1
|
Skrzypczak D, Trzaska K, Mironiuk M, Mikula K, Izydorczyk G, Polomska X, Wiśniewski J, Mielko K, Moustakas K, Chojnacka K. Recent innovations in fertilization with treated digestate from food waste to recover nutrients for arid agricultural fields. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41563-41585. [PMID: 38049688 PMCID: PMC11219367 DOI: 10.1007/s11356-023-31211-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
This study aims to explore the development of sustainable fertilizers from waste materials of a biogas plant and a brewery. These wastes, rich in organic carbon and nitrogen, were processed with sulfuric(VI) and phosphoric(V) acid mixture, facilitating the production of free amino acids and achieving waste sanitization. This treatment produced by-products, which extended the range of possible applications. The highest concentration of free amino acids (360 mg/l) was achieved through hydrolyzing with a 40% concentration medium over 24 h. In this case, the maximum levels were recorded for beta-alanine (69.3 mg/l), glycine (46.8 mg/l), isoleucine (43.5 mg/l), proline (36.2 mg/l), and valine (31.5 mg/l). The study presents two fertilizer technologies, with and without micronutrients, that satisfy European Parliament Regulation 2019/1009 (Ntot > 2%, Norg > 0.5%, Corg > 3%). Bioavailability of nutrients in the formulations ranged from 60 to 100%. The efficacies of these fertilizers were evaluated in 30-day pot trials with various plant species, with both single application and fertigation tested. Multielement analysis confirmed high nutrient transfer in the soil-plant system, and the inclusion of micronutrients led to biofortification of plant biomass in Cu (48.3 ± 7.2 mg/kg), Mn (249 ± 37 mg/kg), Zn (164 ± 25 mg/kg), and Fe (211 ± 32 mg/kg). These sustainable fertilizers present an alternative to traditional, non-renewable fertilizers and offer promising solutions for precision agriculture and environmentally conscious production.
Collapse
Affiliation(s)
- Dawid Skrzypczak
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Lower Silesia, 50-370, Wroclaw, Poland
| | - Krzysztof Trzaska
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Lower Silesia, 50-370, Wroclaw, Poland.
| | - Małgorzata Mironiuk
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Lower Silesia, 50-370, Wroclaw, Poland
| | - Katarzyna Mikula
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Lower Silesia, 50-370, Wroclaw, Poland
| | - Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Lower Silesia, 50-370, Wroclaw, Poland
| | - Xymena Polomska
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Lower Silesia, 51-630, Wroclaw, Poland
| | - Jerzy Wiśniewski
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Łukasiewicza 2, 50-371, Wrocław, Poland
| | - Karolina Mielko
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Łukasiewicza 2, 50-371, Wrocław, Poland
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Lower Silesia, 50-370, Wroclaw, Poland
| |
Collapse
|
2
|
He ZH, Wang B, Shi JY, Rong H, Tao HY, Jamal AS, Han XD. Recycling drinking water treatment sludge in construction and building materials: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171513. [PMID: 38460695 DOI: 10.1016/j.scitotenv.2024.171513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Drinking water treatment sludge (DWTS) is a by-product of water treatment, and it is difficult to recycle to high value and poses potential environmental risks. Recycling DWTS into cement-based materials is an effective measure to achieve its high-volume utilization and reduce its environmental load. DWTS is rich in silica-alumina phases and has potential pozzolanic activity after drying, grinding and calcination, giving it similar properties to traditional supplementary cementitious materials. Adjusting the sludge production process and coagulant type will change its physical and chemical properties. Adding a small amount of DWTS can generate additional hydration products and refine the pore structure of the cement sample, thus improving the mechanical properties and durability of the sample. However, adding high-volume DWTS to concrete causes microstructural deterioration, but it is feasible to use high-volume DWTS to produce artificial aggregates, lightweight concrete, and sintered bricks. Meanwhile, calcined DWTS has similar compositions to clay, which makes it a potential raw material for cement clinker production. Cement-based materials can effectively solidify heavy metal ions in DWTS, and alkali-activated binders, magnesium-based cement, and carbon curing technology can further reduce the risk of heavy metal leaching. This review provides support for the high-value utilization of DWTS in cement-based materials and the reduction of its potential environmental risks.
Collapse
Affiliation(s)
- Zhi-Hai He
- College of Civil Engineering, Shaoxing University, Shaoxing 312000, China; Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province, Shaoxing 312000, China
| | - Bin Wang
- College of Civil Engineering, Shaoxing University, Shaoxing 312000, China
| | - Jin-Yan Shi
- School of Civil Engineering, Central South University, Changsha 410075, China.
| | - Hui Rong
- School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Hong-Yu Tao
- Yuanpei College, Shaoxing University, Shaoxing 312000, China
| | - Ahmed Salah Jamal
- Civil Engineering Department, Tishk International University, Erbil 44001, Iraq
| | - Xu-Dong Han
- College of Civil Engineering, Shaoxing University, Shaoxing 312000, China
| |
Collapse
|
3
|
Wang Z, Li X, Liu H, Zhou T, Li J, Siddiqui MA, Lin CSK, Rafe Hatshan M, Huang S, Cairney JM, Wang Q. Enhancing methane production from anaerobic digestion of secondary sludge through lignosulfonate addition: Feasibility, mechanisms, and implications. BIORESOURCE TECHNOLOGY 2023; 390:129868. [PMID: 37844805 DOI: 10.1016/j.biortech.2023.129868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
This study explores the feasibility of using lignosulfonate, a byproduct of the pulp and paper industry, to facilitate sludge anaerobic digestion. Biochemical methane potential assays revealed that the maximum methane production was achieved at 60 mg/g volatile solids (VS) lignosulfonate, 22.18 % higher than the control. One substrate model demonstrated that 60 mg/g VS lignosulfonate boosted the hydrolysis rate, biochemical methane potential, and degradation extent of secondary sludge by 19.12 %, 21.87 %, and 21.11 %, respectively, compared to the control. Mechanisms unveiled that lignosulfonate destroyed sludge stability, promoted organic matter release, and enhanced subsequent hydrolysis, acidification, and methanogenesis by up to 31.30 %, 74.42 % and 28.16 %, respectively. Phytotoxicity assays confirmed that lignosulfonate promoted seed germination and root development of lettuce and Chinese cabbage, with seed germination index reaching 170 ± 10 % and 220 ± 22 %, respectively. The findings suggest that lignosulfonate addition offers a sustainable approach to sludge treatment, guiding effective management practices.
Collapse
Affiliation(s)
- Zhenyao Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Jibin Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Muhammad Ahmar Siddiqui
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Mohammad Rafe Hatshan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Siyu Huang
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
| | - Julie M Cairney
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
4
|
Xiao T, Wang H, Wang X, Wu H, Yuan S, Dai X, Dong B. New strategy of drinking water sludge as conditioner to enhance waste activated sludge dewaterability: Collaborative disposal. WATER RESEARCH 2023; 233:119761. [PMID: 36841166 DOI: 10.1016/j.watres.2023.119761] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/28/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Drinking water sludge (DWS) and waste activated sludge (WAS) are usually treated separately. With the continuous deepening understanding of the characteristics of two types sludge, the research and application of the collaborative disposal is worth considering. The heated modification DWS (HDWS) rich in inorganic matter and aluminum (Al2O3) can be used as a conditioner to enhance WAS dewaterability using its properties with physical skeleton and chemically catalyzed ozone (O3). The results showed that the minimum values of capillary water time (CST) and specific resistance filtration (SRF) for WAS were 20.9±2.40 s and 1.07±0.19×1013 m/kg at pH=4, O3 dosage=60 mg/g VS and HDWS dosage=700 mg/g VS, corresponding to the reduction of sludge cake water content (Wc) to 60.37±0.97 %. The mechanism of HDWS+O3 enhanced WAS dewaterability was systematically elucidated through pyridine-infrared analysis and density functional theory (DFT) calculations. The surface of Al2O3 in HDWS had more Lewis acidic sites, and the oxygen atoms of O3 combined with Al atoms to form Al-O bonds and undergo electron transfer, while O3 molecules dissociated to produce more hydroxyl radicals (·OH). With the oxidation of ·OH, the extra-microcolony/cellular polymers (EMPS/ECPS) structure were destroyed and became looser, promoting the conversion of internal moisture to free moisture. Zeta potential tended to zero, particle size increased, and the surface was more hydrophobic. Correlation analysis revealed that the component content, protein (PN) secondary structure and molecular weight (MW) in ECPS were positively and more strongly correlated with the sludge dewaterability compared to EMPS. The discovery of HDWS+O3 applied to effectively enhance WAS dewaterability provided an inspiring perspective on the emerging DWS and WAS co-processing disposition.
Collapse
Affiliation(s)
- Tingting Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hui Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiankai Wang
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China
| | - Haibin Wu
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China
| | - Shijie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China.
| |
Collapse
|
5
|
Wang Q, Fu H, Zhang G, Wu Y, Ma W, Fu C, Cai Y, Zhong L, Zhao Y, Wang X, Zhang P. Efficient chain elongation synthesis of n-caproate from shunting fermentation of food waste. BIORESOURCE TECHNOLOGY 2023; 370:128569. [PMID: 36592865 DOI: 10.1016/j.biortech.2022.128569] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Food waste was used to produce ethanol by yeast fermentation and volatile fatty acids (VFAs) by hydrolytic acidogenesis for chain elongation. Effectiveness of mole ratio of ethanol in yeast fermentation effluent (YFE) to VFAs in hydrolytic acidification effluent (HAE) on chain elongation was examined. The ideal YFE to HAE ratio for chain elongation was 2:1, the highest n-caproate production was 169.76 mg COD/g vS and the food waste utilization was 65.43 %. Electron transfer and carbon distribution did not completely correspond to n-caproate production, suggesting timely product extraction. The abundance of Romboutsia and Clostridium_sensu_stricto_12 increased as chain elongation progressed, which was critical for the chain elongation to n-caproate. The food waste shunting ratio of yeast fermentation to hydrolytic acidogenesis was 6:5, and 572.6 CNY can be created through chain elongation from shunting fermentation of 1 t food waste. This study proposed a new approach for efficient producing n-caproate from food waste.
Collapse
Affiliation(s)
- Qingyan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hao Fu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Yan Wu
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404632, China
| | - Weifang Ma
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Chuan Fu
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404632, China
| | - Yajing Cai
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Lihui Zhong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yiwei Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xinyi Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404632, China.
| |
Collapse
|
6
|
Liu H, Li X, Zhang Z, Nghiem LD, Wang Q. Urine pretreatment significantly promotes methane production in anaerobic waste activated sludge digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158684. [PMID: 36096217 DOI: 10.1016/j.scitotenv.2022.158684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Methane production of waste activated sludge (WAS) in anaerobic digestion is hindered due to the rate-limited hydrolysis process and the low methane potential of WAS. Pretreatment of WAS is a common and appealing strategy to improve methane production in anaerobic digestion. In this study, we proposed to use urine, an easily obtained human waste with high ammonium concentration and pH, as a novel pretreatment strategy for anaerobic WAS digestion. Urine pretreatment at levels of 5-30 % (Vurine/Vurine+WAS) could substantially enhance methane production by 5-35 % in biochemical methane potential (BMP) tests, with the highest methane production of 179.6 ± 3.3 mL/g volatile solids (VS) achieved under the highest level of urine (i.e. 30 % urine addition). Based on the model analysis, the biochemical methane potential (B0) and hydrolysis rate of WAS (k) rose from 131.9 mL/g VS and 0.19 d-1 in the control without pretreatment to 136.3-178.2 mL/g VS and 0.22-0.30 d-1, respectively, after the urine pretreatment (5-30 % addition). Urine pretreatment with 5-30 % addition also improved the degradation extent (Y) of WAS by 3-35 %. The promising results indicate that urine pretreatment in anaerobic digestion is a promising technology to improve the efficiency of anaerobic digestion with environmental and economic benefits.
Collapse
Affiliation(s)
- Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Zehao Zhang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
7
|
Sludge Management at the Kraków-Płaszów WWTP—Case Study. SUSTAINABILITY 2022. [DOI: 10.3390/su14137982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Municipal wastewater treatment plants are good examples of facilities where the concept of a circular economy model can be effectively implemented by the recovery of energy as well as secondary and natural materials. That is why anaerobic co-digestion has become one of the most appealing renewable energy pathways and takes a key position within sludge-handling processes. This research looked into the feasibility of the utilization of water sludge from a water treatment plant in anaerobic co-digestion with sewage sludge. The experiments confirmed that anaerobic digestion of sewage sludge together with water sludge significantly improved fermentation gas (biogas) production. The best results were observed when water treatment sludge constituted 30% of the mass of sewage sludge (as volatile solids, VS). At this ratio, approximately 20% more biogas was produced in laboratory experiments compared to the biogas production from sewage sludge only. The results, once confirmed on a semi-technical scale, will help to develop a sequence of processes which would enhance biogas production. Both the technology and the final product offer a comprehensive solution for waste generated at water and wastewater treatment plants. The innovative approach allows for the use of various waste streams and their combined processing following the principle of the circular economy.
Collapse
|