1
|
Zhou Y, Guo P, Liu Y, Hu W, Wang T. Effects of nano-bubble water on anaerobic co-digestion of cabbage waste and cow manure under mesophilic and thermophilic conditions. ENVIRONMENTAL TECHNOLOGY 2025; 46:1766-1777. [PMID: 40173215 DOI: 10.1080/09593330.2024.2405033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/11/2024] [Indexed: 04/04/2025]
Abstract
The impact of four nano-bubble water (NBW) additions on the hydrolysis rate, methane yield, and microbial community of co-digestion of cabbage waste (CW) and cow manure (CM) under mesophilic and thermophilic conditions were investigated. Adding NBW under mesophilic conditions promoted hydrolysis, and the highest soluble chemical oxygen demand of the mesophilic digesters with the addition of CO2-NBW increased by 15.86%. Methane yield in the mesophilic digesters with Air-NBW and CO2-NBW increased by 17.54% and 14.72%, respectively. Moreover, the addition of NBW further accelerated the methane yield rate under mesophilic conditions. Due to the influence of thermophilic temperature, the impact of NBW addition on hydrolysis, methane yield, and methane yield rate in the thermophilic digesters did not differ significantly from the control. The addition of Air-NBW and N2-NBW in the thermophilic digesters resulted in only marginal increases in methane yield, by 1.09% and 5.61%, respectively. NBW addition enhanced both the abundance and diversity of microbial communities in both mesophilic and thermophilic digesters. The addition of NBW represents a promising technological advancement for enhancing the efficiency of anaerobic co-digestion of CW and CM.
Collapse
Affiliation(s)
- Youfei Zhou
- Design Institute No.3, Shanghai Municipal Engineering Design and Research Institute (Group) Co., Ltd., Shanghai, People's Republic of China
| | - Peilin Guo
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, People's Republic of China
| | - Yi Liu
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, People's Republic of China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Weijie Hu
- Design Institute No.3, Shanghai Municipal Engineering Design and Research Institute (Group) Co., Ltd., Shanghai, People's Republic of China
| | - Tianfeng Wang
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, People's Republic of China
| |
Collapse
|
2
|
Huang W, Cheng X, Li Y, Feng Q, Wu Y, Luo J. Signaling molecule alleviates inhibitory impacts of surfactant on methane production during sludge and food waste co-digestion: Insights of electron bifurcation and quorum sensing. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136810. [PMID: 39644849 DOI: 10.1016/j.jhazmat.2024.136810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/16/2024] [Accepted: 12/05/2024] [Indexed: 12/09/2024]
Abstract
Anaerobic co-digestion of food waste (FW) and waste-activated sludge (WAS) is increasingly recognized as a viable solution for managing organic wastes. However, emerging contaminants (ECs), such as surfactant like sodium dodecylbenzene sulfonate (SDBS), can severely inhibit methane production. This study explores the potential of C6-HSL, a quorum sensing (QS) signaling molecule, to mitigate inhibitory effects of SDBS during FW and WAS co-digestion. Results demonstrated that SDBS reduced methane yields from 122.2 mL/g VSS in the control to 18.5 mL/g VSS, but supplementation with C6-HSL alleviated this inhibition, increasing yields to 115.4 mL/g VSS. C6-HSL not only restored suppressed methanogen populations but also promoted bacteria-archaea mutualisms, enhancing system resilience and stability. Additionally, C6-HSL enhanced key electron bifurcation pathways critical for overcoming thermodynamic barriers in methane metabolism, increasing the relative abundance of functional genes involved in four methane metabolism modules. Moreover, C6-HSL enhanced QS system (e.g., SecY and trpE), prompting microorganisms to activate adaptive mechanisms, such as DNA replication (e.g., rfcL and rfcS), efflux pumps (e.g., mdlA and mdlB), and bacterial chemotaxis (e.g., cheB and cheD), to counter SDBS toxicity. Correspondingly, TCA cycle (e.g., fumA and fumB) was also upregulated to ensure sufficient energy and electrons for methane production and microbial adaptation.
Collapse
Affiliation(s)
- Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yuxiao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
3
|
Zhang M, Wang T, Han Y, Yan X, Zhu X, Sun Y, Jiang X, Wang X. Anode potential regulates gas composition and microbiome in anaerobic electrochemical digestion. BIORESOURCE TECHNOLOGY 2024; 412:131414. [PMID: 39226941 DOI: 10.1016/j.biortech.2024.131414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/16/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
Anaerobic electrochemical digestion (AED) is an effective system for recovering biogas from organic wastes. However, the effects of different anode potentials on anaerobic activated sludge remain unclear. This study confirmed that biofilms exhibited the best electroactivity at -0.2 V (vs. Ag/AgCl) compared to -0.4 V and 0 V. Gas was further regulated, with the highest hydrogen content (47 ± 7 %) observed at -0.2 V. The 0 V system produced the largest amount of methane (70 ± 8 %) and exhibited the greatest presence of hydrogen-utilizing microorganisms. The gas yield at -0.4 V was the lowest, with no hydrogen detected. Excess bioelectrohydrogen at -0.2 V and 0 V caused the co-enrichment of Methanobacterium and Acetoanaerobium, establishing a thermodynamically feasible current-acetate-hydrogen electron cycle to improve electrogenesis. These results provide insights into the regulatory strategies of MEC technology during anaerobic digestion, which play a decisive role in determining the composition of biogas.
Collapse
Affiliation(s)
- Mou Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Tuo Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yilian Han
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xuejun Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xuemei Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yue Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xinlei Jiang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria / College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
4
|
He L, Zhu G. Regulation and application of quorum sensing on anaerobic digestion system. CHEMOSPHERE 2024; 363:142983. [PMID: 39089336 DOI: 10.1016/j.chemosphere.2024.142983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Quorum sensing (QS) plays an important role in the social behavior of microbial communities. Anaerobic digestion (AD) is a biological process using anaerobic microorganisms to degrade organic macromolecules into small molecules for biogas and biofertilizer production. In AD, the QS signaling molecule N-acyl homoserine lactones (AHLs) induces bacterial metabolism, improving AD process efficiency. However, there are fewer systematic reports about QS regulation of microbial behavior in AD. In this report, the effects of signaling molecules on extracellular polymer secretion, biofilm formation, granulation of granular sludge and bacterial metabolism in AD were investigated in detail. At present, the regulation behavior of QS on AD is a group phenomenon, and there are few in-depth studies on the regulation pathway. Therefore, we conducted an in-depth analysis of the pure culture system, granular sludge and reactor in the AD. Then we pointed out that the future application potential of QS in the AD may be combined with quorum quenching (QQ) and omics technology, which is of great significance for the future application of AD.
Collapse
Affiliation(s)
- Liyan He
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Gefu Zhu
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China.
| |
Collapse
|
5
|
Bahadur A, Zhang L, Guo W, Sajjad W, Ilahi N, Banerjee A, Faisal S, Usman M, Chen T, Zhang W. Temperature-dependent transformation of microbial community: A systematic approach to analyzing functional microbes and biogas production. ENVIRONMENTAL RESEARCH 2024; 249:118351. [PMID: 38331158 DOI: 10.1016/j.envres.2024.118351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/24/2023] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
The stability and effectiveness of the anaerobic digestion (AD) system are significantly influenced by temperature. While majority research has focused on the composition of the microbial community in the AD process, the relationships between functional gene profile deduced from gene expression at different temperatures have received less attention. The current study investigates the AD process of potato peel waste and explores the association between biogas production and microbial gene expression at 15, 25, and 35 °C through metatranscriptomic analysis. The production of total biogas decreased with temperature at 15 °C (19.94 mL/g VS), however, it increased at 35 °C (269.50 mL/g VS). The relative abundance of Petrimonas, Clostridium, Aminobacterium, Methanobacterium, Methanothrix, and Methanosarcina were most dominant in the AD system at different temperatures. At the functional pathways level 3, α-diversity indices, including Evenness (Y = 5.85x + 8.85; R2 = 0.56), Simpson (Y = 2.20x + 2.09; R2 = 0.33), and Shannon index (Y = 1.11x + 4.64; R2 = 0.59), revealed a linear and negative correlation with biogas production. Based on KEGG level 3, several dominant functional pathways associated with Oxidative phosphorylation (ko00190) (25.09, 24.25, 24.04%), methane metabolism (ko00680) (30.58, 32.13, and 32.89%), and Carbon fixation pathways in prokaryotes (ko00720) (27.07, 26.47, and 26.29%), were identified at 15 °C, 25 °C and 35 °C. The regulation of biogas production by temperature possibly occurs through enhancement of central function pathways while decreasing the diversity of functional pathways. Therefore, the methanogenesis and associated processes received the majority of cellular resources and activities, thereby improving the effectiveness of substrate conversion to biogas. The findings of this study illustrated the crucial role of central function pathways in the effective functioning of these systems.
Collapse
Affiliation(s)
- Ali Bahadur
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Cryosphere and Eco-Environment Research Station of Shule River Headwaters, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lu Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Guo
- Lanzhou Xinrong Environmental Energy Engineering Technology Co. Ltd. Lanzhou 730000, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Nikhat Ilahi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Abhishek Banerjee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shah Faisal
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Muhammad Usman
- State Key Laboratory of Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
6
|
He Z, Shen J, Zhao Y, Ru Y, Zhang D, Pan X. Efficient and synergistic treatment of selenium (IV)-contaminated wastewater and mercury (II)-contaminated soil by anaerobic granular sludge: Performance and mechanisms. CHEMOSPHERE 2024; 350:141038. [PMID: 38147928 DOI: 10.1016/j.chemosphere.2023.141038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/26/2023] [Accepted: 12/23/2023] [Indexed: 12/28/2023]
Abstract
Wastewater containing selenium (Se) and soil contaminated by mercury (Hg) are two environmental problems, but they are rarely considered for synergistic treatment. In this work, anaerobic granular sludge (AnGS) was used to address both of the aforementioned issues simultaneously. The performance and mechanisms of Se(IV) removal from wastewater and Hg(II) immobilization in soil were investigated using various technologies. The results of the reactor operation indicated that the AnGS efficiently removed Se from wastewater, with a removal rate of 99.94 ± 0.05%. The microbial communities in the AnGS could rapidly reduce Se(IV) to Se0 nanoparticles (SeNPs). However, the AnGS lost the ability to reduce Se(IV) once the Se0 content reached the saturation value of 5.68 g Se/L. The excess sludge of Se0-rich AnGS was applied to remediate soil contaminated with Hg(II). The Se0-rich AnGS largely decreased the percentage of soil Hg in the mobile, extractable phase, with up to 99.1 ± 0.3% immobilization. Soil Hg(II) and Hg0 can react with Se (-II) and Se0, respectively, to form HgSe. The formation of inert HgSe was an important pathway for immobilizing Hg. Subsequently, the pot experiments indicated that soil remediation using Se0-rich AnGS significantly decreased the Hg content in pea plants. Especially, the content of Hg decreased from 555 ± 100 to 24 ± 3 μg/kg in roots after remediation. In summary, AnGS is an efficient and cost-effective material for synergistically treating Se-contaminated wastewater and Hg-contaminated soil.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jiaquan Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yuanhai Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yulong Ru
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
7
|
Wang Q, Miao Q, Huang K, Lin Y, Wang T, Bai X, Xu Q. Spatial-temporal clogging development in leachate collection systems of landfills: Insight into chemical and biological clogging characteristics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:163-172. [PMID: 37660629 DOI: 10.1016/j.wasman.2023.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
The clogging of leachate collection systems (LCSs) is a typical challenge for landfills operation. Although clogging occurs in different LCS components, its spatial-temporal distributions remain unclear. This study aimed to systematically investigate the dynamic clogging development in simulated LCSs by monitoring changes in clogging characteristics over time. Results revealed that clogging accumulated in all components of the simulated LCS during a 215-day period, including chemical clogging and bio-clogging. Distinct spatial variations in clogging components were observed along the leachate flow of the simulated LCS, with the geotextile being severely clogged due to bio-clogging (70.1 ± 3.0%-80.0 ± 0.5%). Additionally, chemical clogging mainly occurred at the top (85.4 ± 0.8%-95.0 ± 0.9%) and middle (91.2 ± 0.8%-94.9 ± 1.1%) gravel layers. Nevertheless, the percentage of chemical clogging decreased from 72.0 ± 2.1% (day 42) to 42.5 ± 2.7% (day 215) at the bottom gravel layer. Chemical clogging was the main type in the pipe, accounting for 69.6 ± 0.5% (day 215). In addition, the ratios of bio-clogging to chemical clogging changed over time in all LCS components. The spatial-temporal characteristics of clogging across LCS components can enhance the understanding of clogging mechanisms, facilitate the design optimization of LCSs, and promote the formulation of effective control strategies.
Collapse
Affiliation(s)
- Qian Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Qianming Miao
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Ke Huang
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Yeqi Lin
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Tong Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Xinyue Bai
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Qiyong Xu
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China.
| |
Collapse
|
8
|
Saha S, Xiong JQ, Patil SM, Ha GS, Hoh JK, Park HK, Chung W, Chang SW, Khan MA, Park HB, Jeon BH. Dissemination of sulfonamide resistance genes in digester microbiome during anaerobic digestion of food waste leachate. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131200. [PMID: 36958158 DOI: 10.1016/j.jhazmat.2023.131200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
The preeminence of sulfonamide drug resistance genes in food waste (FW) and the increased utilization of high-strength organic FW in anaerobic digestion (AD) to enhance methane production have raised severe public health concerns in wastewater treatment plants worldwide. In this regard, the dissemination patterns of different sulfonamide resistance genes (sul1 and sul2) and their impact on the digester core microbiota during AD of FW leachate (FWL) were evaluated. The presence of various sulfonamide antibiotics (SAs) in FWL digesters improved the final methane yield by 37 % during AD compared with FWL digesters without SAs. Microbial population shifts towards hydrolytic, acidogenic, and acetogenic bacteria in the phyla Actinobacteriota, Bacteroidota, Chloroflexi, Firmicutes, Proteobacteria, and Synergistota occurred due to SA induced substrate digestion and absorption through active transport; butanoate, propanoate, and pyruvate metabolism; glycolysis; gluconeogenesis; the citrate cycle; and pentose phosphate pathway. The initial dominance of Methanosaeta (89-96 %) declined to 47-53 % as AD progressed and shifted towards Methanosarcina (40 %) in digesters with the highest SA concentrations at the end of AD. Dissemination of sul1 depended on class 1 integron gene (intl1)-based horizontal gene transfer to pathogenic members of Chloroflexi, Firmicutes, and Patescibacteria, whereas sul2 was transmitted to Synergistota independent of intl1. Low susceptibility and ability to utilize SAs during methanogenesis shielded methanogenic archaea against selection pressure, thus preventing them from interacting with sul or intl1 genes, thereby minimizing the risk of antibiotic resistance development. The observed emergence of cationic antimicrobial peptide, vancomycin, and β-lactam resistance in the core microbiota during AD of FWL in the presence of SAs suggests that multidrug resistance caused by bacterial transformation could lead to an increase in the environmental resistome through wastewater sludge treatment.
Collapse
Affiliation(s)
- Shouvik Saha
- Natural Resources Research Institute, University of Minnesota Duluth, Duluth, MN 55812, USA; Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong, China
| | - Swapnil M Patil
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Geon-Soo Ha
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Jeong-Kyu Hoh
- Department of Obstetrics and Gynecology, College of Medicine, Hanyang University, Seoul 04763, the Republic of Korea
| | - Hyun-Kyung Park
- Department of Pediatrics, College of Medicine, Hanyang University, Seoul 04763, the Republic of Korea
| | - Woojin Chung
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, the Republic of Korea
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, the Republic of Korea
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ho Bum Park
- Department of Energy Engineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, the Republic of Korea.
| |
Collapse
|
9
|
Duc LV, Nagao S, Mojarrad M, Miyagawa Y, Li ZY, Inoue D, Tajima T, Ike M. Bioaugmentation with marine sediment-derived microbial consortia in mesophilic anaerobic digestion for enhancing methane production under ammonium or salinity stress. BIORESOURCE TECHNOLOGY 2023; 376:128853. [PMID: 36898569 DOI: 10.1016/j.biortech.2023.128853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Ammonium (NH4+) and salinity (NaCl) inhibit CH4 production in anaerobic digestion. However, whether bioaugmentation using marine sediment-derived microbial consortia can relieve the inhibitory effects of NH4+ and NaCl stresses on CH4 production remains unclear. Thus, this study evaluated the effectiveness of bioaugmentation using marine sediment-derived microbial consortia in alleviating the inhibition of CH4 production under NH4+ or NaCl stress and elucidated the underlying mechanisms. Batch anaerobic digestion experiments under 5 gNH4-N/L or 30 g/L NaCl were performed with or without augmentation using two marine sediment-derived microbial consortia pre-acclimated to high NH4+ and NaCl. Compared with non-bioaugmentation, bioaugmentation reinforced CH4 production. Network analysis revealed the joint effects of microbial connections by Methanoculleus, which promoted the efficient consumption of propionate accumulated under NH4+ and NaCl stresses. In conclusion, bioaugmentation with pre-acclimated marine sediment-derived microbial consortia can mitigate the inhibition under NH4+ or NaCl stress and enhance CH4 production in anaerobic digestion.
Collapse
Affiliation(s)
- Luong Van Duc
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shintaro Nagao
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mohammad Mojarrad
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Yuta Miyagawa
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Zi-Yan Li
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahisa Tajima
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
10
|
Garlicka A, Umiejewska K, Halkjær Nielsen P, Muszyński A. Hydrodynamic disintegration of thickened excess sludge and maize silage to intensify methane production: Energy effect and impact on microbial communities. BIORESOURCE TECHNOLOGY 2023; 376:128829. [PMID: 36889601 DOI: 10.1016/j.biortech.2023.128829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The aim of this project was to study the combination of two methods to increase methane production: feedstock pretreatment by hydrodynamic disintegration and co-digestion of maize silage (MS) with thickened excess sludge (TES). Disintegration of TES alone resulted in a 15% increase in specific methane production from 0.192 Nml/gVS (TES + MS) to 0.220 Nml/gVS (pretreated TES + MS). The energy balance revealed additional energy (0.14 Wh) would cover only the energy expenditure for the mechanical pretreatment and would not allow for net energy profit. Identification of the methanogenic consortia by 16S rRNA gene amplicon sequencing revealed that Chloroflexi, Bacteroidota, Firmicutes, Proteobacteria and Actinobacteriota were five most abundant bacteria phyla, with Methanothrix and Methanolinea as the dominant methanogens. Principal component analysis did not show any effect of feedstock pretreatment on methanogenic consortia. Instead, the composition of inoculum was the decisive factor in shaping the microbial community structure.
Collapse
Affiliation(s)
- Agnieszka Garlicka
- Research and New Technologies Office, Municipal Water Supply and Sewerage Company in the Capital City of Warsaw Joint Stock Company, Warsaw, Poland
| | - Katarzyna Umiejewska
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Adam Muszyński
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
11
|
Anaerobic membrane bioreactor-based treatment of poultry slaughterhouse wastewater: Microbial community adaptation and antibiotic resistance gene profiles. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Wu Y, Yue X, Zhou A, Song X, Su B, Cao F, Ding J. Simultaneous recovery of short-chain fatty acids and phosphorus during lipid-rich anaerobic fermentation with sodium hydroxide conditioning. CHEMOSPHERE 2023; 312:137227. [PMID: 36379433 DOI: 10.1016/j.chemosphere.2022.137227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic fermentation (AF) could achieve simultaneous recovery of short-chain fatty acids (SCFAs) and phosphorus (P) when waste activated sludge (WAS) and meat processing waste (MPW) act as co-substrate. However, long-chain fatty acids, the degradation intermediates of lipids, always inhibit anaerobic microbial activity. Therefore, sodium hydroxide (NaOH) conditioning was applied to improve the lipid-rich AF performance in this study. The results demonstrated that 96% WAS (v/v) with NaOH addition that remaining at pH 7.5 could achieve the maximum SCFAs yield (1180.05 mg/g VSfed) at 12 d, and ortho-P content in the AF liquor (AFL) was much more than that of without NaOH addition. Anaerovibrio and Aminobacterium, one kind of lipolytic and proteolytic bacteria, respectively, became the major genus in the lipid-rich AF system. 86% of P in the AFL from 96% WAS + pH 7.5 reactor was recovered through vivianite crystallization method, with 91% of SCFAs remaining in the post-AFL. Meanwhile, analysis results verified vivianite formation in the P precipitate products. Overall, this study provided a new idea to achieve SCFAs and P simultaneous recovery from WAS and MPW through AF with NaOH conditioning and vivianite crystallization.
Collapse
Affiliation(s)
- Yuqi Wu
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China.
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Xiulan Song
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Bingqin Su
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Fang Cao
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Jianzhi Ding
- Taiyuan Design Research Institute for Coal Industry, 18 Qingnian Road, Taiyuan, 030001, PR China
| |
Collapse
|
13
|
Kim HH, Saha S, Hwang JH, Hosen MA, Ahn YT, Park YK, Khan MA, Jeon BH. Integrative biohydrogen- and biomethane-producing bioprocesses for comprehensive production of biohythane. BIORESOURCE TECHNOLOGY 2022; 365:128145. [PMID: 36257521 DOI: 10.1016/j.biortech.2022.128145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The production of biohythane, a combination of energy-dense hydrogen and methane, from the anaerobic digestion of low-cost organic wastes has attracted attention as a potential candidate for the transition to a sustainable circular economy. Substantial research has been initiated to upscale the process engineering to establish a hythane-based economy by addressing major challenges associated with the process and product upgrading. This review provides an overview of the feasibility of biohythane production in various anaerobic digestion systems (single-stage, dual-stage) and possible technologies to upgrade biohythane to hydrogen-enriched renewable natural gas. The main goal of this review is to promote research in biohythane production technology by outlining critical needs, including meta-omics and metabolic engineering approaches for the advancements in biohythane production technology.
Collapse
Affiliation(s)
- Hoo Hugo Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Shouvik Saha
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jae-Hoon Hwang
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816-2450, USA
| | - Md Aoulad Hosen
- Department of Microbiology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Yong-Tae Ahn
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
14
|
Li X, Chu S, Wang P, Li K, Su Y, Wu D, Xie B. Potential of biogas residue biochar modified by ferric chloride for the enhancement of anaerobic digestion of food waste. BIORESOURCE TECHNOLOGY 2022; 360:127530. [PMID: 35772715 DOI: 10.1016/j.biortech.2022.127530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Biogas residue biochar (BRB) and BRB modified by ferric chloride (BRB-FeCl3) were applied to promote anaerobic digestion (AD) of food waste (FW), related mechanisms were also proposed in this study. Results indicated BRB-FeCl3 showed higher specific surface area, more abundant functional groups and impregnate iron than BRB, and they respectively increased 22.50% and 12.79% cumulative methane yields compared with control group because of accelerated volatile fatty acids (VFAs) transformation, which were confirmed by enhanced metabolism of glycolysis, fatty acid degradation and pyruvate. BRB, especially BRB-FeCl3 facilitated the growth of Syntrophomonas, Methanofollis, Methanoculleus and Methanosarcina, which further promoted the methanogenesis by enhancing the metabolic activities of methanol, dimethylamine and methylamine pathways, thereby causing more metabolically diverse methanogenic pathways. Metagenomics analysis revealed BRB, especially BRB-FeCl3 promoted the relative abundances of functional genes involved in direct interspecies electron transfer (DIET). Present study explored the enhancement mechanisms and feasibility of BRB-FeCl3 for AD process.
Collapse
Affiliation(s)
- Xunan Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Siqin Chu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Kaiyi Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
15
|
Chairattanawat C, Yulisa A, Park SH, Jannat MAH, Hwang S. Physicochemical Characteristics and Biogas Production Potentials of Olive Flounder and Starry Flounder Wastes. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Ren Y, Wang C, He Z, Qin Y, Li YY. Biogas production performance and system stability monitoring in thermophilic anaerobic co-digestion of lipids and food waste. BIORESOURCE TECHNOLOGY 2022; 358:127432. [PMID: 35671912 DOI: 10.1016/j.biortech.2022.127432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
A thermophilic anaerobic co-digestion system treating lipids and food waste was demonstrated by a long-term operation (over 600 days) with different lipid/TS ratios (from 10 % to 80 %). The lipids degradation efficiency achieved 90 % in the system when the lipid/TS ratio was less than 70 %. Addition of lipids significantly enhanced methane production, as the lipid/TS ratio increased from 10% to 70 %, the biogas production rate increased from 2.36 g/L/d to 3.42 g/L/d with 59.7 % to 67.7 % of methane. From the view of system stability, the increase of lipid/TS ratio reduced the alkalinity of the system and eventually caused the system collapse. In order to avoid losses due to overload, the results suggested that the ratio of total ammonia nitrogen to alklinity-6.5 could be used as a monitoring indicator. And the system could maintain efficient operation when the indicator was less than 0.6.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Chen Wang
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Ziang He
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Sciences, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Department of Frontier Science for Advanced Environment, Graduate School of Environmental Sciences, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
17
|
Sarangi PK, Anand Singh T, Joykumar Singh N, Prasad Shadangi K, Srivastava RK, Singh AK, Chandel AK, Pareek N, Vivekanand V. Sustainable utilization of pineapple wastes for production of bioenergy, biochemicals and value-added products: A review. BIORESOURCE TECHNOLOGY 2022; 351:127085. [PMID: 35358673 DOI: 10.1016/j.biortech.2022.127085] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 05/27/2023]
Abstract
Agricultural residues play a pivotal role in meeting the growing energy and bulk chemicals demand and food security of society. There is global concern about the utilization of fossil-based fuels and chemicals which create serious environmental problems. Biobased sustainable fuels can afford energy and fuels for future generations. Agro-industrial waste materials can act as the alternative way for generating bioenergy and biochemicals strengthening low carbon economy. Processing of pineapple generates about 60% of the weight of the original pineapple fruit in the form of peel, core, crown end, and pomace that can be converted into bioenergy sources like bioethanol, biobutanol, biohydrogen, and biomethane along with animal feed and vermicompost as described in this paper. This paper also explains about bioconversion process towards the production of various value-added products such as phenolic anti-oxidants, bromelain enzyme, phenolic flavour compounds, organic acids, and animal feed towards bioeconomy.
Collapse
Affiliation(s)
- Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal 795 004 Manipur, India
| | - Thangjam Anand Singh
- College of Agriculture, Central Agricultural University, Imphal 795 004 Manipur, India
| | - Ng Joykumar Singh
- College of Agriculture, Central Agricultural University, Imphal 795 004 Manipur, India
| | - Krushna Prasad Shadangi
- Department of Chemical Engineering, Veer Surendra Sai University of Technology, Burla Sambalpur 768 018, Odisha, India
| | - Rajesh K Srivastava
- Department of Biotechnology, GIT, GITAM (Deemed to be University) Visakhapatnam, 530 045 Andhra Pradesh, India
| | - Akhilesh K Singh
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845 401 Bihar, India
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo (USP), Lorena, São Paulo, Brazil
| | - Nidhi Pareek
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer 305 817, Rajasthan, India
| | - Vivekanand Vivekanand
- Center for Energy and Environment, Malaviya National Institute of Technology Jaipur, 302 017 Rajasthan, India.
| |
Collapse
|
18
|
Alex Kibangou V, Lilly M, Busani Mpofu A, de Jonge N, Oyekola OO, Jean Welz P. Sulfate-reducing and methanogenic microbial community responses during anaerobic digestion of tannery effluent. BIORESOURCE TECHNOLOGY 2022; 347:126308. [PMID: 34767906 DOI: 10.1016/j.biortech.2021.126308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Microbial communities were monitored in terms of structure, function and response to physicochemical variables during anaerobic digestion of tannery and associated slaughterhouse effluent in: (i) 2 L biochemical methane potential batch reactors at different inoculum to substrate ratios (2-5) and initial sulfate concentrations (665-2000 mg/L), and (ii) 20 L anaerobic sequencing batch reactors with different mixing regimes (continuous vs. intermittent). Methanogenic and sulfidogenic community compositions in the 2 L reactors evolved initially, but stabilised after the start of biogas generation, although significant (ANOSIM p < 0.05) changes in the physicochemical parameters indicated continued metabolic activity. Both hydrogenotrophic and acetoclastic archaeal genera were present in high relative abundances. Continuous stirring preferentially selected the metabolically versatile genus Methanosarcina, suggesting that higher specific methane generation in the continuously stirred system (168 vs. 19.5 mL methane per gram volatile solids per week) was related to the metabolic activities of members of this genus.
Collapse
Affiliation(s)
- Victoria Alex Kibangou
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Cape Town 7535, South Africa; Department of Chemical Engineering, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Cape Town 7535, South Africa
| | - Mariska Lilly
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Cape Town 7535, South Africa
| | - Ashton Busani Mpofu
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Cape Town 7535, South Africa; Department of Chemical Engineering, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Cape Town 7535, South Africa
| | - Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Aalborg DK-9220, Denmark; NIRAS A/S, Østre Havnegade 12, Aalborg DK-9000, Denmark
| | - Oluwaseun O Oyekola
- Department of Chemical Engineering, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Cape Town 7535, South Africa
| | - Pamela Jean Welz
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, Cape Town 7535, South Africa.
| |
Collapse
|
19
|
Khan A, Akbar S, Okonkwo V, Smith C, Khan S, Ali Shah A, Adnan F, Zeeshan Ijaz U, Ahmed S, Badshah M. Enrichment of the hydrogenotrophic methanogens for, in-situ biogas up-gradation by recirculation of gases and supply of hydrogen in methanogenic reactor. BIORESOURCE TECHNOLOGY 2022; 345:126219. [PMID: 34813923 DOI: 10.1016/j.biortech.2021.126219] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
During in situ biogas up-gradation by supplying hydrogen from an external source and enrichment of hydrogenotrophic methanogens, high pressure of H2 negatively affects hydrolytic and fermentative activities. To overcome this problem, the present study aimed to enrich the hydrogenotrophic methanogens by optimization of various parameters associated with gas recirculation along-with hydrogen supply from the external source. Due to recirculation of gases and supplied hydrogen, methane generation was two-fold higher in the optimal condition than in conventional anaerobic digestion, with the highest methane content of 99%. Additionally, the hydrogenotrophic methanogens were enriched, with a decrease in acetoclastic methanogens and an increase in Bathyarchaeia population, which utilizes H2 and CO2 to produce acetate and lactate as end products. The study concludes that recirculation increases methane production by converting H2 and CO2 into methane and enhances the degradation of organic matter left over undigested in the hydrolytic reactor.
Collapse
Affiliation(s)
- Alam Khan
- Sustainable Bioenergy and Biorefinery Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sedrah Akbar
- Sustainable Bioenergy and Biorefinery Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Valentine Okonkwo
- Water Engineering Group, School of Engineering, The University of Glasgow, Glasgow, United Kingdom
| | - Cindy Smith
- Water Engineering Group, School of Engineering, The University of Glasgow, Glasgow, United Kingdom; Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Samiullah Khan
- Sustainable Bioenergy and Biorefinery Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Aamer Ali Shah
- Sustainable Bioenergy and Biorefinery Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fazal Adnan
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Umer Zeeshan Ijaz
- Water Engineering Group, School of Engineering, The University of Glasgow, Glasgow, United Kingdom
| | - Safia Ahmed
- Sustainable Bioenergy and Biorefinery Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Malik Badshah
- Sustainable Bioenergy and Biorefinery Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
20
|
Guo H, Zhao S, Xia D, Zhao W, Li Q, Liu X, Lv J. The biochemical mechanism of enhancing the conversion of chicken manure to biogenic methane using coal slime as additive. BIORESOURCE TECHNOLOGY 2022; 344:126226. [PMID: 34798250 DOI: 10.1016/j.biortech.2021.126226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
To improve the efficiency of methane production from chicken manure (CM) anaerobic digestion, the mechanism of coal slime (CS) as an additive on methane production characteristics were investigated. The results showed that adding an appropriate amount of CS quickened the start of the fermentation and effectively increased the methane yield. In addition, the pH changed in a stable manner in the liquid phase, and the concentrations of total ammonia nitrogen (TAN) and free ammonia nitrogen (FAN) were reduced. Moreover, organic matter was decomposed and volatile fatty acids (VFAs) were consumed effectively. The abundance of Bacteroides in the bacterial community and Methanosarcina in the archaea was increased. In addition, the reduction of CO2 was the main methanogenic pathway, and adding CS raised the abundance of genes for key enzymes in metabolic pathways during methane metabolism. The results provide a novel method for the efficient methane production from CM.
Collapse
Affiliation(s)
- Hongyu Guo
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China; Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Jiaozuo 454000, China
| | - Shufeng Zhao
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Daping Xia
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China; Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Jiaozuo 454000, China.
| | - Weizhong Zhao
- Institute of Resources and Environment Henan Polytechnic University, Jiaozuo 454000, China
| | - Qingchao Li
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - XiaoLei Liu
- College of safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Jinghui Lv
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| |
Collapse
|
21
|
Lin Q, De Vrieze J, Fang X, Li L, Li X. Labile carbon feedstocks trigger a priming effect in anaerobic digestion: An insight into microbial mechanisms. BIORESOURCE TECHNOLOGY 2022; 344:126243. [PMID: 34737136 DOI: 10.1016/j.biortech.2021.126243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The mechanisms underlying the advanced performance in anaerobic co-digestion (AcoD) are crucial but remain elusive. This study conducted AcoD of swine manure, rice straw and apple waste (AW, mainly consisting of labile carbon) or fructose (a pure labile carbon), and monitored microbial community abundances, activities and transcriptional profiles in the digestate and on straw. The transformation efficiencies of manure (not straw) to CH4 were promoted in AcoD co-fed manure and AW (by 39 ± 13%) or fructose (by 65 ± 14%), compared to the control mono-fed manure, implying labile carbon could trigger a priming effect underlying AcoD advantage. Although digestate-associated and straw-associated communities existed in a same bioreactor, the priming effect mainly linked to the former and was attributed to enhancements in deterministic turnover of active communities, in activities of Firmicutes taxa involved in substrate hydrolysis, and in acetoclastic methanogenesis. These findings provide novel insights to elaborate AcoD processes.
Collapse
Affiliation(s)
- Qiang Lin
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Xiaoyu Fang
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lingjuan Li
- Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|