for >200 h until adsorption saturation was achieved with a dynamic adsorption capacity of 216.69 mg/g, manifesting its scale-up engineering applications. All above merits make as-constructed composite an alternative sorbent for eliminating TC from complex wastewater.
Collapse
Affiliation(s)
- Bo Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Yuning Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuyin Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xingyu Duan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Gao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Nuan Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Liucun He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xin Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jin Huang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Xiaoping Chen
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
8
|
Gao J, Zhou Y, Yang X, Yao Y, Qi J, Zhu Z, Yang Y, Fang D, Zhou L, Li J. Dyeing sludge-derived biochar for efficient removal of antibiotic from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169035. [PMID: 38056677 DOI: 10.1016/j.scitotenv.2023.169035] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/11/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Adsorption is one of the most effective methods for ecotoxic antibiotics removal, while developing high-performance adsorbents with excellent adsorption capacity is indispensable. As the unavoidable by-product of wastewater, sewage sludge has dual properties of pollution and resources. In this study, dyeing sludge waste was converted to biochar by KOH activation and pyrolysis, and used as an efficient adsorbent for aqueous antibiotics removal. The optimized dyeing sludge-derived biochar (KSC-8) has excellent specific surface area (1178.4 m2/g) and the adsorption capacity for tetracycline (TC) could reach up to 1081.3 mg/g, which is four and five times higher than those without activation, respectively. The PSO (pseudo-second-order) kinetic model and the Langmuir isotherm model fitted better to the experimental data. The obtained KSC-8 has stabilized adsorption capacity for long-term fixed-bed experiments, and maintained 86.35% TC removal efficiency after five adsorption-regeneration cycles. The adsorption mechanism involves electrostatic attraction, hydrogen bonding, π-π interactions and pore filling. This work is a green and eco-friendly way as converting the waste to treat waste in aiming of simultaneous removal of antibiotics and resource recovery of dyeing sludge.
Collapse
Affiliation(s)
- Jiamin Gao
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yujun Zhou
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xuran Yang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yiyuan Yao
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwen Qi
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhigao Zhu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yue Yang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Di Fang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiansheng Li
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
9
|
Deng Y, Xiao T, She A, Li X, Chen W, Ao T, Ni F. One-step synthesis of iron and nitrogen co-doped porous biochar for efficient removal of tetracycline from water: Adsorption performance and fixed-bed column. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:119984. [PMID: 38218166 DOI: 10.1016/j.jenvman.2023.119984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/03/2023] [Accepted: 12/17/2023] [Indexed: 01/15/2024]
Abstract
Here, Fe/N co-doped porous biochars (FeNKBCs) were obtained by grinding corncob, CH3COOK, FeCl3·6H2O, and C3H6N6 via one-step synthesis and were applied to remove antibiotics from wastewater. Notably, CH3COOK had an excellent porous activation ability. The developed nanotubular structure of Fe1N2KBC had a high pore volume (Vtotal) (1.2131 cm3/g) and specific surface areas (SSA) (2083.54 m2/g), which showed outstanding sorption abilities for TC (764.35 mg/g), OTC (560.82 mg/g), SMX (291.45 mg/g), and SMT (354.65 mg/g). The adsorption process of TC was controlled by chemisorption. Moreover, Fe1N2KBC has an excellent dynamic adsorption performance (620.14 mg/g) in a fixed-bed column. The properties of SSA, Vtotal, and the content of graphite N and Fe-N were positively correlated with TC adsorption capacity. The high performance of TC removal was related to π-π stacking, pore-filling, hydrogen bond, and electrostatic interaction. Fe1N2KBC possessed stable sorption amounts in pH 2-12 and actual water, and well reuse performance. The results of this work present an effective preparation method of Fe/N porous biochar for TC-contaminated water remediation.
Collapse
Affiliation(s)
- Yu Deng
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an, 625014, China; College of Water Resources and Hydropower, Sichuan University, Chengdu, 610065, China
| | - Tong Xiao
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an, 625014, China
| | - Ailun She
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xiaodong Li
- College of Water Resources and Hydropower, Sichuan University, Chengdu, 610065, China
| | - Wenqing Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Tianqi Ao
- College of Water Resources and Hydropower, Sichuan University, Chengdu, 610065, China.
| | - Fuquan Ni
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
10
|
Wang S, Chen Y, Ge S, Liu Z, Meng J. Adsorption characterization of tetracycline antibiotics on alkali-functionalized rice husk biochar and its evaluation on phytotoxicity to seed germination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122420-122436. [PMID: 37973778 DOI: 10.1007/s11356-023-30900-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
This work presented adsorption characteristics of tetracycline antibiotics (TCs) on KOH-functionalized rice husk biochar pyrolyzed at 700 °C (KBC700) and evaluation on phytotoxicity of TCs-adsorbed aqueous phase to seed germination. Specifically, KBC700 gained eightfold rise in specific surface area by KOH activation. Predominant monolayer chemisorption helped KBC700 control TCs, and spontaneous and exothermic features were identified by thermodynamic studies. KBC700 could efficiently work in a wide pH range (4.5 ~ 9.5), as well as in simulated eutrophic water and co-existing cationic solution. Humic acid exerted negative impact on TCs disposal. Outstanding regeneration capability and stability were also found during adsorption-desorption cycles. Mechanism discussion implied predominant pore filling and π-π interaction accompanied by hydrogen bonding and electrostatic interaction involved in TCs-removal process. Importantly, less phytotoxicity to seed germination was found in TCs-adsorbed aqueous phase. Collectively, these findings contribute to adsorption properties recognition and subsequent application for KOH-modified rice rusk biochar in environmental TCs remediation.
Collapse
Affiliation(s)
- Siyu Wang
- National Biochar Institute of Shenyang Agricultural University, Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, 120 # Dongling Road, Shenyang, 110866, China
| | - Yixuan Chen
- National Biochar Institute of Shenyang Agricultural University, Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, 120 # Dongling Road, Shenyang, 110866, China
| | - Shaohua Ge
- National Biochar Institute of Shenyang Agricultural University, Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, 120 # Dongling Road, Shenyang, 110866, China
| | - Zunqi Liu
- National Biochar Institute of Shenyang Agricultural University, Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, 120 # Dongling Road, Shenyang, 110866, China
| | - Jun Meng
- National Biochar Institute of Shenyang Agricultural University, Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, 120 # Dongling Road, Shenyang, 110866, China.
| |
Collapse
|
11
|
Gao J, Lin Q, Yang T, Bao YC, Liu J. Preparation and characterization of ZSM-5 molecular sieve using coal gangue as a raw material via solvent-free method: Adsorption performance tests for heavy metal ions and methylene blue. CHEMOSPHERE 2023; 341:139741. [PMID: 37567260 DOI: 10.1016/j.chemosphere.2023.139741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Coal gangue is a kind of solid waste produced in the process of coal mining and washing. Its silicon aluminum silicon aluminum oxide content is high, respectively, which are suitable for resource utilization as raw materials for Si-Al molecular sieving. In this paper, a novel, simple, low-cost, and environmentally friendly process was carried out to prepare ZSM-5 zeolite by solvent free method after calcination, acid leaching, and alkali melting. The obtained samples were characterized by Energy Dispersive Spectrometer (EDS), Inductively Coupled Plasma (ICP), Thermo-gravimetry Analysis (TG), X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared Spectrometer (FTIR) X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and N2 adsorption isotherm. The characteristics of the raw materials and the adsorption mechanism of the prepared samples were characterized. Through a series of pretreatment such as calcined acid leaching and alkali melting of the raw materials, the silicon-aluminum ratio of the sample reaches 1.749, and the maximum specific surface area of the sample can reach 252.59 m2/g. The obtained samples were used to adsorb heavy metal ions and methylene blue solution, and the removal rate of lead ions and methylene blue solution was more than 95%. The theoretical maximum adsorption capacity of Pb ion, methylene blue solution and copper ion can reach 232.56 mg/g and 118.34 mg/g. The adsorption process is mainly chemical adsorption. The product could be suitable for removing both heavy metal ions and cationic dyes from the wastewater and had broad application prospects.
Collapse
Affiliation(s)
- Jida Gao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qianji Lin
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Tingzhi Yang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yong Chao Bao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Juan Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China; Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
12
|
Li R, Zhang C, Chen WH, Kwon EE, Rajendran S, Zhang Y. Multistage utilization of soybean straw-derived P-doped biochar for aquatic pollutant removal and biofuel usage. BIORESOURCE TECHNOLOGY 2023; 387:129657. [PMID: 37595806 DOI: 10.1016/j.biortech.2023.129657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
Biochar is of great importance to realizing solid biowastes reduction and environmental remediation. Modifying biochar for better performance is also of great concern to achieve property improvement. P-doped biochar from soybean straw is prepared for multistage utilization to realize water pollutant removal and biofuel usage. The results suggest that the prepared biochar is adequate for sulfadiazine adsorption and has stable performance under coexisting ions and aquatic pH. Furthermore, the higher heating value of the biochar is close to coal and thus can be an alternative to fossil fuel. The maximum sulfadiazine adsorption amount of P-doped biochar is 252.24 mg·g-1, and the P-doped biochar HHV is 24 MJ·kg-1 which can be an alternative to coal. The greenhouse gas and pollutant emission potential are also considered to explore the environmental impact of P-doped biochar production and usage. Overall, the optimal ratio of soybean straw: K3PO4 is 3:1.
Collapse
Affiliation(s)
- Ruizhen Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Congyu Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Saravanan Rajendran
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
13
|
Jiang W, Cai Y, Liu D, Shi Q, Wang Q. Adsorption properties and mechanism of suaeda biochar and modified materials for tetracycline. ENVIRONMENTAL RESEARCH 2023; 235:116549. [PMID: 37474093 DOI: 10.1016/j.envres.2023.116549] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 07/02/2023] [Indexed: 07/22/2023]
Abstract
Adsorption was an available way to eliminate Tetracycline (TC) from waste water. Suaeda biochar (800SBC) and iron modified biochar (Fe-800SBC) were prepared using pyrolysis under oxygen-limiting conditions. BET and SEM showed that the surface of Fe-800SBC was rougher, and the specific surface area (SBET) was 7 times that of 800SBC. There existed pore filling, ion exchange, metal ion complexation, hydrogen bonds and cation-π interaction mechanism. Both 800SBC and Fe-800SBC conformed to quasi-second-order kinetics model, belonged to chemisorption. Fe-800SBC conformed to Elovich model too. The adsorption process of 800SBC conformed to Freundlich and Sips L-F models, Fe-800SBC conformed to the Sips L-F and Temkin models, identifying the presence of physical and chemical adsorption during adsorption. Response surface method (RSM) was used to optimize important process parameters. The quadratic model was sufficient to predict TC removal response in the range of studied parameters.
Collapse
Affiliation(s)
- Weili Jiang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Yanrong Cai
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China.
| | - Di Liu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Qixian Shi
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Qiong Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| |
Collapse
|
14
|
Hu J, Shen Y, Zhu N. Optimizing adsorption performance of sludge-derived biochar via inherent moisture-regulated physicochemical properties. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:70-81. [PMID: 37413847 DOI: 10.1016/j.wasman.2023.06.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/15/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Understanding the impact of abundant inherent moisture in sewage sludge on the physicochemical properties and adsorption applications of sludge-derived biochar (SDB) contributed significantly to promoting economical sludge reuse. The moisture (0-80%) contributed to the development of micropore and mesopore in SDB at 400 °C, resulting in a maximum increase in specific surface area (SSA) and total pore volume (TPV) of SDB by 38.47% (84.811-117.437 m2/g) and 92.60% (0.0905-0.1743 m3/g), respectively. At 600/800 °C, moisture only facilitated mesopore formation, while was exacerbated with increasing moisture content. Despite reduction in SSA during this stage, TPV increased by a maximum of 20.47% (0.1700-0.2048 m3/g). The presence of moisture during pyrolysis led to an increase in the formation of 3-5 thickened benzene rings and defective structures in SDB, along with more C=O, O-C=O/-OH, pyrrole N, pyridine N, and thiophene. As a result, moisture (40%/80%) increased the maximum adsorption capacity (76.2694-88.0448/90.1190 mg/g) of SDB (600 °C) for tetracycline, mainly due to enhanced pore filling effect and hydrogen bonding induced by improved physicochemical properties. This study offered a novel approach for optimizing the performance of SDB adsorption applications by manipulating the sludge moisture, which is critical for practical sludge management.
Collapse
Affiliation(s)
- Jinwen Hu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanwen Shen
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
15
|
Li M, Zhang S, Zhang P, Qin K, Chen Q, Cao Q, Zhang Y, Zhang J, Yuan C, Xiao H. Dansyl-labelled cellulose as dual-functional adsorbents for elimination and detection of mercury in aqueous solution via aggregation-induced emission. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117773. [PMID: 36996568 DOI: 10.1016/j.jenvman.2023.117773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Dansyl chloride fluorophore exhibits typical aggregation induced fluorescence emission behavior in acetone/water solution. To realize the integration of detective and adsorptive functions, dansyl chloride is covalently immobilized on cellulose substrate to fabricate an efficient adsorbent for mercury ions in water. The as-prepared material exhibits excellent fluorescence sensing performance exclusively for Hg (II) with the presence of other metal ions. A sensitive and selective fluorescence quenching across the concentration range of 0.1-8.0 mg/L is observed with a detection limit of 8.33 × 10-9 M as a result of the inhibition of aggregation induced emission caused by the coordination between adsorbent and Hg (II). Besides, the adsorption properties for Hg (II) including the influence of initial concentration and contact time are investigated. Langmuir model and pseudo-second-order kinetics are demonstrated to fit well with the adsorption experiment for the uptake of Hg (II) by the functionalized adsorbent, also, intraparticle diffusion kinetic model is proved to aptly describe the Hg (II) removal in aqueous solution. In addition, the recognition mechanism is considered to originate from the Hg (II) triggered structural reversals of naphthalene ring units which are verified by the X-ray photoelectron spectroscopy and density functional theory calculation. Moreover, the synthesis method used in this work also provides a strategy for the sensing application of organic sensor molecules with AIE properties in which the aggregated behavior could be appropriately realized.
Collapse
Affiliation(s)
- Ming Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Siqi Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Panpan Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Kexin Qin
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Qian Chen
- Department of Chemistry, Nanchang University, Nanchang, 330031, PR China
| | - Qianyong Cao
- Department of Chemistry, Nanchang University, Nanchang, 330031, PR China.
| | - Yuling Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Jinghong Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Chungang Yuan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, E3B 5A3, Canada.
| |
Collapse
|
16
|
Liu J, Lin Q, Gao J, Jia X, Cai M, Liang Q. Adsorption properties and mechanisms of methylene blue and tetracycline by nano-silica biochar composites activated by KOH. CHEMOSPHERE 2023:139395. [PMID: 37399993 DOI: 10.1016/j.chemosphere.2023.139395] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Dyestuff wastewater and pharmaceutical wastewater have become typical representatives of water pollution. In this study, a novel nano-silica-biochar composite (NSBC) was synthesized based on corn straw as raw material, by a combination of ball milling, pyrolysis and KOH activation. The modified biochar with rough surface had higher specific surface area (117.67-132.82 m2/g), developed pore structure (0.12-0.15 cm3/g) and abundant surface functional groups (-OH, -COOH, Si-O and aromatic CC were dominated). These provided abundant active sites for the adsorption of pollutants. The adsorption capacities of NSBC for Methylene Blue (MB) and Tetracycline (TC) were both higher than that of other similar products, the maximum adsorption capacity of Langmuir were 247.22 and 86.95 mg/g, respectively. After five adsorption-desorption cycle experiments, the adsorption capacities of NSBC for both were still excellent, reaching 99.30 and 19.87 mg/g, respectively. Due to the different structure and molecular size of MB and TC, the adsorption capacities of NSBC were significantly different, especially the influence of solution pH value. The adsorption mechanisms were comprehensively discussed by FTIR and XPS of the samples before and after adsorption, and combining experimental results of BET and simultaneously, which were manifested as monolayer chemisorption, specifically surface complexation, hydrogen bonding, n-π/π-π conjugation, electrostatic interaction and pore filling.
Collapse
Affiliation(s)
- Juan Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qianji Lin
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Jida Gao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xuping Jia
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Mengfan Cai
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qiaochu Liang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
17
|
Che H, Wei G, Fan Z, Zhu Y, Zhang L, Wei Z, Huang X, Wei L. Super facile one-step synthesis of sugarcane bagasse derived N-doped porous biochar for adsorption of ciprofloxacin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117566. [PMID: 36867900 DOI: 10.1016/j.jenvman.2023.117566] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/30/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
A new N-doped biochar derived from sugarcane bagasse (NSB) was prepared by one-pot pyrolysis with sugarcane bagasse as feedstock, melamine as nitrogen source and NaHCO3 as pore-forming agent, and then NSB was used to adsorb ciprofloxacin (CIP) in water. The optimal preparation conditions of NSB were determined based on the evaluation index of adsorbability of NSB for CIP. SEM, EDS, XRD, FTIR, XPS and BET characterizations were used to analyze the physicochemical properties of the synthetic NSB. It was found that the prepared NSB had excellent pore structure, high specific surface area and more nitrogenous functional groups. Meanwhile, it was demonstrated that the synergistic interaction between melamine and NaHCO3 increased the pores of NSB and the largest surface area of NSB was 1712.19 m2/g. The CIP adsorption capacity of 212 mg/g was obtained under optimal parameters as follows: NSB amount 0.125 g/L, initial pH 6.58, adsorption temperature 30 °C, CIP initial concentration 30 mg/L and adsorption time 1 h. The isotherm and kinetics studies elucidated that the adsorption of CIP conformed both D-R model and Pseudo-second-order kinetic model. The high CIP adsorption capacity of NSB for CIP was due to the combined filling pore, π-π conjugation and hydrogen bonding. All results demonstrated that adsorption of CIP by the low-cost N-doped biochar of NSB is a reliable technology for the disposal of CIP wastewater.
Collapse
Affiliation(s)
- Huixian Che
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Guangtao Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Guangxi Zhuang Autonomous Region, Nanning, 530004, PR China
| | - Zuodan Fan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Youlian Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Linye Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China; Guangxi Key Laboratory of Bio-refinery, Guangxi Zhuang Autonomous Region, Nanning 530007, PR China.
| | - Zhaozhou Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Xinlan Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Linru Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| |
Collapse
|
18
|
Nie Y, Zhao C, Zhou Z, Kong Y, Ma J. Hydrochloric acid-modified fungi-microalgae biochar for adsorption of tetracycline hydrochloride: Performance and mechanism. BIORESOURCE TECHNOLOGY 2023:129224. [PMID: 37244305 DOI: 10.1016/j.biortech.2023.129224] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
Novel biochar (BC) was prepared by pyrolysis using Aspergillus oryzae-Microcystis aeruginosa (AOMA) flocs as raw materials. It has been used for tetracycline hydrochloride (TC) adsorption along with acid (HBC) and alkali modification (OHBC). Compared with BC (114.5 m2 g-1) and OHBC (283.9 m2 g-1), HBC had a larger specific surface area (SBET=338.6 m2 g-1). Meanwhile, the Elovich kinetic and Sip isotherm models adequately fit the adsorption data, and intraparticle diffusion is the controlling factor for TC adsorption diffusion on HBC. Furthermore, the thermodynamic data indicated that this adsorption was endothermic and spontaneous. The experimental results demonstrated that there are multiple interactions during the adsorption reaction process, including pore filling, H-bonds, π-π interaction, hydrophobic affinity, and van der Waals forces. In general, biochar prepared from flocs of AOMA can be used to remediate tetracycline-contaminated water, and it is of great significance in improving resource utilization.
Collapse
Affiliation(s)
- Yong Nie
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui 243002, China
| | - Changwei Zhao
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Zhengyu Zhou
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Yanli Kong
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui 243002, China
| | - Jiangya Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan, Anhui 243002, China.
| |
Collapse
|
19
|
Shi Q, Wang W, Zhang H, Bai H, Liu K, Zhang J, Li Z, Zhu W. Porous biochar derived from walnut shell as an efficient adsorbent for tetracycline removal. BIORESOURCE TECHNOLOGY 2023; 383:129213. [PMID: 37230330 DOI: 10.1016/j.biortech.2023.129213] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
In this study, a high-performance porous adsorbent was prepared from biochar through a simple one-step alkali-activated pyrolysis treatment of walnut shells, and it was effective in removing tetracycline (TC). The specific surface area (SSA) of potassium hydroxide-pretreated walnut shell-derived biochar pyrolyzed at 900°C (KWS900) increased remarkably compared to that of the pristine walnut shell and reached 1713.87±37.05 m2·g-1. The maximum adsorption capacity of KWS900 toward TC was 607.00±31.87 mg·g-1. The pseudo-second-order kinetic and Langmuir isotherm models were well suited to describe the TC adsorption process onto KWS900. The KWS900 exhibited high stability and reusability for TC adsorption in the presence of co-existing anions or cations over a wide pH range of 1.0-11.0. Further investigations demonstrated that the proposed adsorption mechanism involved pore filling, hydrogen bonding, π-π stacking, and electrostatic interaction. These findings provide a valuable reference for developing biochar-based adsorbents for pollutant removal.
Collapse
Affiliation(s)
- Qiyu Shi
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wangbo Wang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hongmin Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Huiling Bai
- School of literature, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jianfeng Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhihua Li
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Weihuang Zhu
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
20
|
Zong Y, Wang X, Zhang H, Li Y, Yu J, Wang C, Cai Z, Wei J, Ding L. Preparation of a ternary composite based on water caltrop shell derived biochar and gelatin/alginate for cadmium removal from contaminated water: Performances assessment and mechanism insight. Int J Biol Macromol 2023; 234:123637. [PMID: 36775227 DOI: 10.1016/j.ijbiomac.2023.123637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
A ternary composite (SA/GE@BC) for cadmium removal from wastewater was successfully prepared. The alginate and gelatin were successfully impregnated with biochar (derived from water caltrop shell) to improve the recyclability and adsorption capacity. The prepared SA/GE@BC demonstrated a good removal for cadmium at pH 4.0-7.0 conditions. The cadmium removal increased with increasing SA/GE@BC dosage. The adsorption kinetics process was well consistent with the pseudo-second order model. And the Langmuir model (R2 > 0.99) best described the isotherm data. The calculated adsorption capacity reached a maximum of 86.25 mg/g. The adsorption was a spontaneous and endothermic process, and elevating temperature favored the removal of cadmium. The alginate-gelatin composition enhanced the number of oxygenated functional groups and exchangeable ions. This enhanced the removal of cadmium by complexation and cation ion exchange. Also, the removal mechanism of cadmium on SA/GE@BC involved electrostatic attraction and π-bond coordination. The saturated SA/GE@BC could be well regenerated by 0.1 M HNO3. All these results suggested the preparation of SA/GE@BC could effectively use waste resources to produce highly effective adsorbents for removing cadmium from contaminated water.
Collapse
Affiliation(s)
- Yiming Zong
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Xinxiang Wang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Hao Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Yan Li
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China
| | - Jian Yu
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Chen Wang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Zhantao Cai
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Jincheng Wei
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Lei Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China.
| |
Collapse
|
21
|
Mo G, Xiao J, Gao X. NaHCO 3 activated sludge-derived biochar by KMnO 4 modification for Cd(II) removal from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57771-57787. [PMID: 36971938 DOI: 10.1007/s11356-023-26638-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
The surface flat pristine biochar provides limited adsorption sites for Cd(II) adsorption. To address this issue, a novel sludge-derived biochar (MNBC) was prepared by NaHCO3 activation and KMnO4 modification. The batch adsorption experiments illustrated that the maximum adsorption capacity of MNBC was twice that of pristine biochar and reached equilibrium more quickly. The pseudo-second order and Langmuir model were more suitable for analyzing the Cd(II) adsorption process on MNBC. Na+, K+, Mg2+, Ca2+, Cl- and NO-3 had no effect on the Cd(II) removal. Cu2+ and Pb2+ inhibited the Cd(II) removal, while PO3-4 and humic acid (HA) promoted it. After 5 repeated experiments, the Cd(II) removal efficiency on MNBC was 90.24%. The Cd(II) removal efficiency of MNBC in different actual water bodies was over 98%. Furthermore, MNBC owned excellent Cd(II) adsorption performance in fixed bed experiments, and the effective treatment capacity was 450 BV. The co-precipitation, complexation, ion exchange and Cd(II)-π interaction were involved in Cd(II) removal mechanism. XPS analysis showed that NaHCO3 activation and KMnO4 modification enhanced the complexation ability of MNBC to Cd(II). The results suggested that MNBC can be used as an effective adsorbent for treating of Cd-contaminated wastewater.
Collapse
Affiliation(s)
- Guanhai Mo
- Department of Water Engineering and Science, School of Civil Engineering, University of South China, Hengyang, 421001, People's Republic of China.
| | - Jiang Xiao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Xiang Gao
- Powerchina Zhongnan Engineering Corporation Co., Ltd, Changsha, 410000, People's Republic of China
| |
Collapse
|
22
|
Chen Z, Lin B, Huang Y, Liu Y, Wu Y, Qu R, Tang C. Pyrolysis temperature affects the physiochemical characteristics of lanthanum-modified biochar derived from orange peels: Insights into the mechanisms of tetracycline adsorption by spectroscopic analysis and theoretical calculations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160860. [PMID: 36521614 DOI: 10.1016/j.scitotenv.2022.160860] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/13/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Biochar (BC) derived from orange peels was modified using LaCl3 to enhance its tetracycline (TC) adsorption capacity. SEM-EDS, FT-IR, XRD, and BET were used to characterize the physiochemical characteristics of La-modified biochar (La-BC). Batch experiments were conducted to investigate the effects of several variables like pyrolysis temperature, adsorbent dosage, initial pH, and coexisting ions on the adsorption of TC by La-BC. XPS and density functional theory (DFT) were used to elucidate the TC adsorption mechanism of La-BC. The results demonstrated that La was uniformly coated on the surface of the La-BC. The physiochemical characteristics of La-BC highly depended on pyrolysis temperature. Higher temperature increased the specific surface area and functional groups of La-BC, thus enhancing its TC adsorption capacity. La-BC prepared at 700 °C (BC@La-700) achieved the maximum adsorption capacity of 143.20 mg/g, which was 6.8 and 4.6 times higher than that of BC@La-500 and BC@La-600, respectively. The mechanisms of TC adsorption by La-BC were most accurately described by the pseudo-second-order kinetic model. Furthermore, the adsorption isotherm of La-BC was consistent with the Freundlich model. BC@La-700 achieved good TC adsorption efficiencies even at a wide pH range (pH 4-10). Humic acid significantly inhibited TC adsorption by La-BC. The presence of coexisting ions (NH4+, Ca2+, NO3-) did not significantly affect the adsorption capacity of La-BC, particularly BC@La-700. Moreover, BC@La-700 also exhibited the best recycling performance, which achieved relative high adsorption capacity even after 5 cycles. The XPS results showed that π-π bonds, oxygen-containing functional groups, and La played a major role in the adsorption of TC on La-BC. The result of DFT showed that the adsorption energy of La-BC was the greatest than that of other functional groups on biochar. Collectively, our findings provide a theoretical basis for the development of La-BC based materials to remove TC from wastewater.
Collapse
Affiliation(s)
- Zhihao Chen
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China
| | - Bingfeng Lin
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China
| | - Yingping Huang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, China Three Gorges University, Yichang 443002, Hubei, China.
| | - Yanbiao Liu
- Donghua University, College of Environmental Science & Engineering, Text Pollution Controlling Engineering Center, Ministry of Environmental Protection, Shanghai 201620, China
| | - Yonghong Wu
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Rui Qu
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, China Three Gorges University, Yichang 443002, Hubei, China
| | - Cilai Tang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, China Three Gorges University, Yichang 443002, Hubei, China.
| |
Collapse
|
23
|
Guo S, Zou Z, Chen Y, Long X, Liu M, Li X, Tan J, Chen R. Synergistic effect of hydrogen bonding and π-π interaction for enhanced adsorption of rhodamine B from water using corn straw biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121060. [PMID: 36641067 DOI: 10.1016/j.envpol.2023.121060] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Dyes adsorption to biochar via hydrogen bonding, and π-π interaction alone have attracted much research attention, however, their synergism in adsorption mechanisms remains largely unnoticed. The synergistic effects of the hydrogen bonding and π-π interaction might improve the adsorption capacity and need more understanding to prepare high-capacity biochar. In this work, we evaluated the adsorption of various dyes on biochar prepared via the activation of potassium bicarbonate and urea (named BC-KN) to explore their synergistic effects. Batch experiments indicated the BC-KN showed a high adsorption capacity to rhodamine B at 4839.0 mg/g, azure B at 4477.7 mg/g, and methylene blue at 2223.0 mg/g, respectively. The mechanism of such significant adsorption was investigated by their comparative experiments, characterizations, and computational analyses. The computational analyses suggested that the synergism of the hydrogen bonding and π-π interaction improves the adsorption energies of BC-KN/RhB system from -10.35 kcal/mol to -20.49 kcal/mol. It can be concluded that the hydrogen bonding and π-π interaction can synergize to significantly improve the adsorption by increasing the π-electron density and shortening the distance of aromatic rings, thus dyes with H-donor show significantly better adsorption capacities. The insight of hydrogen bonding being the governing factor in the synergistic system will help produce high-capacity biochar in removing aromatic dyes and suggest a sustainable technology for the efficient decolorization of dye effluent to minimize its damage to the health and environment.
Collapse
Affiliation(s)
- Songjun Guo
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zhiyuan Zou
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; College of Resources and Environment, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Yang Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Xinxin Long
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Meng Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Xiaoping Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Jihua Tan
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China
| | - Rongzhi Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, China.
| |
Collapse
|
24
|
Mechanism of sulfamethoxazole adsorption on wastewater-sludge-based biochar: Sludge type and modification improvement. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1274-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
25
|
Ke Y, Zhu X, Si S, Zhang T, Wang J, Zhang Z. A Novel Adsorbent of Attapulgite & Carbon Composites Derived from Spent Bleaching Earth for Synergistic Removal of Copper and Tetracycline in Water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1573. [PMID: 36674334 PMCID: PMC9865348 DOI: 10.3390/ijerph20021573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Simultaneously eliminating tetracycline (TC) and copper (Cu-II) from wastewater was investigated by applying a novel adsorbent fabricated by transforming spent bleaching earth (SBE) into attapulgite & carbon composites (A&Cs). Pyrolysis temperature for A&Cs preparation exhibited a positive effect on Cu(II) adsorption, while the AC500 possessed the greatest performance for TC remediation. Interestingly, a synergistic effect instead of competitive adsorption occurred between Cu(II) and TC under the combined binary system, as both TC and Cu(II) adsorption amount on A&C500 increased more than that in the single system, which could be mainly attributed to the bridge actions between the TC and Cu(II). In addition, hydrogen bonding, ᴨ-ᴨ EDA interaction, pore-filling and complexation exerted significant roles in the adsorption process of TC and Cu(II). In general, this study offered a new perspective on the regeneration of livestock and poultry industry wastewater polluted with antibiotics and heavy metals.
Collapse
Affiliation(s)
- Yuxin Ke
- College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
- Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Northwest University, Xi’an 710127, China
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
- Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Northwest University, Xi’an 710127, China
| | - Shaocheng Si
- College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
- Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Northwest University, Xi’an 710127, China
| | - Ting Zhang
- College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
- Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Northwest University, Xi’an 710127, China
| | - Junqiang Wang
- College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
- Xi’an Jinborui Ecological Tech. Co., Ltd., Xi’an 710065, China
| | - Ziye Zhang
- Xi’an Jinborui Ecological Tech. Co., Ltd., Xi’an 710065, China
| |
Collapse
|
26
|
Huang B, Huang D, Zheng Q, Yan C, Feng J, Gao H, Fu H, Liao Y. Enhanced adsorption capacity of tetracycline on porous graphitic biochar with an ultra-large surface area †. RSC Adv 2023; 13:10397-10407. [PMID: 37020889 PMCID: PMC10068915 DOI: 10.1039/d3ra00745f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Excessive tetracycline in the water environment may lead to the harming of human and ecosystem health. Removing tetracycline antibiotics from aqueous solution is currently a most urgent issue. Porous graphitic biochar with an ultra-large surface area was successfully prepared by a one-step method. The effects of activation temperature, activation time, and activator dosage on the structural changes of biochar were investigated by scanning electron microscopy, Brunauer–Emmett–Teller, X-ray powder diffraction, and Raman spectroscopy. The effect of the structure change, adsorption time, temperature, initial pH, and co-existing ions on the tetracycline removal efficiency was also investigated. The results show that temperature had the most potent effect on the specific surface area, pore structure, and extent of graphitization. The ultra-large surface area and pore structure of biochar are critical to the removal of tetracycline. The qe of porous graphitic biochar could reach 1122.2 mg g−1 at room temperature. The calculations of density functional theory indicate that π–π stacking interaction and p–π stacking interaction can enhance the tetracycline adsorption on the ultra-large surface area of graphitic biochar. 1. A ultra-large surface area of porous graphitic biochar was successfully using corn starch and ZnCl2 by a one-step method. 2. The adsorption capacity of tetracycline on the biochar could get 1122.2 mg g−1 at room temperature.![]()
Collapse
Affiliation(s)
- Bingyuan Huang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, College of Chemistry and Chemical Engineering, China West Normal UniversityNanchongSichuan 637000China
| | - Dan Huang
- People's Hospital of Gaoping DistrictNanchongSichuan 637100China
| | - Qian Zheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, College of Chemistry and Chemical Engineering, China West Normal UniversityNanchongSichuan 637000China
| | - Changhan Yan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, College of Chemistry and Chemical Engineering, China West Normal UniversityNanchongSichuan 637000China
| | - Jiaping Feng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, College of Chemistry and Chemical Engineering, China West Normal UniversityNanchongSichuan 637000China
| | - Hejun Gao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, College of Chemistry and Chemical Engineering, China West Normal UniversityNanchongSichuan 637000China
| | - Hongquan Fu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, College of Chemistry and Chemical Engineering, China West Normal UniversityNanchongSichuan 637000China
| | - Yunwen Liao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, College of Chemistry and Chemical Engineering, China West Normal UniversityNanchongSichuan 637000China
| |
Collapse
|
27
|
Jiang H, Dai Y. Vitamin C modified crayfish shells biochar efficiently remove tetracycline from water: A good medicine for water restoration. CHEMOSPHERE 2023; 311:136884. [PMID: 36265698 DOI: 10.1016/j.chemosphere.2022.136884] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
In this study, crayfish shell biochar (CSB) was modified by introducing vitamin C (VC) with abundant surface functional groups. CSB was impregnated with VC at different ratios and its capacity to adsorb tetracycline (TC) from water was analyzed. The physicochemical properties of CSB were determined by N2 adsorption-desorption isotherm analysis, X-ray diffraction, and Fourier transform infrared spectroscopy. The effects of various factors on adsorption such as the pH, TC concentration, time, and salt ion concentrations were also investigated. Based on the chemical structure of VC, VC can provide CSB with more oxygen-containing functional groups such as hydroxyl groups. The results showed that the CSB modified with VC (CSB-VC) exhibited excellent adsorption of TC, and CSB-VC2 with an impregnation ratio of 2 (gVC/gCSB) had the greatest adsorption performance (saturated adsorption capacity, Qm = 293.36 mg/g), whereas the adsorption performance of CSB alone was about 50% lower (Qm = 172.16 mg/g). The optimal impregnation ratio VC improved the adsorption performance of CSB after modification to 70.4% of the original. Hydrogen bonding, p-p conjugation, pi-pi electron donor-acceptor effect, and π-π interactions were identified as the main adsorption mechanisms. CSB-VC2 was highly effective over a wide range of pH values and at high ion concentrations. Experiments demonstrated the effective regeneration of the adsorbent after multiple cycles, thereby indicating its excellent reusability. It should be noted that the adsorption capacity was good under different water quality conditions, and thus it should exhibit stable adsorption performance under complex water environment conditions.
Collapse
Affiliation(s)
- Huating Jiang
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Yingjie Dai
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
28
|
Ding H, Zhang Z, Li Y, Ding L, Sun D, Dong Z. Fabrication of novel Fe/Mn/N co-doped biochar and its enhanced adsorption for bisphenol a based on π-π electron donor-acceptor interaction. BIORESOURCE TECHNOLOGY 2022; 364:128018. [PMID: 36162783 DOI: 10.1016/j.biortech.2022.128018] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
In this work, a novel Fe/Mn/N co-doped biochar (Fe&Mn-NBC800) derived from waste apple tree branches was fabricated for bisphenol A (BPA) removal. Fe&Mn-NBC800 exhibited higher adsorption capacity (84.96 mg·g-1) in 318 K for BPA than the pristine biochar, doped mono-atomic, and di-atomic biochar. Higher temperature and adsorbent dosage promoted BPA removal, while higher solution pH was detrimental to the adsorption process. The kinetic and isothermal processes of BPA removal followed the pseudo-second-order model and Langmuir, respectively. Characterizations and correlation analysis indicated that π-π interactions showed the major contribution to the BPA adsorption. Furthermore, the pore filling, electrostatic interactions, hydrogen bonding, and hydrophobic interactions also played a role. Good water environment anti-interference ability (ion species, ionic strength, actual water body) and excellent recyclability of Fe&Mn-NBC800 make it exhibit the potential for engineering projects.
Collapse
Affiliation(s)
- Heng Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Zhilin Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Jiangsu Branch, North China Municipal Engineering Design & Research Institute Co. Ltd., Nanjing 210019, China
| | - Yan Li
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China; Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
| | - Lei Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China
| | - Dongxiao Sun
- Municipal Environmental Protection Engineering Co., Ltd of CERC Shanghai Group, Shanghai 201906, China
| | - Zhiqiang Dong
- Municipal Environmental Protection Engineering Co., Ltd of CERC Shanghai Group, Shanghai 201906, China
| |
Collapse
|
29
|
Guy Laurent Zanli BL, Tang W, Chen J. N-doped and activated porous biochar derived from cocoa shell for removing norfloxacin from aqueous solution: Performance assessment and mechanism insight. ENVIRONMENTAL RESEARCH 2022; 214:113951. [PMID: 35981615 DOI: 10.1016/j.envres.2022.113951] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution has worsened as a result of antibiotic overuse. Nitrogen doping of biochar increases its ability to adsorb antibiotics and has been widely applied as an adsorbent. In this study, we synthesized nitrogen-doped biochar (N-A) from cocoa shell wastes calcined with urea and sodium bicarbonate (NaHCO3) as nitrogen sources and green activators, respectively. An analysis of the biochar morphology, structure, specific surface area, and functional groups provided an understanding of its properties. As indicated by increased surface area, micropores, and surface functional groups, biochar was enhanced in its performance for norfloxacin adsorption when activated using NaHCO3 and nitrogen doped. Adsorption experiments revealed that N-A biochar at 700 and 400 °C had a high adsorption capacity for NOR of 134 mg/g (N-A-CSB700) and 112.31 mg/g (N-A-CSB400) when compared to pristine biochar at 59.27 mg/g (CSB700) and 56.34 mg/g (CSB400), indicating that N-A doped modification on biochar greatly improved adsorption capacity. The Langmuir model demonstrated better NOR adsorption isotherms. The pseudo-second order and Elovich models closely followed the adsorption kinetics. Further investigations were conducted to determine how environmental factors influence biochar interaction with NOR. The results indicated a stable NOR removal efficiency was kept at a wide pH range, whereas the ionic strength inhibited the NOR adsorption process. The investigation into the sorption mechanism revealed that pore filling, H-bonding, π-π EDA interactions, ion exchange, and electrostatic attraction may all be implicated in the NOR adsorption process. Specifically, pore filling played the dominant role for N-A-CSB700, while N-A-CSB400 sorption occurred mainly via H-bonding. Since N-A-CSB700 doped biochar combines high adsorption capacity with a low inhibition effect of environmental factors (Na+/Ca2+), it has a high potential for future practical applications as an environmentally sustainable alternative. It uses low-cost solid waste to produce an adsorbent to cope with emerging contaminants such as antibiotics.
Collapse
Affiliation(s)
- Bi Lepohi Guy Laurent Zanli
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Wei Tang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Jiawei Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China.
| |
Collapse
|
30
|
Ding J, Wang L, Ma YL, Sun YG, Zhu YB, Wang LQ, Li YY, Ji WX. Synergistically boosted non-radical catalytic oxidation by encapsulating Fe3O4 nanocluster into hollow multi-porous carbon octahedra with emphasise on interfacial engineering. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Ye Y, Hao Ngo H, Guo W, Woong Chang S, Duc Nguyen D, Fu Q, Wei W, Ni B, Cheng D, Liu Y. A critical review on utilization of sewage sludge as environmental functional materials. BIORESOURCE TECHNOLOGY 2022; 363:127984. [PMID: 36126850 DOI: 10.1016/j.biortech.2022.127984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Sewage sludge (SS) is increasingly used as an environment functional material to reduce or control pollution and improve plant growth because of the large amounts of carbon and essential plant nutrients in it. To achieve the best application results, it is essential to comprehensively review recent progress in SS utilization. This review aims to fill the gaps in knowledge by describing the properties of SS, and its usage as adsorbents, catalysts and fertilizers, and certain application mechanisms. Although SS generates several benefits for the environment and humans, many challenges still exist to limit the application, including the risks posed by potentially toxic substances (e.g., heavy metals) in SS. Therefore, future research directions are discussed and how to make SS applications more feasible in terms of technology and economy.
Collapse
Affiliation(s)
- Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Qiang Fu
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia
| | - Bingjie Ni
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia
| | - Dongle Cheng
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia
| | - Yi Liu
- Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, PR China
| |
Collapse
|
32
|
Zhang Z, Li Y, Zong Y, Yu J, Ding H, Kong Y, Ma J, Ding L. Efficient removal of cadmium by salts modified-biochar: Performance assessment, theoretical calculation, and quantitative mechanism analysis. BIORESOURCE TECHNOLOGY 2022; 361:127717. [PMID: 35926559 DOI: 10.1016/j.biortech.2022.127717] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Modified biochar is a feasible adsorbent to solve cadmium pollution in water. However, few studies could elucidate the mechanism of cadmium adsorption by biochar from a molecular perspective. Furthermore, traditional modification methods are costly and have the risk of secondary contamination. Hence, several environmentally friendly sodium salts were used to modify the water chestnut shell-based biochar and employ it in the Cd2+ adsorption in this work. The modification of sodium salt could effectively improve the specific surface area and aromaticity of biochar. Na3PO4 modified biochar exhibited the highest Cd2+ adsorption capacity (112.78 mg/g). The adsorption of Cd2+ onto biochar was an endothermic, monolayer, chemisorption process accompanied by intraparticle diffusion. Microscopically, the enhancement of aromatization after modification made Cd2+ more likely to interact with the regions rich in π electrons and lone pair electrons. This study provided a new research perspective and application guidance for heavy metal adsorption on biochar.
Collapse
Affiliation(s)
- Zhilin Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Yan Li
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China; Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
| | - Yiming Zong
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Jian Yu
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Heng Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Yanli Kong
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China
| | - Jiangya Ma
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China
| | - Lei Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China.
| |
Collapse
|
33
|
Nizzy AM, Kannan S. A review on the conversion of cassava wastes into value-added products towards a sustainable environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69223-69240. [PMID: 35962891 DOI: 10.1007/s11356-022-22500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The solid and liquid wastes generated from cassava-based industries are organic and acidic in nature, which leads to various global concerns-primarily global warming and biodiversity loss. But the conversion of these wastes into value-added products associated with environmental pollution control contributes to sustainable development. Generally, the thermochemical process such as pyrolysis and gasification and biochemical processes such as anaerobic digestion have been applied for the conversion of cassava waste into value-added products. This review addresses the valorization of cassava wastes, which fulfill almost all needs of the hour, such as energy (biofuel), wastewater treatment (adsorbents), bioplastics, starch nanoparticles, organic acid production, and antimicrobial agents. The major aim of this paper is to analyze and provide the disclosure of the efficiency of cassava-based industrial waste as a source to minimize the problem associated with conventional fossil fuels and through which mitigate the impact of global warming and climate change. Furthermore, recent research and achievements in the valorization of cassava waste have been highlighted.
Collapse
Affiliation(s)
- Albert Mariathankam Nizzy
- Department of Environmental Studies, School of Energy Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| | - Suruli Kannan
- Department of Environmental Studies, School of Energy Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| |
Collapse
|
34
|
Hu J, Zhao L, Luo J, Gong H, Zhu N. A sustainable reuse strategy of converting waste activated sludge into biochar for contaminants removal from water: Modifications, applications and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129437. [PMID: 35810514 DOI: 10.1016/j.jhazmat.2022.129437] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/02/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Conversion of sewage sludge to biochar for contaminants removal from water achieves the dual purpose of solid waste reuse and pollution elimination, in line with the concept of circular economy and carbon neutrality. However, the current understanding of sludge-derived biochar (SDB) for wastewater treatment is still limited, with a lack of summary regarding the effect of modification on the mechanism of SDB adsorption/catalytic removal aqueous contaminants. To advance knowledge in this aspect, this paper systematically reviews the recent studies on the use of (modified) SDB as adsorbents and in persulfate-based advanced oxidation processes (PS-AOPs) as catalysts for the contaminants removal from water over the past five years. Unmodified SDB not only exhibits stronger cation exchange and surface precipitation for heavy metals due to its nitrogen/mineral-rich properties, but also can provide abundant catalytic active sites for PS. An emphatic summary of how certain adsorption removal mechanisms of SDB or its catalytic performance in PS-AOPs can be enhanced by targeted regulation/modification such as increasing the specific surface area, functional groups, graphitization degree, N-doping or transition metal loading is presented. The interference of inorganic ions/natural organic matter is one of the unavoidable challenges that SDB is used for adsorption/catalytic removal of contaminants in real wastewater. Finally, this paper presents the future perspectives of SDB in the field of wastewater treatment. This review can contribute forefront knowledge and new ideas for advancing sludge treatment toward sustainable green circular economy.
Collapse
Affiliation(s)
- Jinwen Hu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinming Luo
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huabo Gong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
35
|
Qu J, Wu Z, Liu Y, Li R, Wang D, Wang S, Wei S, Zhang J, Tao Y, Jiang Z, Zhang Y. Ball milling potassium ferrate activated biochar for efficient chromium and tetracycline decontamination: Insights into activation and adsorption mechanisms. BIORESOURCE TECHNOLOGY 2022; 360:127407. [PMID: 35667535 DOI: 10.1016/j.biortech.2022.127407] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Herein, novel Fe-biochar composites (MBCBM500 and MBCBM700) were synthesized through K2FeO4 co-pyrolysis and ball milling, and were used to eliminate Cr(VI)/TC from water. Characterization results revealed that higher temperature promoted formation of zero-valent iron and Fe3C on MBCBM700 through carbothermal reduction between K2FeO4 and biochar. The higher specific surface area and smaller particle size of MBCBM500/700 stemmed from the corrosive functions of K and the ball milling process. And the maximal uptake amount of MBCBM700 for Cr(VI)/TC was 117.49/90.31 mg/g, relatively higher than that of MBCBM500 (93.86/84.15 mg/g). Furthermore, ion exchange, pore filling, precipitation, complexation, reduction and electrostatic attraction were proved to facilitate the adsorption of Cr(VI), while hydrogen bonding force, pore filling, complexation and π-π stacking were the primary pathways to eliminate TC. This study provide a reasonable design of Fe-carbon materials for Cr(VI)/TC contained water remediation, which required neither extra modifiers nor complex preparation process.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhihuan Wu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yang Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ruolin Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Di Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Siqi Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuqi Wei
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jingru Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China.
| |
Collapse
|
36
|
Xiang Y, Zhang H, Yu S, Ni J, Wei R, Chen W. Influence of pyrolysis atmosphere and temperature co-regulation on the sorption of tetracycline onto biochar: structure-performance relationship variation. BIORESOURCE TECHNOLOGY 2022; 360:127647. [PMID: 35868465 DOI: 10.1016/j.biortech.2022.127647] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Presently, as the prevalent pyrolysis atmospheres, N2 is widely used, while air-limitation and CO2 are rarely considered, to produce biochar to adsorb tetracycline. This study thus used N2, CO2, and air-limitation to produce various biochars at 300 ∼ 750 °C, and explored their structure-performance relationship for tetracycline sorption. The maximum sorption capacities of biochars produced in CO2 and air-limitation were 55.36 mg/g and 71.11 mg/g (at 750 °C), respectively, being 2.34 and 3.01 times that of biochars produced in N2 (23.60 mg/g at 750 °C). Interestingly, except for high pore volume and specific surface area supported pore filling and sites providing effect, ash (containing metal cations, P-O, and S=O) induced complexing effect was the primary mechanism for tetracycline sorption, rather than hydrophobic effect, π-π interaction, and hydrogen bond caused by C composition. This study provides important information about adjusting the pyrolysis atmosphere to improve the sorption performance of biochar toward tetracycline.
Collapse
Affiliation(s)
- Yu Xiang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Huiying Zhang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Shuhan Yu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Jinzhi Ni
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Ran Wei
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| |
Collapse
|
37
|
Ji J, Xu S, Ma Z, Mou Y. Trivalent antimony removal using carbonaceous nanomaterial loaded with zero-valent bimetal (iron/copper) and their effect on seed growth. CHEMOSPHERE 2022; 296:134047. [PMID: 35183581 DOI: 10.1016/j.chemosphere.2022.134047] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/29/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
As rapid industrial and social growth, antimony mines are the overexploited, leading to the accumulation of trivalent antimony in the aquatic environment near smelters, which harm human health. To eradicate trivalent antimony from water, an innovative nanomaterial in the form of sludge biochar loaded with zero-valent bimetal was synthesized using a liquid-phase reduction method. The adsorption performance of the nanomaterial for trivalent antimony was investigated based on a series of adsorption experiments using sludge biochar, nano zero-valent iron biochar, and nano zero-valent bimetal biochar. The results showed that the optimal adsorption performance of the three nanomaterials for trivalent antimony, considering the economic practicability, was highlighted at solution pH of 3 and 0.05 g of nanomaterial. Additionally, the maximum adsorption capacity of sludge biochar, nano zero-valent iron biochar, and nano zero-valent bimetal biochar is 3.89 mg g-1 at 35 °C, 32.01 mg g-1 at 25 °C, 50.96 mg g-1 at 25 °C, respectively. The adsorption process of sludge biochar is endothermic, resulting in an increase in the adsorption capacity with increasing temperature, whereas the exothermic reaction contributes to decrease in the adsorption capacity at increasing temperature for the other two carbon nanomaterials. The inhibitory effect of coexisting ions was in the order: Al3+ > NH4+ > Na+ > K+; CO32- > CH3COO- > H2PO4- > S2-. Additionally, nanomaterials promoted seed germination and growth. Investigation of the adsorption mechanism using X-ray photoelectron spectroscopy showed that trivalent antimony was oxidised to pentavalent antimony, and Fe(III) was reduced to Fe(II). The formed primary battery formed by copper ions and iron acclerated electron transfer and improved the adsorption rate. This implied that trivalent antimony could be removed through the synergistic action of the adsorption behaviour and redox reaction. Therefore, the biochar loaded with the zero-valent bimetal serves as a pathway for eradicating trivalent antimony.
Collapse
Affiliation(s)
- Jianghao Ji
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guizhou, 550025, Guiyang, China
| | - Siqin Xu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guizhou, 550025, Guiyang, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| | - Zhiqiang Ma
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guizhou, 550025, Guiyang, China
| | - Yizhen Mou
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guizhou, 550025, Guiyang, China
| |
Collapse
|
38
|
Xu J, Zhang Y, Li B, Fan S, Xu H, Guan DX. Improved adsorption properties of tetracycline on KOH/KMnO 4 modified biochar derived from wheat straw. CHEMOSPHERE 2022; 296:133981. [PMID: 35176301 DOI: 10.1016/j.chemosphere.2022.133981] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/11/2022] [Accepted: 02/11/2022] [Indexed: 05/09/2023]
Abstract
Modification of pristine biochars has received increasing attentions due to the significant potential in enhancing adsorption performance. In this work, the co-modification of KOH and KMnO4 on biochar (K-Mn-BC) was performed, with the effect of KOH/KMnO4 modification on biochar properties and their adsorption toward tetracycline (TC) being extensively explored. Results showed that KOH/KMnO4 modification can significantly regulate biochars to form hierarchical structure. The obtained K-Mn-BC was characterized with a high specific surface area (1524.6 m2 g-1) and total pore volume (0.85 cm3 g-1). In addition, the K-Mn-BC exhibited a high adsorption capacity of 584.19 mg g-1 toward TC at 318 K, and pseudo-second-order (R2:0.993~0.998) and Langmuir (R2: 0.834~0.874) models can fit well with the adsorption behavior. Moreover, the obtained K-Mn-BC can efficiently adsorb TC within a wide pH range (3.0-10.0), and were not affected by the co-existing ions. The possible mechanisms for the high adsorption capacity were ascribed to the pore filling and π-π interaction, following by hydrogen bonding and metal complexation. The obtained K-Mn-BC is a suitable adsorbent for TC removal from water due to the hierarchical structure, high adsorption capacity, and stable adsorption effect.
Collapse
Affiliation(s)
- Jin Xu
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Yin Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Bin Li
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Shisuo Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Dong-Xing Guan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
39
|
Gao T, Shi W, Zhao M, Huang Z, Liu X, Ruan W. Preparation of spiramycin fermentation residue derived biochar for effective adsorption of spiramycin from wastewater. CHEMOSPHERE 2022; 296:133902. [PMID: 35143862 DOI: 10.1016/j.chemosphere.2022.133902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/20/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Spiramycin (SPI) fermentation residue (SFR) is classified as hazardous waste in China because of the residual antibiotics in it. SFR disposal in the traditional way is costly and wasteful of resources. In this study, pyrolysis method was adopted to covert SFR to biochar for SPI removal from wastewater, and the SPI adsorption performance was investigated. The results showed that the optimal pyrolysis temperature was 700 °C as the prepared biochar BC700 exhibited the highest SPI removal efficiency. The specific surface area of BC700 was 451.68 m2/g, and the maximum adsorption capacity was 147.28 mg/g. The adsorption mechanism involved electrostatic interaction, pore filling, π-π interaction, hydrogen bonding, and the participation of C-C and O-CO functional groups in the adsorption. No residual SPI was detected in BC700 indicating the detoxification of SFR was achieved. Moreover, after recycling for 5 times, the SPI removal efficiency was still higher than 80.0%. Therefore, this study could provide a promising method for SFR disposal.
Collapse
Affiliation(s)
- Tong Gao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wansheng Shi
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Mingxing Zhao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhenxing Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoling Liu
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
40
|
Zhang H, Song X, Zhang J, Liu Y, Zhao H, Hu J, Zhao J. Performance and mechanism of sycamore flock based biochar in removing oxytetracycline hydrochloride. BIORESOURCE TECHNOLOGY 2022; 350:126884. [PMID: 35219786 DOI: 10.1016/j.biortech.2022.126884] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
In this study, sycamore flocs (SF), which caused environmental and health problems, were utilized to prepare biochar. SFB2-900 obtained under the conditions of activation agent K2CO3, pyrolysis temperature 900℃ and m(K2CO3):m(BC) 2 had the strongest adsorption capacity (730 mg/g) for oxytetracycline hydrochloride (OTC-HCl). The pseudo-second-order kinetic model and Langmuir model described the adsorption kinetics and isotherms best. SFB2-900 exhibited high OTC-HCl adsorption capacity in both higher ionic strength and wide pH range. The theoretical simulation indicated that the closest interaction distance between OTC-HCl and SFB2-900 was 2.44 Å via π-π stacking configuration. Pore filling, π-π electron donor acceptor (EDA) interaction, H-bonding and electrostatic interactions were also involved in the process of OTC-HCl removal. SFB2-900 showed great removal efficiency for OTC-HCl in different water matrices and good regeneration ability. This study solved the problems caused by SF, realized waste biomass recycling, and achieved preparing high-efficient adsorbent for antibiotic.
Collapse
Affiliation(s)
- Hongkui Zhang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xue Song
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Zhengzhou Key Laboratory of Organic Waste Resource Utilization, Zhengzhou, Henan 450001, China
| | - Jie Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yongde Liu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Zhengzhou Key Laboratory of Organic Waste Resource Utilization, Zhengzhou, Henan 450001, China.
| | - Hailiang Zhao
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Junkai Hu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jihong Zhao
- Henan Radio and Television University, Zhengzhou, Henan 450001, China
| |
Collapse
|
41
|
Shi J, Guo C, Lei C, Liu Y, Hou X, Zheng X, Hu Q. High-performance biochar derived from the residue of Chaga mushroom (Inonotus obliquus) for pollutants removal. BIORESOURCE TECHNOLOGY 2022; 344:126268. [PMID: 34737052 DOI: 10.1016/j.biortech.2021.126268] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
A high-performance biochar derived from the residue of Chaga mushroom (Inonotus obliquus) was reported in this study. Inonotus obliquus residues were used to prepare biochar, and the optimal synthesis conditions were obtained by response surface methodology. The specific surface area, pore volume, and average pore size of the optimal biochar (Zn-IORBC) was 1676.78 m2/g, 1.87 cm3/g, and 3.88 nm, respectively. Methylene blue (MB) and tetracycline (TC) were selected to estimate the adsorption performance of Zn-IORBC. The adsorption process was suitable for the pseudo-second-order model and Langmuir model. Zn-IORBC could maintained a large amount of TC adsorption (the lowest value was 686.20 mg/g in mountain spring water) in different natural water. The maximum adsorption capacity of TC and MB was 947.42 and 1033.66 mg/g. The adsorption mechanism was contributed to the electrostatic attraction, hydrogen bonding, π-π interactions, and pore-filling. Zn-IORBC is an effective adsorbent for high-performance pollutants removal.
Collapse
Affiliation(s)
- Jindou Shi
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Caili Guo
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Changyang Lei
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Yanyan Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Xin Zheng
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, PR China.
| |
Collapse
|
42
|
Junfeng W, Bowen H, Xiaoqing W, Zuwen L, Zhaodong W, Biao L, Songya L, Hongbin G, Xinfeng Z, Yanli M. Preparation of N,S-codoped magnetic bagasse biochar and adsorption characteristics for tetracycline. RSC Adv 2022; 12:11786-11795. [PMID: 35481070 PMCID: PMC9016741 DOI: 10.1039/d1ra08404f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/19/2022] [Indexed: 11/21/2022] Open
Abstract
Agricultural waste disposal and purification of polluted water are always the key issues of environmental restoration. In this work, thiourea-functionalized magnetic bagasse biochar (MFeBC) was prepared for tetracycline (TC) removal from aqueous solutions. Firstly, MFeBC was prepared by a combined impregnation and chemical coprecipitation method. Furthermore, MFeBC was characterized by Brunauer–Emmett–Teller surface area analysis, Fourier transform infrared spectrometry, X-ray diffraction analysis, scanning electron microscopy, X-ray photoelectron spectroscopy and the magnetic hysteresis curves. For the TC adsorption, the effects of different solution pH level, adsorbent dosage, initial TC concentration and temperature on the adsorption performance were studied respectively. Moreover, the results indicated that the Freundlich isotherm models appropriately described the adsorption process. The kinetic data were better fitted by the pseudo-second-order kinetic model. The maximum TC adsorption capacity of MFeBC reached 69.26 mg g−1. Hydrogen bonding and Π–Π interactions played a dominant role in the adsorption process. Therefore, MFeBC can be used as an effective adsorbent for tetracycline removal from aqueous solution. Preparation of N,S-codoped magnetic bagasse biochar and adsorption of tetracycline.![]()
Collapse
Affiliation(s)
- Wu Junfeng
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Hou Bowen
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Wang Xiaoqing
- Henan Province Town of Comprehensive Design and Research Institute, Pingdingshan, 467036, China
| | - Liu Zuwen
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Wang Zhaodong
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Liu Biao
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Li Songya
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Gao Hongbin
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Zhu Xinfeng
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Mao Yanli
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| |
Collapse
|
43
|
Zhang Z, Ding H, Li Y, Yu J, Ding L, Kong Y, Ma J. Nitrogen-doped biochar encapsulated Fe/Mn nanoparticles as cost-effective catalysts for heterogeneous activation of peroxymonosulfate towards the degradation of bisphenol-A: Mechanism insight and performance assessment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120136] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
44
|
An Q, Zhang C, Zhao B, Li Z, Deng S, Wang T, Jin L. Insight into synergies between Acinetobacter sp. AL-6 and pomelo peel biochar in a hybrid process for highly efficient manganese removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148609. [PMID: 34182459 DOI: 10.1016/j.scitotenv.2021.148609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
The manganese contamination of groundwater is a global issue that needs to be solved urgently. In this study, a hybrid process between pomelo peel biochar(BC) and Acinetobacter sp. AL-6 (strain AL-6) was established to remove manganese from water. The results showed that microbe-biochar composite had removed 98.19% of manganese (800 mg L-1) within 48 h. Compared with two separate systems (biochar, strain AL-6), the co-system (strain AL-6 and BC composite) had an excellent synergy effect on manganese removal. The average removal rate of manganese in the synergistic system was 14.08 mg L-1 h-1, which was 6.41 times higher than strain AL-6, 3.45 times higher than biochar, and even at 2.24 times their sum. In addition, the scanning electron microscope (SEM) and the bioassay indicated that many strains were attached to biochar and had vigorous biological activity. The FTIR results showed that the functional groups of OH, CO, CO, CH2, and CH played a vital role in removing manganese. And the correlation analysis shows that biochar with strains AL-6 has a highly synergistic effect on manganese removal. Meanwhile, the composite material can maintain excellent manganese removal efficiency under different pH conditions. Besides, in the sequence batch reactor (SBR) inoculating with the microbe-biochar composite, more than 96% of manganese was removed, which far exceeded the treatment efficiency of free bacteria in the SBR. Hence, biochar-immobilized AL-6 has great potential and can be applied to degrade manganese polluted wastewater.
Collapse
Affiliation(s)
- Qiang An
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China; The Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Chongqing University, Chongqing 400045, People's Republic of China.
| | - Chenyi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China
| | - Bin Zhao
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China
| | - Zheng Li
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China
| | - Shuman Deng
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China
| | - Tuo Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China
| | - Lin Jin
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China
| |
Collapse
|
45
|
Liu J, Liu H, Yang X, Jia X, Cai M, Bao Y. Preparation of Si-Mn/biochar composite and discussions about characterizations, advances in application and adsorption mechanisms. CHEMOSPHERE 2021; 281:130946. [PMID: 34289614 DOI: 10.1016/j.chemosphere.2021.130946] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
A novel Si-Mn binary modified biochar composite material (SMBC) was prepared after being sintered 450 °C for 2 h. The crystal structure, surface functional groups, surface morphology and element composition, specific surface area and pore structure were characterized by XRD, FTIR, XPS, SEM + EDS and BET etc. The results showed that the surface of SMBC was rough and loose, and the specific surface area increased to 35.4284 m2/g. Si and Mn were uniformly attached to the surface of biochar in the form of SiO2, MnOx, MnSiO3. Batch adsorption experiments showed that SMBC had a higher removal efficiency (139.06 mg/g, above 98%) for Cu(II) when the dosage was 2 g/L and pH = 6. The cycle experiments showed that SMBC had good reusability, and its regeneration efficiency still reached 80.24%. The leaching amount of Mn (0.65 mg/L) was greatly reduced and avoid second-pollution resulted from ion exchange, which was attributed to the existence of Si-O-Mn bonds, and they could help Mn adhere to the surface of biochar more stable. The adsorption process was dominated by single-layer chemical adsorption and mainly occurred in the membrane diffusion stage. Cu(II) mainly formed -COOCu, -OCu, Cu(OH)2, Cu(OH)2CO3, Si-O-Cu, Mn-O-Cu by the mechanisms such as precipitation (4.74%), ion exchange (13.81%), complexation and physical adsorption (total 81.45% of the two mechanisms). Among them, complexation was dominant in the adsorption process.
Collapse
Affiliation(s)
- Juan Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Honghao Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xiaoyu Yang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xuping Jia
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Mengfan Cai
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Yongchao Bao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|