1
|
Zeng H, Jin B, Xu S, Han L, Wang J, Jia H, Dapaah MF, Cheng L. Removal of copper, lead and cadmium from water through enzyme-induced carbonate precipitation by soybean urease. ENVIRONMENTAL RESEARCH 2025; 277:121610. [PMID: 40250586 DOI: 10.1016/j.envres.2025.121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/08/2025] [Accepted: 04/12/2025] [Indexed: 04/20/2025]
Abstract
Enzyme-induced carbonate precipitation (EICP) is widely recognized as a green and sustainable technology for heavy metal remediation. In this study, a novel spherical porous vaterite (0.05-5 μm) was synthesized via EICP, demonstrating exhibited excellent performance in heavy metals removal from contaminated water. The Langmuir maximum adsorption capacity of vaterite for multiple heavy metals are in the order of Cu2+ (1207.20 mg/g) > Cd2+ (785.73 mg/g) > Pb2+ (654.95 mg/g), with adsorption primarily occurring on the vaterite surface. Notably, the vaterite exhibited a significantly higher removal capacity for Cd2+, which was 49.80 times that of Sinopharm-CaCO3 and 2.07 times that of Chemical-CaCO3, achieving over 90 % removal within the first 6 d in cyclic tests. On the 3th day of aqueous solution, calcite formation was first detected by X-ray Diffraction (XRD). Although 55 % of vaterite was transformed into calcite after 5 weeks, Cd2+ removal efficiency remained above 80 %, with XRD analysis confirmed that the formation of precipitate is CdCO3. Comprehensive characterization (SEM-EDS and XRD) showed that distinct immobilization products for Cd2+ and Pb2+ were identified as CdCO3, and PbCO3 or Pb3(CO3)2(OH)2, respectively. For Cu2+, the presence of Cl- promoted Cu2Cl(OH)3 formation rather than CuCO3 during biomineralization. These results demonstrate that EICP-derived vaterite maintains excellent long-term remediation performance while forming stable precipitates that effectively prevent secondary pollution.
Collapse
Affiliation(s)
- Haipeng Zeng
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
| | - Bingbing Jin
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
| | - Shiming Xu
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
| | - Li Han
- Shanxi Academy of Eco-Environmental Planning and Technology, Taiyuan, 030009, China
| | - Jiaqian Wang
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Hui Jia
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Malcom Frimpong Dapaah
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China; School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Liang Cheng
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
2
|
El Barkaoui S, Mandi L, Fichera M, Ryah H, Baçaoui A, Del Bubba M, Ouazzani N. Optimizing biochar-based column filtration systems for enhanced pollutant removal in wastewater treatment: A preliminary study. CHEMOSPHERE 2025; 372:144067. [PMID: 39756699 DOI: 10.1016/j.chemosphere.2025.144067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/22/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
This study aims to test the efficiency of biochar-based substrates in removing chemical and bacteriological pollutants from wastewater and to determine the optimal percentage of biochar (BC) to implement for large-scale filters (e.g., constructed wetlands). So, a preliminary test was conducted on a lab column scale for wastewater treatment of decanted wastewater using column filtration systems (CFS) integrated with BC (BC-based CFSs) at different concentrations (0%, 10%, 25%, and 50%). The BC used here was produced from exhausted olive pomace (pyrolised at T 590 °C, residence time of 2 h and a heating rate of 10 °C min-1). The results revealed that the BC incorporated into the CFS improved the efficiency of nitrogen species removal (total nitrogen (TN) 64-65%, total kjeldahl nitrogen (TKN) 75%-77%, organic nitrogen (ON) 78%-87%, and NH4+-N 57%-69%); phosphorus species (total phosphorus (TP) 39%-44%, PO43- 38%-42%); total and soluble chemical oxygen demand (TCOD (44%-56%), and SCOD (33%-51%) respectively); and total suspended solids (TSS) 87%-92%, compared to the control filter (CFS0). Bacteriological analysis focused on faecal bacteria indicators, including total coliforms (TC), faecal coliforms (FC), faecal streptococci (FS), as well as the pathogen Staphylococcus (SP) and total aerobic mesophilic flora (TAMF). The highest removal efficiencies were observed for CFS10. Based on this preliminary study, the efficiency of CFS in removing pollutants from wastewater is optimal with a small amount of BC (10%) from both water quality and economic points of view.
Collapse
Affiliation(s)
- Sofiane El Barkaoui
- Laboratory of Water, Biodiversity and Climate Change (EauBiodiCc), Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech, Morocco; National Centre for Studies and Research on Water and Energy (CNEREE), University Cadi Ayyad, Marrakech, Morocco; Department of Chemistry, University of Florence, Via Della Lastruccia, 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Laila Mandi
- Laboratory of Water, Biodiversity and Climate Change (EauBiodiCc), Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech, Morocco; National Centre for Studies and Research on Water and Energy (CNEREE), University Cadi Ayyad, Marrakech, Morocco
| | - Michelangelo Fichera
- Department of Chemistry, University of Florence, Via Della Lastruccia, 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Houria Ryah
- Laboratory of Water, Biodiversity and Climate Change (EauBiodiCc), Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech, Morocco; National Centre for Studies and Research on Water and Energy (CNEREE), University Cadi Ayyad, Marrakech, Morocco
| | - Abdelaziz Baçaoui
- Laboratory of Applied Chemistry and Biomass. Faculty of Sciences Semlalia. Cadi Ayyad University, Marrakech, Morocco
| | - Massimo Del Bubba
- Department of Chemistry, University of Florence, Via Della Lastruccia, 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Naaila Ouazzani
- Laboratory of Water, Biodiversity and Climate Change (EauBiodiCc), Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech, Morocco; National Centre for Studies and Research on Water and Energy (CNEREE), University Cadi Ayyad, Marrakech, Morocco.
| |
Collapse
|
3
|
Wang G, Chi T, Li R, Li T, Zhang X. Harnessing the rhizosphere sponge to smooth pH fluctuations and stabilize contaminant retention in biofiltration system. BIORESOURCE TECHNOLOGY 2025; 418:131971. [PMID: 39672238 DOI: 10.1016/j.biortech.2024.131971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Fluctuating pH conditions can affect heavy metal mobility, thereby limiting the efficiency of biofiltration systems (BS). To address this, we developed an innovative rhizosphere sponge, biochar-based bioreactor (RBB), designed to stabilize Cd2+ removal across a pH range of 5 to 9. RBB consistently outperformed the control, achieving a notable 91.3 % Cd2+ removal at pH 5. By creating optimized oxygen and redox zoning, the rhizosphere sponge enhanced both biochar surface reactions and microbial activity. Under acidic conditions, biochar facilitated Fe2+/Mn2+ precipitation into stable (oxy)hydroxides, a process further driven by microbial oxidation. Consequently, RBB accumulated 1.54 times more Fe-Mn oxide-bound Cd than the control, effectively reducing Cd2+ mobility. Additionally, loosely bound extracellular polymeric substances claimed preferential Cd2+ sequestration after acidification. The stabilized microecology and increased ecological niches, allowing RBB to better buffer against pH fluctuations, presenting it as a robust solution for sustainable heavy metal remediation in variable environments.
Collapse
Affiliation(s)
- Guoliang Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tianying Chi
- CCCC-TDC Environmental Engineering Co. Ltd., Tianjin 300461, China
| | - Ruixiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Xiaolin Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| |
Collapse
|
4
|
Panghal V, Singh A, Hooda V, Arora D, Bhateria R, Kumar S. Recent progress, challenges, and future prospects in constructed wetlands employing biochar as a substrate: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1139-1166. [PMID: 39739227 DOI: 10.1007/s11356-024-35846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
Constructed wetlands (CWs) are a cost-effective, efficient, and long-term wastewater treatment solution in various countries. The efficacy and performance of constructed wetlands are greatly influenced by the substrate. Recently, biochar as a substrate, along with sand and gravel in constructed wetlands, has gained importance due to its various physical, chemical, and biological properties. This review presents a detailed study of biochar as a substrate in CWs and the mechanism involved in efficiency enhancement in pollutant removal. Different methods for producing biochar using various types of biomasses are also addressed. The effect of biochar in removing pollutants like biological oxygen demand (BOD), chemical oxygen demand (COD), nitrogen, heavy metals, and non-conventional pollutants (microcystin, phenanthrene, antibiotics, etc.) are also discussed. Furthermore, post-harvest utilization of constructed wetland macrophytic biomass via bioenergy production, biochar formation, and biosorbent formation is explained. Various challenges and future prospects in biochar-amended constructed wetlands are also discussed. Biochar proved to be an effective substrate in the removal of pollutants and proved to be a promising technique for wastewater treatment, especially for developing countries where the cost of treatment is a constraint. Biochar is an effective substrate; further modification in biochar with the right plant combination for different wastewater needs to be explored in the future. Future researchers in the field of constructed wetlands will benefit from this review during the utilization of biochar in constructed wetlands and optimization of biochar characteristics, viz., quantity, size, preparation method, and other biochar modifications.
Collapse
Affiliation(s)
- Vishal Panghal
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Asha Singh
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vishwajit Hooda
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Dinesh Arora
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rachna Bhateria
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sunil Kumar
- Department of Environmental Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
5
|
Zou H, Song J, Luo X, Ali W, Li S, Xiong L, Chen Y, Yuan Y, Ma Y, Tong X, Liu Z. Cadmium and polyvinyl chloride microplastics induce mitochondrial damage and apoptosis under oxidative stress in duck kidney. Poult Sci 2025; 104:104490. [PMID: 39571196 PMCID: PMC11617461 DOI: 10.1016/j.psj.2024.104490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 12/08/2024] Open
Abstract
Polyvinyl chloride microplastics (PVC-MPs) and Cadmium (Cd) are widely occurring water pollutants that interact with each other to exert toxic effects. As a waterfowl, Muscovy duck is more susceptible to PVC-MPs and Cd than land poultry. In this study, Muscovy duck was used as a research model, and 10 mg/L PVC-MPs and 50 mg/kg Cd were used alone and in combine to explore the effect on the kidney of Muscovy duck. We found that treatment of Cd or PVC-MPs alone changed the kidney weight, increased creatinine and urea nitrogen content, and disrupted oxidative balance and macro/trace element metabolism, while the combination of PVC-MPs+Cd reduced the accumulation of Cd in the kidney. In addition, treatment of Cd and PVC-MPs alone caused mitochondrial damage, increase or decrease of mitochondria-associated proteins (Fis1, Drp1, PGC-1α, Nrf1), and Nrf2 signaling pathway plays a key role in detoxification and alleviation of oxidative stress, and we found that PVC-MPs+Cd treatment recovered related proteins (Nrf2, Keap-1, HO-1, NQO1, AC-SOD2, SOD2) compared with the Cd and PVC-MPs alone treatment. Finally, we detected changes in apoptosis-related proteins and genes (Caspase-3, Caspase-9, Bax, Bcl-2, Cytc) and TUNEL staining, and after PVC-MPs+Cd treatment, apoptosis-related proteins/genes recovered and the apoptosis rate decreased compared with the Cd and PVC-MPs alone treatment. These results indicate that renal function is impaired, oxidative stress and trace element metabolism disorder, nuclear factor-E2 related factor 2 (Nrf2) is activated into the nucleus to induce the expression of related antioxidant proteins (such as HO-1, NQO1). These injuries can induce mitochondrial damage and eventually lead to renal cell apoptosis. To sum up, these evidence show that Cd or PVC-MPs can induce kidney oxidative damage, trace element metabolism disorder, mitochondrial damage and apoptosis.
Collapse
Affiliation(s)
- Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China.
| | - Jie Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Xianzu Luo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Sifan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Ling Xiong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Yan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Xishuai Tong
- Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
6
|
Rabbi FM, Hasan MK, Rahman MA, Islam MS, Shohugh PK, Ahmed MI, Khan MW, Rafi T, Rahman MM, Rahaman MH, Zhai J. Waste-derived substrates in vertical-flow constructed wetlands for an efficient removal of high-concentration heavy metals. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2025; 91:21-39. [PMID: 39815429 DOI: 10.2166/wst.2024.404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025]
Abstract
Contamination by heavy metals (HMs) in aquatic ecosystems is a worldwide issue. Therefore, a feasible solution is crucial for underdeveloped and developing countries. Waste-derived materials (WDMs) exhibit unique physical and chemical properties that promote diverse mechanisms for the removal of HMs in constructed wetlands (CWs). In this study, we aimed to report the removal efficiency of HMs of vertical-flow constructed wetland (VFCW) systems using different WDMs, such as clinker brick (Jhama), eggshells, and date palm fiber (DPF). Synthetic wastewater with high concentrations (3.3-61.8) mg/L of HMs (As, Cr, Cd, Pb, Fe, Zn, Cu, and Ni) was applied to the systems followed by 3 days of hydraulic retention time. The results demonstrate that removal efficiencies of HMs ranged between 94.8 and 98.7% for DPF, 95.4-98.5% for eggshells, and 79.9-92.9% for the Jhama-filled CWs, while the gravel-based systems were capable of 73-87.6% removal. Two macrophytes, Canna indica and Hymenocallis littoralis were planted in the CWs and exhibited significant accumulation of HMs in their roots. The study reports that WDMs are effective for concentrated HM removal in CWs, and macrophytes demonstrate significant phytoremediation capabilities. The findings of this study will facilitate the economically feasible and efficient design of CWs for effectively treating concentrated HMs in wastewater.
Collapse
Affiliation(s)
- Fahim Muntasir Rabbi
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Kamrul Hasan
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Alinur Rahman
- Department of Chemistry and Physics, College of Science and Technology, Southeastern Louisiana University, Hammond, LA 70401, USA
| | - Md Salamoon Islam
- Department of Chemistry, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Pramit Kumar Shohugh
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Istiak Ahmed
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Washim Khan
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Tanvir Rafi
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Mohammad Mahfuzur Rahman
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Hasibur Rahaman
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh; Institute for Smart City of Chongqing University in Liyang, Jiangsu 213300, China E-mail:
| | - Jun Zhai
- Institute for Smart City of Chongqing University in Liyang, Jiangsu 213300, China
| |
Collapse
|
7
|
Long Y, Yu G, Wang J, Zheng D. Cadmium removal by constructed wetlands containing different substrates: performance, microorganisms and mechanisms. BIORESOURCE TECHNOLOGY 2024; 413:131561. [PMID: 39362346 DOI: 10.1016/j.biortech.2024.131561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
This study compared the cadmium (Cd) removal performance of constructed wetlands (CWs), including gravel (G-CW), magnetite (M-CW), coconut shell (C-CW) and biochar (B-CW). C-CW exhibited superior removal efficiencies for Cd compared to other CWs, with efficiencies of 93.18 %.C-CW benefited from the rich organic matter of coconut shells and enhanced DO consumption levels, which facilitated microbial and plant removal of Cd. The total accumulation of Cd in the substrate increased from 9.16 mg/kg to 30.66 mg/kg. Concurrently, the percentage of Cd in the organic matter-bound and residue states increased from 20.52 % to 37.56 %, which effectively reduced the bioavailability of Cd. All CWs can ensure that the plant antioxidant system is not subjected to Cd stress. Saccharimonadales and Micropruina became the dominant genera in all CWs, exhibiting a high tolerance to Cd. This study provides new understanding and theoretical support for selecting substrates to effectively treat heavy metals wastewater with CWs.
Collapse
Affiliation(s)
- Yuannan Long
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410014, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, PR China
| | - Guanlong Yu
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410014, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, PR China.
| | - Jianwu Wang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410014, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, PR China
| | - Dian Zheng
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410014, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, PR China
| |
Collapse
|
8
|
Zhang X, Lin Y, Lin H, Yan J. Constructed wetlands and hyperaccumulators for the removal of heavy metal and metalloids: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135643. [PMID: 39191019 DOI: 10.1016/j.jhazmat.2024.135643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/11/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
Water pollutions of heavy metal and metalloids (HMMs), typically including As, Cd, Cu, Cr, Mn, Ni, Pb, and Zn, are becoming a severe environmental problem to be controlled. Constructed wetlands (CWs) have been intensively investigated and applied for the removal of HMMs. By analyzing a mass of data from the existing literatures, this review found that the HMM removals in CWs varied from 12.35 % to 91.01 %, depending upon the HMM species and CW conditions. Nonetheless, 88.50 % of the influent HMMs were eventually immobilized in the CW sediments, while the common wetland plants are inefficient (i.e., accounting for 4.64 %) to uptake and accumulate the HMMs. It was also found that the concentrations of certain HMMs in the CW sediments have already exceeded up to 100 % of various environmental standards, indicating the urgency of introducing HMM hyperaccumulators in the systems. Through comparison, both the aboveground and belowground HMM accumulating capacities of reported hyperaccumulators were higher by magnitudes than common wetland plants. Following this, the efficacies and mechanisms of candidate hyperaccumulators were provided for the various scenarios of HMM control in CWs. Further, the selection principals, culture methods, and harvest strategies of hyperaccumulator in CWs were discussed. Finally, several perspectives were suggested for the future research. Overall, this review provided guiding information for the utilization of hyperaccumulators in CWs, which can improve the efficiency and sustainability of HMM removal in the CW systems.
Collapse
Affiliation(s)
- Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, PR China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China
| | - Yue Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, PR China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, PR China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China
| | - Jun Yan
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, PR China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China.
| |
Collapse
|
9
|
Rahim HU, Allevato E, Stazi SR. Sulfur-functionalized biochar: Synthesis, characterization, and utilization for contaminated soil and water remediation-a review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122670. [PMID: 39366224 DOI: 10.1016/j.jenvman.2024.122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
The development of innovative, eco-friendly, and cost-effective adsorbents is crucial for addressing the widespread issue of organic and inorganic pollutants in soil and water. Recent advancements in sulfur reagents-based materials, such as FeS, MoS2, MnS, S0, CS2, Na2S, Na2S2O32-, H2S, S-nZVI, and sulfidated Fe0, have shown potential in enhancing the functional properties and elemental composition of biochar for pollutant removal. This review explores the synthesis and characterization of sulfur reagents/species functionalized biochar (S-biochar), focusing on factors like waste biomass attributes, pyrolysis conditions, reagent adjustments, and experimental parameters. S-biochar is enriched with unique sulfur functional groups (e.g., C-S, -C-S-C, C=S, thiophene, sulfone, sulfate, sulfide, sulfite, elemental S) and various active sites (Fe, Mn, Mo, C, OH, H), which significantly enhance its adsorption efficiency for both organic pollutants (e.g., dyes, antibiotics) and inorganic pollutants (e.g., metal and metalloid ions). The literature analysis reveals that the choice of feedstock, influenced by its lignocellulosic content and xylem structure, critically impacts the effectiveness of pollutant removal in soil and water. Pyrolysis parameters, including temperature (200-600 °C), duration (2-10 h), carbon-to-hydrogen (C:H) and oxygen-to-hydrogen (O:H) ratios in biochar, as well as the biochar-to-sulfur reagent modification ratio, play key roles in determining adsorption performance. Additionally, solution pH (2-8) and temperature (288, 298, and 308 K) affect the efficiency of pollutant removal, though optimal dosages for adsorbents remain inconsistent. The primary removal mechanisms involve physisorption and chemisorption, encompassing adsorption, reduction, degradation, surface complexation, ion exchange, electrostatic interactions, π-π interactions, and hydrogen bonding. This review highlights the need for further research to optimize synthesis protocols and to better understand the long-term stability and optimal dosage of S-biochar for practical environmental applications.
Collapse
Affiliation(s)
- Hafeez Ur Rahim
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, 44121 Ferrara, Italy
| | - Enrica Allevato
- Department of Environmental and Prevention Sciences (DiSAP), University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Rita Stazi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
10
|
Zhao Y, Naeth MA, Wilkinson SR, Dhar A. Potential of biochar and humic substances for phytoremediation of trace metals in oil sands process affected water. CHEMOSPHERE 2024; 361:142375. [PMID: 38772514 DOI: 10.1016/j.chemosphere.2024.142375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/30/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
Oil sands process affected water (OSPW) is produced during bitumen extraction and typically contains high concentrations of trace metals. Constructed wetlands have emerged as a cost effective and green technology for the treatment of metals in wastewaters. Whether the addition of amendments to constructed wetlands can improve metal removal efficiency is unknown. We investigated the synergistic effects of carbon based amendments and wetland plant species in removal of arsenic, cadmium, cobalt, chromium, copper, nickel, and selenium from OSPW. Three native wetland species (Carex aquatilis, Juncus balticus, Scirpus validus) and two amendments (canola straw biochar, nano humus) were investigated in constructed wetland mesocosms over 60 days. Amendment effect on metal removal efficiency was not significant, while plant species effect was. Phytoremediation resulted in removal efficiencies of 78.61-96.31 % for arsenic, cadmium, and cobalt. Carex aquatilis had the highest removal efficiencies for all metals. Amendments alone performed well in removing some metals and were comparable to phytoremediation for cadmium, cobalt, copper, and nickel. Metals were primarily distributed in roots with negligible translocation to shoots. Our work provides insights into the role of plants and amendments during metal remediation and their complex interactions in constructed treatment wetlands.
Collapse
Affiliation(s)
- Yihan Zhao
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2H1, Canada.
| | - M Anne Naeth
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2H1, Canada.
| | - Sarah R Wilkinson
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2H1, Canada.
| | - Amalesh Dhar
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2H1, Canada.
| |
Collapse
|
11
|
Saeed T, Al-Muyeed A, Zaman T, Hasan M, Ahmed T. Bioenergy-producing two-stage septic tank and floating wetland for onsite wastewater treatment: Circuit connection and external aeration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121011. [PMID: 38678907 PMCID: PMC11129191 DOI: 10.1016/j.jenvman.2024.121011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
This study designed a two-stage, electrode-integrated septic tank-floating wetland system and assessed their pollutant removal performances under variable operational conditions. The two-stage system achieved mean organic, nitrogen, phosphorus, and coliform removal percentages of 99, 78, 99, and 97%, respectively, throughout the experimental run. The mean metals (chromium, cadmium, nickel, copper, zinc, lead, iron, and manganese) removal percentages ranged between 81 and 98%. Accumulated sludge, filler media, and the hanging root mass contributed to pollutant removals by supporting physicochemical and biological pathways. The mean effluent organic concentration and coliform number across the two-stage system were 20 mg/L and 1682 CFU/100 mL, respectively, during the closed-circuit protocol, which was beneath the open-circuit-based performance profiles, i.e., 32 mg/L and 2860 CFU/100 mL, respectively. Effluent organic, nitrogen, phosphorus, metals, and coliform number ranges across the two-stage system were 9-17 mg/L, 13-24 mg/L, 1-1.5 mg/L, 0.001-0.2 mg/L, and 1410-2270 CFU/100 mL, respectively during intermittent and continuous aeration periods. The air supply rate differences influenced pollutant removal depending on the associated removal mechanisms. The non-aeration phase produced higher effluent pollutant concentrations than the aeration periods-based profiles. The overall mean power density production of the septic tank ranged between 107 and 596 mW/m3; 110 and 355 mW/m3 with the floating wetland. The bioenergy production capacity of the septic tank was positively correlated to external air supply rates. This study demonstrates the potential application of the novel bioenergy-producing septic tank-floating wetland system for wastewater treatment in decentralized areas.
Collapse
Affiliation(s)
- Tanveer Saeed
- Department of Civil Engineering, University of Asia Pacific, Dhaka, 1205, Bangladesh; Institute of Energy, Environment, Research and Development (IEERD), University of Asia Pacific, Dhaka, 1205, Bangladesh.
| | - Abdullah Al-Muyeed
- CWIS-FSM Support Cell, Department of Public Health Engineering, Government of the People's Republic of Bangladesh, Dhaka, 1000, Bangladesh.
| | - Takrim Zaman
- Department of Civil Engineering, University of Asia Pacific, Dhaka, 1205, Bangladesh.
| | - Mehedi Hasan
- ITN-BUET Centre for Water Supply and Waste Management, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh.
| | - Tanvir Ahmed
- ITN-BUET Centre for Water Supply and Waste Management, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh; Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh.
| |
Collapse
|
12
|
Hernández-Pérez C, Martínez-López S, Martínez-Sánchez MJ, Martínez-Martínez LB, García-Lorenzo ML, Perez Sirvent C. In Situ Use of Mining Substrates for Wetland Construction: Results of a Pilot Experiment. PLANTS (BASEL, SWITZERLAND) 2024; 13:1161. [PMID: 38674567 PMCID: PMC11054235 DOI: 10.3390/plants13081161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
This paper evaluates an experimental wetland as part of a pilot soil reclamation project in a mining area. The wetland was constructed using materials of mining origin from the area; most reactive materials of acid pH were stabilised using limestone filler. The study selected macrophytes that are tolerant to potentially toxic elements (PTEs) and resistant to salinity, namely Phragmites australis, Juncus effusus, and Iris pseudacorus. These macrophytes were then placed in pots containing substrates composed of different mixtures of topsoil, peat, and mining waste (black or yellow sand). A thorough analysis of the physicochemical and mineralogical characteristics of the materials included studies of PTE mobilisation. This study emphasises the significance of the rhizosphere in directing the transfer of PTEs to the plant and the correlation between the substrate and the development of plant defence mechanisms, such as the formation of Fe-plates. Scanning electron microscopy was used to highlight these aspects and validate the results of the analytical determinations. These wetlands can be proposed as a phytoremediation strategy for areas affected by mining and maritime influence. They are easy to construct and remain stable, providing important ecosystem services such as the natural attenuation of acid mine drainage, support for vegetation development and fauna, and a clean ecosystem.
Collapse
Affiliation(s)
- Carmen Hernández-Pérez
- Department of Agricultural Chemistry, Geology and Pedology, Faculty of Chemistry, University of Murcia, 30100 Murcia, Spain; (C.H.-P.); (S.M.-L.); (M.J.M.-S.); (L.B.M.-M.)
| | - Salvadora Martínez-López
- Department of Agricultural Chemistry, Geology and Pedology, Faculty of Chemistry, University of Murcia, 30100 Murcia, Spain; (C.H.-P.); (S.M.-L.); (M.J.M.-S.); (L.B.M.-M.)
| | - María José Martínez-Sánchez
- Department of Agricultural Chemistry, Geology and Pedology, Faculty of Chemistry, University of Murcia, 30100 Murcia, Spain; (C.H.-P.); (S.M.-L.); (M.J.M.-S.); (L.B.M.-M.)
| | - Lucia Belén Martínez-Martínez
- Department of Agricultural Chemistry, Geology and Pedology, Faculty of Chemistry, University of Murcia, 30100 Murcia, Spain; (C.H.-P.); (S.M.-L.); (M.J.M.-S.); (L.B.M.-M.)
| | - María Luz García-Lorenzo
- Department of Mineralogy and Petrology, Faculty of Geology, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Carmen Perez Sirvent
- Department of Agricultural Chemistry, Geology and Pedology, Faculty of Chemistry, University of Murcia, 30100 Murcia, Spain; (C.H.-P.); (S.M.-L.); (M.J.M.-S.); (L.B.M.-M.)
| |
Collapse
|
13
|
de Oliveira AR, de Toledo Rós B, Jardim R, Kotowski N, de Barros A, Pereira RHG, Almeida NF, Dávila AMR. A comparative genomics study of the microbiome and freshwater resistome in Southern Pantanal. Front Genet 2024; 15:1352801. [PMID: 38699231 PMCID: PMC11063290 DOI: 10.3389/fgene.2024.1352801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
This study explores the resistome and bacterial diversity of two small lakes in the Southern Pantanal, one in Aquidauana sub-region, close to a farm, and one in Abobral sub-region, an environmentally preserved area. Shotgun metagenomic sequencing data from water column samples collected near and far from the floating macrophyte Eichhornia crassipes were used. The Abobral small lake exhibited the highest diversity and abundance of antibiotic resistance genes (ARGs), antibiotic resistance classes (ARGCs), phylum, and genus. RPOB2 and its resistance class, multidrug resistance, were the most abundant ARG and ARGC, respectively. Pseudomonadota was the dominant phylum across all sites, and Streptomyces was the most abundant genus considering all sites.
Collapse
Affiliation(s)
- André R. de Oliveira
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Rodrigo Jardim
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Nelson Kotowski
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | - Alberto M. R. Dávila
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Phiri Z, Moja NT, Nkambule TT, de Kock LA. Utilization of biochar for remediation of heavy metals in aqueous environments: A review and bibliometric analysis. Heliyon 2024; 10:e25785. [PMID: 38375270 PMCID: PMC10875440 DOI: 10.1016/j.heliyon.2024.e25785] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
Biochar usage for removing heavy metals from aqueous environments has emerged as a promising research area with significant environmental and economic benefits. Using the PICO approach, the research question aimed to explore using biochar to remove heavy metals from aqueous media. We merged the data from Scopus and the Web of Science Core Collection databases to acquire a comprehensive perspective of the subject. The PRISMA guidelines were applied to establish the search parameters, identify the appropriate articles, and collect the bibliographic information from the publications between 2010 and 2022. The bibliometric analysis showed that biochar-based heavy metal remediation is a research field with increasing scholarly attention. The removal of Cr(VI), Pb(II), Cd(II), and Cu(II) was the most studied among the heavy metals. We identified five main clusters centered on adsorption, water treatment, adsorption models, analytical techniques, and hydrothermal carbonization by performing keyword co-occurrence analysis. Trending topics include biochar reusability, modification, acid mine drainage (AMD), wastewater treatment, and hydrochar. The reutilization of heavy metal-loaded spent biochar includes transforming it into electrodes for supercapacitors or stable catalyst materials. This study provides a comprehensive overview of biochar-based heavy metal remediation in aquatic environments and highlights knowledge gaps and future research directions.
Collapse
Affiliation(s)
- Zebron Phiri
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| | - Nathaniel T. Moja
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| | - Thabo T.I. Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| | - Lueta-Ann de Kock
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa
| |
Collapse
|
15
|
Ly NH, Khoa NLM, Nguyen NB, Huong VT, Van Duc B, Aminabhavi TM, Vasseghian Y, Joo SW. Microalgae-enhanced bioremediation of Cr(VI) ions using spent coffee ground-derived magnetic biochar MoS 2-Ag composites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119259. [PMID: 37827077 DOI: 10.1016/j.jenvman.2023.119259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Composites of magnetic biochar derived from spent coffee grounds were prepared using MoS2 decorated by plasmonic silver nanoparticles (MoS2-Ag), which were used for the bioremediation Cr6+ ions. The composites were characterized by electron microscopy, X-ray diffraction, Raman, and UV-VIS spectroscopy. The bioremediation of Cr6+ ions was enhanced almost two times compared to microalgae, Spirulina maxima. Such an increased activity is attributed to heterojunction formation of Biochar@MoS2-Ag composite due to the synergetic effects of surface plasmon resonance of AgNPs inducing amplified local electric field, thus simultaneously increasing the absorption of MoS2 under visible or near-infrared light. The combination of Biochar@MoS2-Ag and Spirulina maxima powder was effective for the separation (microalga-based absorption and accumulation of Cr6+ ions) of photo-induced carriers (composite-assisted to breakdown Cr6+ ions). This study offers efficient eco-friendly treatment of Cr6+ ions by reporting the first enhanced bioremediation of Cr(VI) ions by microalgae using MoS2-Ag-modified biochar obtained from consumed coffee grounds.
Collapse
Affiliation(s)
- Nguyễn Hoàng Ly
- Department of Chemistry, Gachon University, Seongnam, 13120, South Korea
| | | | | | - Vu Thi Huong
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea
| | - Bui Van Duc
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| |
Collapse
|
16
|
Fahim R, Cheng L, Mishra S. Structural and functional perspectives of carbon filter media in constructed wetlands for pollutants abatement from wastewater. CHEMOSPHERE 2023; 345:140514. [PMID: 37879377 DOI: 10.1016/j.chemosphere.2023.140514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Constructed wetlands (CWs) represent the most viable artificial wastewater treatment system that works on the principles of natural wetlands. Filter media are integrally linked to CWs and have substantial impacts on their performance for pollutant removal. Carbon-derived substrates have been in the spotlight for decades due to their abundance, sustainability, reusability, and potential to treat complex contaminants. However, the efficiency and feasibility of carbon substrates have not been fully explored, and there are only a few studies that have rigorously analyzed their performance for wastewater treatment. This critical synthesis of the literature review offers comprehensive insights into the utilization of carbon-derived substrates in the context of pollutant removal, intending to enhance the efficiency and sustainability of CWs. It also compares several carbon-based substrates with non-carbon substrates with respect to physiochemical properties, pollutant removal efficiency, and cost-benefit analysis. Furthermore, it addresses the concerns and possible remedies about carbon filtration materials such as configuration, clogging minimization, modification, and reusability to improve the efficacy of substrates and CWs. Recommendations made to address these challenges include pretreatment of wastewater, use of a substrate with smaller pore size, incorporation of multiple filter media, the introduction of earthworms, and cultivation of plants. A current scientific scenario has been presented for identifying the research gaps to investigate the functional mechanisms of modified carbon substrates and their interaction with other CW components.
Collapse
Affiliation(s)
- Raana Fahim
- College of Environment, Hohai University, Nanjing, 210098, China.
| | - Liu Cheng
- Key Laboratory of Integrated Regulation and Resource Development Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Saurabh Mishra
- College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
17
|
Lin R, Zhao Y, Jiang M, Cun D, Xiong Y, Zhu Y, Chang J. Agricultural runoff treatment by constructed wetlands filled with iron-carbon composites in winter: Performance augmentation by organic solids and denitrifying bacteria addition. BIORESOURCE TECHNOLOGY 2023; 387:129692. [PMID: 37619820 DOI: 10.1016/j.biortech.2023.129692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Iron-carbon composite-filled constructed wetlands (Fe-C CWs) were employed to treat agricultural runoff in the winter season in this study, and organic substrates and phosphate-accumulating denitrifying bacteria were supplemented to improve the treatment performance. Fe-C CWs performed significantly better in pollutant removal than the control system filled with only gravel by effectively driving autotrophic denitrification, Fe-based dephosphorization and organic degradation. Organic substrate and functional bacteria addition further augmented the performance, and immobilized bacterial cells were more effective than free cells. Fe-C and organic substrates decreased the greenhouse gas emission fluxes of the CWs, and denitrifier inoculation alleviated N2O emission. The microbial community in the Fe-C substrates showed a very distinct distribution pattern compared to that in the gravel, with notably higher proportions of Trichococcus, Thauera and Dechloromonas. Bioaugmented Fe-C-based CWs are highly promising for agricultural runoff treatment, especially at low temperatures.
Collapse
Affiliation(s)
- Rufeng Lin
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China
| | - Yonggui Zhao
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Ming Jiang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China
| | - Deshou Cun
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Yanwei Xiong
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Yaosong Zhu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Junjun Chang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China.
| |
Collapse
|
18
|
Zhu H, An Q, Syafika Mohd Nasir A, Babin A, Lucero Saucedo S, Vallenas A, Li L, Baldwin SA, Lau A, Bi X. Emerging applications of biochar: A review on techno-environmental-economic aspects. BIORESOURCE TECHNOLOGY 2023; 388:129745. [PMID: 37690489 DOI: 10.1016/j.biortech.2023.129745] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Biomass fast pyrolysis produces bio-oil and biochar achieving circular economy. This review explored the emerging applications of biochar. Biochar possesses the unique properties for removing emerging contaminants and for mine remediation, owing to its negative charge surface, high specific surface area, large pore size distribution and surface functional groups. Additionally, biochar could adsorb impurities such as CO2, moisture, and H2S to upgrade the biogas. Customizing pyrolysis treatments, optimizing the feedstock and pyrolysis operating conditions enhance biochar production and improve its surface properties for the emerging applications. Life cycle assessment and techno-economic assessment indicated the benefits of replacing conventional activated carbon with biochar.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Qing An
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Thermal and Environmental Engineering Institute, Mechanical Engineering College, Tongji University, Shanghai 201800, China
| | - Amirah Syafika Mohd Nasir
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Alexandre Babin
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Sofia Lucero Saucedo
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Amzy Vallenas
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Loretta Li
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Susan Anne Baldwin
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Anthony Lau
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Xiaotao Bi
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
19
|
Selvakumar S, Boomiraj K, Durairaj S, Veluswamy K. Performance evaluation of a lab-scale subsurface flow-constructed wetland system for textile industry wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102708-102724. [PMID: 37668777 DOI: 10.1007/s11356-023-29425-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
This study compares biochar (BCW) systems' pollutant removal effectiveness to conventional subsurface flow (CCW) in constructed wetland systems to treat textile wastewater. The two systems were identical in construction, but the biochar was 0.1 m thick over gravel and sand (maximum flow rate of 0.021 m3 h-1) as the primary medium over CCW (flow rate of 0.02 m3 h-1). The results revealed that the BCW approach was more efficient than the CCW system (pebble over sand and gravels) in removing and lowering heavy metals below thresh hold limits such as Cr, Cd, Cu, Pb, Ni, and Zn. The alkaline nature of textile water achieves neutrality in both CCW and BCW. However, BCW is more efficient due to a larger active surface area and the ability to filter out more metal and organic ions. TDS reduction efficiency in BCW was 53.07%, compared to 40.04% in CCW. Heavy metal removal was 100% in BCW at 3 to 12 h, whereas it takes 6 to 24 h in CCW (82% for Cr to 93% for Cu). The quick removal of Na from textile wastewater by BCW was reversed and achieved equilibrium in 24 h in contrast to the CCW system (> 24 h). The findings obtained at the lab scale level demonstrated that the BCW system was more effective in reducing TDS, neutralizing the alkalinity of textile wastewater, and removing heavy metals. This study strongly supports the potential application of biochar-constructed wetlands for textile wastewater treatment.
Collapse
Affiliation(s)
- Selvaraj Selvakumar
- Water Technology Centre, Tamil Nadu Agricultural University, Coimbatore, India
| | - Kovilpillai Boomiraj
- Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore, India
| | - Sivakumar Durairaj
- Department of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- Present: Department of Agricultural Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, India
| | | |
Collapse
|
20
|
Wang H, Zang S, Xu J, Sheng L. Dynamic simulation analysis of city tail water treatment by constructed wetland with biochar substrate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108582-108595. [PMID: 37752393 DOI: 10.1007/s11356-023-30002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023]
Abstract
Constructed wetland (CW) is an important method of ecological water treatment, and CW has obvious advantage in treating low-pollution water. In order to improve the treatment efficiency of CW, the first-order and second-order kinetics simulations of pollutant removal in CW were carried out to optimize operating conditions. The experimental study of city tail water treatment under unmodified biochar (different additions) or different modified biochar conditions showed that the first-order kinetic equation relatively accurately reflect the removal of pollutants by substrate. The relatively optimal range of biochar addition (2.21-3.79%) in the first-order kinetic analysis covered the relatively optimal mass ratio (2.95%). The first-order kinetic equation fitting showed that the half-life of ammonia nitrogen removal by NaOH (0.1 mol·L-1)-modified biochar was reduced by about 10% without plant. The half-life of total phosphorus removal by KMnO4 (0.1 mol·L-1) modified biochar was reduced by about 50%. The half-life of chemical oxygen demand removal by H2SO4 (0.75 mol·L-1) + 8 freeze-thaw cycles modified biochar was reduced by about 9.0%. When the half-life was small, the pollutant removal rate was high. The results of this study further confirmed the effectiveness of the simulation results of pollutant removal in CW with biochar by the first-order kinetic equation. This study further optimized the CW operating conditions and improved the treatment efficiency of nitrogen and phosphorus in the CW.
Collapse
Affiliation(s)
- Hanxi Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, China Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin, 150025, China
| | - Shuying Zang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin, 150025, China
| | - Jianling Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, China Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China.
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, China Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| |
Collapse
|
21
|
Chostak CL, López-Delgado A, Padilla I, Lapolli FR, Lobo-Recio MÁ. Use of a Waste-Derived Linde Type-A Immobilized in Agarose for the Remediation of Water Impacted by Coal Acid Mine Drainage at Pilot Scale. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114038. [PMID: 37297172 DOI: 10.3390/ma16114038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
A new adsorbent based on an immobilized waste-derived LTA zeolite in agarose (AG) has proven to be an innovative and efficient alternative for removing metallic contaminants from water impacted by acid mine drainage (AMD) because the immobilization prevents the solubilization of the zeolite in acidic media and eases its separation from the adsorbed solution. A pilot device was developed containing slices of the sorbent material [AG (1.5%)-LTA (8%)] to be used in a treatment system under an upward continuous flow. High removals of Fe2+ (93.45%), Mn2+ (91.62%), and Al3+ (96.56%) were achieved, thus transforming river water heavily contaminated by metallic ions into water suitable for non-potable use for these parameters, according to Brazilian and/or FAO standards. Breakthrough curves were constructed and the corresponding maximum adsorption capacities (mg/g) (Fe2+, 17.42; Mn2+, 1.38; Al3+, 15.20) calculated from them. Thomas mathematical model was well fitted to the experimental data, indicating the participation of an ion-exchange mechanism in the removal of the metallic ions. The pilot-scale process studied, in addition to being highly efficient in removing metal ions at toxic levels in AMD-impacted water, is linked to the sustainability and circular economy concepts, due to the use as an adsorbent of a synthetic zeolite derived from a hazardous aluminum waste.
Collapse
Affiliation(s)
- Cristiano Luiz Chostak
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Academic Department of Language, Technology, Education and Science, Federal Institute of Santa Catarina, Florianópolis 88020-300, SC, Brazil
| | - Aurora López-Delgado
- Eduardo Torroja Institute for Construction Sciences, IETcc, CSIC, 28033 Madrid, Spain
| | - Isabel Padilla
- Eduardo Torroja Institute for Construction Sciences, IETcc, CSIC, 28033 Madrid, Spain
| | - Flávio Rubens Lapolli
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - María Ángeles Lobo-Recio
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Department of Energy and Sustainability, Federal University of Santa Catarina, Araranguá 88906-072, SC, Brazil
| |
Collapse
|
22
|
Munir R, Ali K, Naqvi SAZ, Muneer A, Bashir MZ, Maqsood MA, Noreen S. Green metal oxides coated biochar nanocomposites preparation and its utilization in vertical flow constructed wetlands for reactive dye removal: Performance and kinetics studies. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 256:104167. [PMID: 36906994 DOI: 10.1016/j.jconhyd.2023.104167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/18/2023] [Accepted: 02/25/2023] [Indexed: 06/09/2023]
Abstract
Major causes of water pollution in the ecosystem are pollutants such as dyes which are noxious. The present study was based on the synthesis of the green nano-biochar composites from cornstalk and green metal oxide resulting in Copper oxide/biochar, Zinc oxide /biochar, Magnesium oxide/biochar, Manganese oxide/biochar, biochar for removal of dyes combined with the constructed wetland (CW). Biochar Augmentation in constructed wetland systems has improved dye removal efficiency to 95% in order of copper oxide/biochar > Magnesium oxide/biochar > Zinc oxide/biochar > Manganese oxide/biochar > biochar > control (without biochar) respectively in wetlands. It has increased the efficiency of pH by maintaining pH 6.9-7.4, while Total Suspended Solids (TSS) removal efficiency and Dissolved oxygen (DO) increased with the hydraulic retention time of about 7 days for 10 weeks. Chemical oxygen demand (COD) and colour removal efficiency increased with the hydraulic retention time of 12 days for 2 months and there was a low removal efficiency for total dissolved solids (TDS) from control (10.11%) to Copper oxide /biochar (64.44%) and Electrical conductivity (EC) from control (8%) to Copper oxide /biochar (68%) with the hydraulic retention time of about 7 days for 10 weeks. Colour and chemical oxygen demand removal kinetics followed second and first-order kinetic. A significant growth in the plants were also observed. These results proposed the use of agricultural waste-based biochar as part of a constructed wetland substratum can provide enhanced removal of textile dyes. That can be reused.
Collapse
Affiliation(s)
- Ruba Munir
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Khuram Ali
- Department of Physics, University of Agriculture, Faisalabad 38000, Pakistan
| | | | - Amna Muneer
- Department of Physics, Government College Women University, Faisalabad 38000, Pakistan
| | | | - Muhammad Aamer Maqsood
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Saima Noreen
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan.
| |
Collapse
|
23
|
Zhuang X, Tang S, Dong W, Xin F, Jia H, Wu X. Improved performance of Cr(vi)-reducing microbial fuel cells by nano-FeS hybridized biocathodes. RSC Adv 2023; 13:6768-6778. [PMID: 36860531 PMCID: PMC9969982 DOI: 10.1039/d3ra00683b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Biocathode microbial fuel cells (MFCs) show promise for Cr(vi)-contaminated wastewater treatment. However, biocathode deactivation and passivation caused by highly toxic Cr(vi) and nonconductive Cr(iii) deposition limit the development of this technology. A nano-FeS hybridized electrode biofilm was fabricated by simultaneously feeding Fe and S sources into the MFC anode. This bioanode was then reversed as the biocathode to treat Cr(vi)-containing wastewater in a MFC. The MFC obtained the highest power density (40.75 ± 0.73 mW m-2) and Cr(vi) removal rate (3.99 ± 0.08 mg L-1 h-1), which were 1.31 and 2.00 times those of the control, respectively. The MFC also maintained high stability for Cr(vi) removal in three consecutive cycles. These improvements were due to synergistic effects of nano-FeS with excellent properties and microorganisms in the biocathode. The mechanisms were: (1) the accelerated electron transfer mediated by nano-FeS 'electron bridges' strengthened bioelectrochemical reactions, firstly realizing deep reduction of Cr(vi) to Cr(0) and thus effectively alleviating cathode passivation; (2) nano-FeS as 'armor' layers improved cellular viability and extracellular polymeric substance secretion; (3) the biofilm selectively enriched a diversity of bifunctional bacteria for electrochemical activity and Cr(vi) removal. This study provides a new strategy to obtain electrode biofilms for sustainable treatment of heavy metal wastewater.
Collapse
Affiliation(s)
- Xinglei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China +86 25 58139929 +86 25 58139929
| | - Shien Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China +86 25 58139929 +86 25 58139929
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China +86 25 58139929 +86 25 58139929
| | - Fengxue Xin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China +86 25 58139929 +86 25 58139929
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China +86 25 58139929 +86 25 58139929
| | - Xiayuan Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 211816 China +86 25 58139929 +86 25 58139929
| |
Collapse
|
24
|
Wang G, Yu G, Chi T, Li Y, Zhang Y, Wang J, Li P, Liu J, Yu Z, Wang Q, Wang M, Sun S. Insights into the enhanced effect of biochar on cadmium removal in vertical flow constructed wetlands. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130148. [PMID: 36265377 DOI: 10.1016/j.jhazmat.2022.130148] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Biochar has been increasingly applied in constructed wetlands (CWs) to remediate heavy metal (HM)-polluted water. Nevertheless, only few studies have elucidated the enhanced mechanism and potential synergies related to the HM removal from biochar-based CWs (BC-CWs) for HMs removal. This study used cadmium (Cd) as the target HM and added biochar into CWs to monitor physicochemical parameters, plant' physiological responses, substrate accumulation, and microbial metabolites and taxa. In comparison with the biochar-free CW (as CWC), a maximum Cd2+ removal of 99.7% was achieved in the BC-CWs, associated with stable physicochemical parameters. Biochar preferentially adsorbed the available Cd2+ and significantly accumulated Fe/Mn oxides-bond and the exchangeable Cd fraction. Moreover, biochar alleviated the lipid peroxidation (decreased by 36.4%) of plants, resulting in improved growth. In addition, extracellular polymeric substances were increased by 376.9-396.8 mg/L in BC-CWs than compared to CWC, and N and C cycling was enhanced through interspecific positive connectivity. In summary, this study explored comprehensively the performance and mechanism of BC-CWs in the treatment of Cd2+-polluted water, suggesting a promising approach to promote the plant-microbe-substrate synergies under HM toxicity.
Collapse
Affiliation(s)
- Guoliang Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Guanlong Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China.
| | - Tianying Chi
- CCCC-TDC Environmental Engineering Co., Ltd., Tianjin 300461, PR China
| | - Yifu Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Yameng Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Jianwu Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Peiyuan Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Jiaxin Liu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Zhi Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Qi Wang
- CCCC-TDC Environmental Engineering Co., Ltd., Tianjin 300461, PR China
| | - Miaomiao Wang
- CCCC-TDC Environmental Engineering Co., Ltd., Tianjin 300461, PR China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| |
Collapse
|
25
|
Cheng Z, Xu D, Zhang Q, Tao Z, Hong R, Chen Y, Tang X, Zeng S, Wang S. Enhanced nickel removal and synchronous bioelectricity generation based on substrate types in microbial fuel cell coupled with constructed wetland: performance and microbial response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19725-19736. [PMID: 36239892 DOI: 10.1007/s11356-022-23458-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
In this study, an attempt was made to clarify the impact of substrates on the microbial fuel cell coupled with constructed wetland (CW-MFC) towards the treatment of nickel-containing wastewater. Herein, zeolite (ZEO), coal cinder (COA), ceramsite (CER), and granular activated carbon (GAC) were respectively introduced into lab-scaled CW-MFCs to systematically investigate the operational performances and microbial community response. GAC was deemed as the most effective substrate, and the corresponding device yielded favorable nickel removal efficiencies over 99% at different initial concentrations of nickel. GAC-CW-MFC likewise produced a maximum output voltage of 573 mV, power density of 8.95 mW/m2, and internal resistance of 177.9 Ω, respectively. The strong adsorptive capacity of nickel by GAC, accounting for 54.5% of total contaminant content, was mainly responsible for the favorable nickel removal performances of device GAC-CW-MFC. The high-valence Ni2+ was partially reduced to elemental Ni0 on the cathode, which provided evidence for the removal of heavy metals via the cathodic reduction of CW-MFC. The microbial community structure varied considerably as a result of substrates addition. For an introduction of GAC into the CW-MFC, a remarkably enriched population of genera Thermincola, norank_f__Geobacteraceae, Anaerovorax, Bacillus, etc. was noted. This study was dedicated to providing a theoretical guidance for an effective regulation of CW-MFC treatment on nickel-containing wastewater and accompanied by bioelectricity generation via the introduction of optimal substrate.
Collapse
Affiliation(s)
- Zhan Cheng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Dayong Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China.
| | - Qingyun Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Zhengkai Tao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Ran Hong
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Yu Chen
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Xiaolu Tang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Shuai Zeng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Siyu Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| |
Collapse
|
26
|
Pal S, Singha P. Linking river flow modification with wetland hydrological instability, habitat condition, and ecological responses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11634-11660. [PMID: 36098917 DOI: 10.1007/s11356-022-22761-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Flow modification pursuing dams is widely found. Some works also focused on its impact on floodplain wetland hydrology. However, how this change can pose an impact on habitat conditions, ecological conditions, and trophic state is also a matter of investigation. The very least attention has been paid to this so far. Therefore, the present study focused on these, taking the dam-induced Lower Tangon river basin of India and Bangladesh as a case. The degree of flow alteration in the river was presented in a heat map. Multi-parametric machine learning (ML) approaches were applied to model hydrological instability and habitat condition. The ecological consequences like evaluating eco-deficit using flow duration curve (FDC) approach, trophic state using trophic state index (TSI), fish habitat zone using image-based hydrological parameters, etc. were measured. The study exhibited that after damming, the degree of river flow modification was about 41%. Consequently, the wetland hydrological instability and habitat conditions were degraded. In the post-dam period, > 50% of wetland area was lost, and hydrological instability was enhanced considerably over wider parts of the wetland. Habitat conditions of the existing wetland also witnessed fragility (poor and very poor areas increased by about 22.23 and 9.34%). As a result of this, adverse ecological responses were found. For instance, the eco-deficit area was increased by 36.19%, a good proportion (100%) of wetlands was witnessed the transformation of TSI from oligotrophic to mesotrophic state, and optimum fish habitat area was declined. The ecological strength map integrating all the cause-effect model parameters showed that good ecological strength was reduced from 49 to 2% in the post-dam. The result of the study would be very useful for wetland restoration for ecological and human well-being.
Collapse
Affiliation(s)
- Swades Pal
- Department of Geography, University of Gour Banga, Malda, India
| | - Pankaj Singha
- Department of Geography, University of Gour Banga, Malda, India.
| |
Collapse
|
27
|
Manimegalai S, Vickram S, Deena SR, Rohini K, Thanigaivel S, Manikandan S, Subbaiya R, Karmegam N, Kim W, Govarthanan M. Carbon-based nanomaterial intervention and efficient removal of various contaminants from effluents - A review. CHEMOSPHERE 2023; 312:137319. [PMID: 36410505 DOI: 10.1016/j.chemosphere.2022.137319] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Water treatment is a worldwide issue. This review aims to present current problems and future challenges in water treatments with the existing methodologies. Carbon nanotube production, characterization, and prospective uses have been the subject of considerable and rigorous research around the world. They have a large number of technical uses because of their distinct physical characteristics. Various catalyst materials are used to make carbon nanotubes. This review's primary focus is on integrated and single-treatment technologies for all kinds of drinking water resources, including ground and surface water. Inorganic non-metallic matter, heavy metals, natural organic matter, endocrine-disrupting chemicals, disinfection by-products and microbiological pollutants are among the contaminants that these treatment systems can remediate in polluted drinking water resources. Significant advances in the antibacterial and adsorption capabilities of carbon-based nanomaterials have opened up new options for excluding organic/inorganic and biological contaminants from drinking water in recent years. The advancements in multifunctional nanocomposites synthesis pave the possibility for their use in enhanced wastewater purification system design. The adsorptive and antibacterial characteristics of six main kinds of carbon nanomaterials are single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene, graphene oxide, fullerene and single-walled carbon nanohorns. This review potentially addressed the essential metallic and polymeric nanocomposites, are described and compared. Barriers to use these nanoparticles in long-term water treatment are also discussed.
Collapse
Affiliation(s)
- Sengani Manimegalai
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Rampuram, Chennai, 600087, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Santhana Raj Deena
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Karunakaran Rohini
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Malaysia; Department of Bioinformatics, Saveetha School of Engineering, (Saveetha Institute of Medical and Technical Sciences) SIMATS, Chennai, 602 105, Tamil Nadu, India
| | - Sundaram Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| |
Collapse
|
28
|
Chen Z, Hu B, Hu S, Vogel-Mikuš K, Pongrac P, Vymazal J. Immobilization of chromium enhanced by arbuscular mycorrhizal fungi in semi-aquatic habitats with biochar addition. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129562. [PMID: 35868083 DOI: 10.1016/j.jhazmat.2022.129562] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) exhibit great potential in heavy-metal immobilization in semi-aquatic habitats. Under high heavy-metal stress, however, the role of AMF is limited, and the detoxification mechanism of AMF in heavy metals' stabilization remains unclear. This study investigated the effects of AMF on a wetland plant (Iris pseudacorus) and chromium (Cr) immobilization at different water depths in semi-aquatic habitats with biochar addition. Results showed that AMF increased the physiological and photosynthetic functions in I. pseudacorus under Cr exposures. Besides, AMF alleviated the accumulation of reactive oxygen species and lipid peroxidation by enhancing the antioxidant enzyme activities. AMF and biochar significantly decreased Cr concentrations in outlet water and increased Cr accumulation in I. pseudacorus. Besides, biochar also vastly improved Cr accumulation in the substrate under the fluctuating water depth. AMF reduced Cr bioavailability in the substrate, with Cr (Ⅵ) concentrations and acid-soluble forms of Cr decreased by 0.3-64.5% and 19.0-40.8%, respectively. Micro-proton-induced X-ray emission was used to determine element localization and revealed that AMF improved the nutrients uptake by wetland plants and inhibited Cr translocation from roots to shoots. Overall, this study demonstrated that the interaction between AMF and biochar could significantly enhance the immobilization of high Cr concentrations in semi-aquatic habitats.
Collapse
Affiliation(s)
- Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol 16500, Czech Republic
| | - Bo Hu
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol 16500, Czech Republic
| | - Shanshan Hu
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol 16500, Czech Republic.
| | - Katarina Vogel-Mikuš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Paula Pongrac
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Jan Vymazal
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol 16500, Czech Republic
| |
Collapse
|
29
|
Zhong H, Hu N, Wang Q, Chen Y, Huang L. How to select substrate for alleviating clogging in the subsurface flow constructed wetland? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154529. [PMID: 35292315 DOI: 10.1016/j.scitotenv.2022.154529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Constructed wetland (CW) is a cost-effective and environmentally friendly ecological technology for contaminated water remediation, especially in dispersed communities and rural areas. Plants grow, biofilms form, and pollutants attach to the substrate, which is the main supporting structure of a subsurface flow CW (SSFCW) system. After long-term operation, the accumulation of clogs from physical, chemical, and biological processes in SSFCW substrates can easily cause clogging, thus reducing treatment efficiency reduction and service life and causing no discharge of sewage by intermittent until last indicates in the CW surface. Subsequently, stench and mosquito breeding occur, thus influencing environmental sanitation. Substrate clogging is the most serious, challenging, and inevitable problem in the long-term operation of SSFCWs. The present study reviews the effects of substrates on clogging categorized into physical, chemical, and biological clogging and analyzes the substrates that can alleviate/aggravate clogging in CWs. The recommended substrates that can relieve clogging include plastic, rubber, soil mixture, walnut shell, biochar, organic waste, alum sludge, and lightweight aggregate, while shell, steel slag, blast furnace slag, zeolite, and soil may easily generate phosphorus-clogging substances. CW substrate clogging is a mixture of three clogs with synergistic effects, and the corresponding clogging mitigation substrates mentioned above can be used to alleviate the most severe among the three types of clogs to reduce the synergy, and thus to promote stable operation and technology level of CWs. This review aims to promote the scientific selection of substrates for the stable operation and technical level of CW through targeted recommendations for substrates that relieve clogging. Future studies should focus the effects of influent water quality and substrate type on clogging, and waste as substrate to alleviate clogging, while mitigating the negative environmental impact of waste treatment.
Collapse
Affiliation(s)
- Hui Zhong
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Ning Hu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Qinghua Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China.
| |
Collapse
|
30
|
Jiang Y, Zhang J, Wen Q, Zheng J, Zhang Y, Wei Q, Qin Y, Zhang X. Up-flow anaerobic column reactor for sulfate-rich cadmium-bearing wastewater purification: system performance, removal mechanism and microbial community structure. Biodegradation 2022; 33:239-253. [PMID: 35461432 DOI: 10.1007/s10532-022-09983-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/13/2022] [Indexed: 11/02/2022]
Abstract
This study constructed an up-flow anaerobic column reactor fed with synthetic sulfate-rich cadmium (Cd(II))-bearing wastewater, for investigating its Cd(II) removal performance and mechanism. Long-term experiment results manifest that introducing Cd(II) into influent led to an enhanced sulfate removal but did not increase the effluent sulfide concentration, implying the CdS formation. When influent Cd(II) concentration was shifted from 50 to 100 mg/L, the median Cd(II) removal rate was increased from 13.6 to 32.2 mg/(L·d). Batch tests indicate that the uptake and sequestration function of anaerobes merely led to a small portion of Cd(II) removal. A majority of aqueous Cd(II) (86.3%) was eliminated by precipitation reactions. The generated precipitates were found to be dominantly presented in carbonate, Fe-Mn oxide, sulfide bound and residue forms, which account for 92.6-93.9% of total Cd content of sludge obtained at diverse operation phases. The crystallographic CdS (i.e., residue fraction) particles have nano-scale sizes, and the relatively high atomic ratio of S to Cd was likely due to the adsorption/deposition of other sulfides. The dominant sulfate-reducing bacteria (SRB) were recognized as Desulfurella, Desulforhabdus and Desulfovibrio, and the primary competitor with them for substrate utilization were identified to be methanogens.
Collapse
Affiliation(s)
- Yongrong Jiang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin, 541004, China
| | - Jie Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin, 541004, China
- School of Chemistry and Materials Engineering, Huizhou University, 46 Yanda Road, Huizhou, 516007, China
| | - Qianmin Wen
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin, 541004, China
| | - Junjian Zheng
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin, 541004, China.
| | - Yuanyuan Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin, 541004, China.
| | - Qiaoyan Wei
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin, 541004, China
| | - Yongli Qin
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin, 541004, China
| | - Xuehong Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin, 541004, China
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin, 541006, China
| |
Collapse
|
31
|
Yu G, Wang G, Chi T, Du C, Wang J, Li P, Zhang Y, Wang S, Yang K, Long Y, Chen H. Enhanced removal of heavy metals and metalloids by constructed wetlands: A review of approaches and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153516. [PMID: 35101517 DOI: 10.1016/j.scitotenv.2022.153516] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/23/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Constructed wetlands (CWs) are increasingly employed to remediate heavy metal and metalloid (HMM)-polluted water. However, the disadvantages of HMM removal by conventional CWs (without enhancement), such as an unstable and unpredictable removal efficiency, hinder the reliability of this technology. The objective of this study was to review research on enhanced CWs for HMM removal. In particular, we performed a bibliometric analysis to evaluate research trends, critical literature, and keyword evolution in recent years. Subsequently, we reviewed various enhanced approaches for the application of CWs for the removal of HMMs, including the use of improved substrates, aquatic macrophytes, microorganisms, bioelectrochemical coupling systems, hybrid CW, external additives, and operation parameters. Furthermore, the main mechanisms underlying HMM removal by these approaches are summarized. Our review clearly reveals that research on the remediation of HMM-polluted water via CW technology is receiving increased attention, with no apparent trends in topics. The selection of appropriate enhanced approaches or operation parameters as well as methodological improvements should be based on the dominant environmental conditions of the CW column and removal mechanisms for the targeted HMMs. Based on the established literature, several suggestions are proposed to guide the optimization of the design and operation of efficient CWs for the treatment of HMM-polluted water.
Collapse
Affiliation(s)
- Guanlong Yu
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Guoliang Wang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Tianying Chi
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Chunyan Du
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Jianwu Wang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Peiyuan Li
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Yameng Zhang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Shitao Wang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Kai Yang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Yuannan Long
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Hong Chen
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China.
| |
Collapse
|
32
|
Wang H, Teng H, Wang X, Xu J, Sheng L. Physicochemical modification of corn straw biochar to improve performance and its application of constructed wetland substrate to treat city tail water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114758. [PMID: 35255381 DOI: 10.1016/j.jenvman.2022.114758] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/19/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Corn straw is rich in resources, and the preparation of biochar as the constructed wetland (CW) substrate is an effective measure to realize high-value resource utilization. The objective of this paper was to improve the treatment effect of CW on city tail water, the freeze-thaw cycles (FTCs) modification and chemical modification (KMnO4, NaOH and H2SO4) of straw biochar and the utilization of modified straw biochar in CW were studied. The modification characteristics of straw biochar were discussed through scanning electron microscope, element determination, pore structure determination, X-ray diffraction analysis, Fourier transform infrared reflection analysis, CO2 adsorption and desorption experiment and application experiment of CW (no plants and plants). The results show that under the influence of strong oxidation of KMnO4, the combination of KMnO4 and FTCs modification is easy to cause the destruction of biochar structure, and the content of carbon element is reduced. Except for the combined modification of NaOH and FTCs, other composite modifications have little effect on the crystal structure and functional groups of straw biochar. The adsorption capacity of CO2 by FTCs modified biochar increased by 20.4%, and the adsorption capacity of CO2 by H2SO4 and FTCs composite modified biochar increased by 23.0%. The effect of H2SO4 modification of straw biochar based on FTCs modification is obviously better than that of NaOH and KMnO4. The research results are of great significance to improve the material structure of biochar and the purification effect of CW on city tail water.
Collapse
Affiliation(s)
- Hanxi Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China; Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin, 150025, China
| | - Haowen Teng
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin, 150025, China
| | - Xinyu Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| | - Jianling Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China; Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, 130024, Jilin, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China; Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, 130024, Jilin, China.
| |
Collapse
|
33
|
Wang J, Long Y, Yu G, Wang G, Zhou Z, Li P, Zhang Y, Yang K, Wang S. A Review on Microorganisms in Constructed Wetlands for Typical Pollutant Removal: Species, Function, and Diversity. Front Microbiol 2022; 13:845725. [PMID: 35450286 PMCID: PMC9016276 DOI: 10.3389/fmicb.2022.845725] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/01/2022] [Indexed: 01/09/2023] Open
Abstract
Constructed wetlands (CWs) have been proven as a reliable alternative to traditional wastewater treatment technologies. Microorganisms in CWs, as an important component, play a key role in processes such as pollutant degradation and nutrient transformation. Therefore, an in-depth analysis of the community structure and diversity of microorganisms, especially for functional microorganisms, in CWs is important to understand its performance patterns and explore optimized strategies. With advances in molecular biotechnology, it is now possible to analyze and study microbial communities and species composition in complex environments. This review performed bibliometric analysis of microbial studies in CWs to evaluate research trends and identify the most studied pollutants. On this basis, the main functional microorganisms of CWs involved in the removal of these pollutants are summarized, and the effects of these pollutants on microbial diversity are investigated. The result showed that the main phylum involved in functional microorganisms in CWs include Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes. These functional microorganisms can remove pollutants from CWs by catalyzing chemical reactions, biodegradation, biosorption, and supporting plant growth, etc. Regarding microbial alpha diversity, heavy metals and high concentrations of nitrogen and phosphorus significantly reduce microbial richness and diversity, whereas antibiotics can cause large fluctuations in alpha diversity. Overall, this review can provide new ideas and directions for the research of microorganisms in CWs.
Collapse
Affiliation(s)
- Jianwu Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China
| | - Yuannan Long
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China
| | - Guanlong Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China
- Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, China
| | - Guoliang Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China
| | - Zhenyu Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China
| | - Peiyuan Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China
| | - Yameng Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China
| | - Kai Yang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China
| | - Shitao Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China
| |
Collapse
|
34
|
Chang J, Peng D, Deng S, Chen J, Duan C. Efficient treatment of mercury(Ⅱ)-containing wastewater in aerated constructed wetland microcosms packed with biochar. CHEMOSPHERE 2022; 290:133302. [PMID: 34922958 DOI: 10.1016/j.chemosphere.2021.133302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Effective removal of mercury (Hg) pollutants from contaminated water/wastewater to prevent severe environmental pollution is of great significance due to the extremely high toxicity of Hg. In this study, granular biochar and gravel (control) were packed into intermittently aerated constructed wetland (CW) microcosms to treat Hg(Ⅱ)-containing wastewater over 100 d. The results showed that the biochar-filled CWs exhibited notably better Hg(Ⅱ) removal than the gravel systems by facilitating chemical and microbial Hg(Ⅱ) reduction and volatilization and promoting plant growth and Hg assimilation. More than ten times more Hg was absorbed by the plants (L. salicaria) in biochar CWs than in the gravel systems, with the roots acting as the major sink. In contrast, substrate binding in a predominantly oxidizable fraction was the dominant pathway for Hg removal in the gravel CWs. Biochar substrates also exhibited higher levels of COD, N and P removal, and Hg(Ⅱ) import impacted the removal of these pollutants only slightly. Filling material played a more crucial role than Hg input in shaping the microbial communities in the CWs. The proportions of some dominant genera, including Arenimonas, Lysobacter, Micropruina and Hydrogenophaga, increased in the presence of Hg, implying their tolerance to Hg toxicity and potential roles in Hg detoxification in the CWs. Granular biochar-based CW has high potential for treating Hg(Ⅱ)-contaminated wastewater.
Collapse
Affiliation(s)
- Junjun Chang
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650500, China
| | - Dongliang Peng
- School of Architecture and Planning, Yunnan University, Kunming, 650500, China
| | - Shengjiong Deng
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650500, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650500, China
| | - Jinquan Chen
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650500, China.
| | - Changqun Duan
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
35
|
Li QG, Liu GH, Qi L, Wang HC, Ye ZF, Zhao QL. Heavy metal-contained wastewater in China: Discharge, management and treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152091. [PMID: 34863767 DOI: 10.1016/j.scitotenv.2021.152091] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 05/22/2023]
Abstract
A large amount of heavy metal-contained wastewater (HMW) was discharged during Chinese industry development, which has caused many environmental problems. This study reviewed discharge, management and treatment of HMW in China through collecting and analyzing data from China's official statistical yearbook, standards, technical specifications, government reports, case reports, and research paper. Results showed that industry wastewater discharged by an amount of about 221.6 × 108 t (in 2012), where emission of heavy metals including Pb, Hg, Cd, Cr(VI), T-Cr was around 388.4 t (in 2012). Heavy metal emission with wastewater in east China and central south China was observed to be graver than that in other areas. However, control of heavy metals in Pb and Cd in northwest China was more difficult compared with other areas. In terms of management, China's government has issued many wastewater discharge standards, strict management policies for controlling HMW discharge in recent years, resulting in reduced HMW discharge. In addition, main HMW treatment technology in China was chemical precipitation, and other technologies such as membrane separation, adsorption, ion exchange, electrochemical and biological methods were also occasionally applied. In the future, chemical industries will be concentrated in northwest China, therefore control of HMW discharge should be paid much more attention in those areas. In addition, more effective and environment-friendly heavy metal removal and regeneration technologies should be developed, such as biomaterials adsorbent.
Collapse
Affiliation(s)
- Qian-Gang Li
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China
| | - Guo-Hua Liu
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China.
| | - Lu Qi
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China
| | - Hong-Chen Wang
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China
| | - Zheng-Fang Ye
- Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Quan-Lin Zhao
- Department of Environmental Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
36
|
Shaheen SM, Mosa A, El-Naggar A, Faysal Hossain M, Abdelrahman H, Khan Niazi N, Shahid M, Zhang T, Fai Tsang Y, Trakal L, Wang S, Rinklebe J. Manganese oxide-modified biochar: production, characterization and applications for the removal of pollutants from aqueous environments - a review. BIORESOURCE TECHNOLOGY 2022; 346:126581. [PMID: 34923078 DOI: 10.1016/j.biortech.2021.126581] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
The development of manganese (Mn) oxides (MnOx) modified biochar (MnOBC) for the removal of pollutants from water has received significant attention. However, a comprehensive review focusing on the use of MnOBC for the removal of organic and inorganic pollutants from water is missing. Therefore, the preparation and characterization of MnOBC, and its capacity for the removal of inorganic (e.g., toxic elements) and organic (e.g., antibiotics and dyes) from water have been discussed in relation to feedstock properties, pyrolysis temperature, modification ratio, and environmental conditions here. The removal mechanisms of pollutants by MnOBC and the fate of the sorbed pollutants onto MnOBC have been reviewed. The impregnation of biochar with MnOx improved its surface morphology, functional group modification, and elemental composition, and thus increased its sorption capacity. This review establishes a comprehensive understanding of synthesizing and using MnOBC as an effective biosorbent for remediation of contaminated aqueous environments.
Collapse
Affiliation(s)
- Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt
| | - Ali El-Naggar
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, PR China; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt; Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Md Faysal Hossain
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong, PR China
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza 12613 Egypt
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong, PR China
| | - Lukáš Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6 Suchdol, Czech Republic
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, 196 W Huayang Rd, Yangzhou, Jiangsu, PR China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, Guangjin-Gu, Seoul 05006, Republic of Korea.
| |
Collapse
|
37
|
Gavrilescu M. Microbial recovery of critical metals from secondary sources. BIORESOURCE TECHNOLOGY 2022; 344:126208. [PMID: 34715340 DOI: 10.1016/j.biortech.2021.126208] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The continuous development of technologies involving critical metals, both in Europe and over the world, and geopolitical challenges in areas rich in critical metal sources, imposed increased research efforts to recover them from secondary sources, by eco-efficient processes. Yet, microbes-metal interactions are not sufficiently exploited to recover metals from secondary sources, although they are already used in ore extraction. This review examines and compare strategies and processes involving microorganisms for critical metals recovery, since conventional physico-chemical methods are energy-intensive and often polluting. Two groups of microbial assisted recovery processes are discussed: metal mobilization from metal bearing waste, and selective metal separation from leaching solutions by immobilization on microbial biomass. Because most of the identified microbial technologies are developed on laboratory scale, the increase of biorecovery efficiency is compulsory for enhancing scaling-up potential. Future developments focused on novel microorganisms and high-performance strategies for critical metal recovery by microbial processes are considered.
Collapse
Affiliation(s)
- Maria Gavrilescu
- "Gheorghe Asachi" Technical University of Iasi, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, Department of Environmental Engineering and Management, 73 Prof. Mangeron Blvd., 700050 Iasi, Romania.
| |
Collapse
|
38
|
Knox AS, Paller MH, Seaman JC, Mayer J, Nicholson C. Removal, distribution and retention of metals in a constructed wetland over 20 years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:149062. [PMID: 34328902 DOI: 10.1016/j.scitotenv.2021.149062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
The A-01 wetland treatment system (WTS) was designed to remove metals (primarily copper) from the effluent at the A-01 National Pollution Discharge Elimination System (NPDES) outfall at the Savannah River Site, Aiken, SC. This research investigated metal removal, distribution and retention in the A-01 WTS over a period of 20 years. The findings are important for ensuring continued metal sequestration in the A-01 WTSs over time, providing management guidance for constructed wetlands, and investigating changes in metal remediation effectiveness as a wetland ages. During 20 years of operation, systematic water and sediment sampling validated the wetlands' performance. After passage through the treatment cells, Cu concentrations were well below permit limits during all years of operation, often falling below 10 μg L-1. Cu removal has been consistent over time, averaging about 80% despite large changes in influent Cu concentrations. Most divalent metals were rapidly removed from the water and held in the sediments shortly after the water entered the treatment wetland. Average removal of Pb from water by the wetland system was 67 and 74% in 2004 and 2020, respectively. Comparable values for Zn were 52 and 65%, respectively. Generally, the highest concentrations of Cu, Pb, and Zn were found in the sediment from the first cell in each pair of cells suggesting that most of the Cu, Pb, and Zn in the A-01 effluent was bound to the sediment quickly. Diffusive gradients in thin films (DGT) measurements of Cu and Zn in the sediments were much lower than bulk sediment concentrations. These results suggest that most of the Cu and Zn in the A-01 WTS sediments was not bioavailable, hence not toxic to aquatic organisms, as a likely consequence of adsorption to sediment particles and complexation with organic and inorganic substances.
Collapse
Affiliation(s)
- Anna Sophia Knox
- Savannah River National Laboratory, Aiken, SC 29808, United States.
| | - Michael H Paller
- Savannah River National Laboratory, Aiken, SC 29808, United States.
| | - John C Seaman
- Savannah River Ecology Laboratory, Aiken, SC 29808, United States
| | - John Mayer
- Savannah River National Laboratory, Aiken, SC 29808, United States
| | - Cher Nicholson
- Savannah River Ecology Laboratory, Aiken, SC 29808, United States
| |
Collapse
|