1
|
Yu J, Usman M, Liu F, Schäfer F, Shen Y, Zheng Z, Cai Y. CO 2 agitation combined with magnetized biochar to alleviate "ammonia inhibited steady-state": Exploring the mechanism by combining metagenomics with macroscopic indicators. WATER RESEARCH 2025; 276:123250. [PMID: 39946947 DOI: 10.1016/j.watres.2025.123250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 03/03/2025]
Abstract
The "ammonia inhibited steady-state" phenomenon is frequently observed in the anaerobic digestion (AD) process of nitrogen-rich substrates. Reconfiguring microbial ecosystems has proven to be an effective strategy for mitigating ammonia inhibition. In the current study, biochars were screened and targeted for modification. CO2 agitation combined with magnetized biochar was used to aid the semi-continuous AD systems with "ammonia inhibited steady-state." The results indicated that coconut shell biochar had the best stimulating effect on AD performance. The content of oxygen-containing functional groups (OCFGs), which had a positive correlation with the electron donating capacity (EDC), was targeted to be regulated. This strategy significantly increased the CH4 yield by 31.7 % (from 344 to 278 mL/g VS) (p < 0.05). Isotope tracing and KEGG gene annotation indicated that this strategy stimulated the efficiency of the hydrogenotrophic pathway. Simultaneously, it accelerated the attachment of microorganisms, which made the DIET pathway between bacteria and archaea efficient. Under CO2 agitation, the attachment of functional microorganisms to the biochar accelerated. Biochar weakened the synthesis of bioelectronic carriers (Cyt-c and chemosensory pili), while the electroactivity of the AD system was enhanced. This means that biochar replaced bioelectronic carriers and improved the DIET efficiency. In addition, the strategy had a positive effect on the colonization of simultaneous nitrification-denitrifying bacteria (Georgenia), which led to a decrease in ammonia nitrogen concentrations. This study revealed the mechanism by which this strategy alleviates ammonia inhibition and provided a promising strategy for the efficient AD of nitrogen-rich substrates.
Collapse
Affiliation(s)
- Jiadong Yu
- Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs P. R. China. Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, 100081, China
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6 G 2W2, Canada
| | - Fan Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Franziska Schäfer
- Department of Biochemical Conversion, Deutsches Biomassforschungszentrum gemeinnützige GmbH, Torgauer Straße116, 04347 Leipzig, Germany
| | - Yuhan Shen
- Northwest A and F University, Yangling, Shaanxi, 712100, China
| | - Zehui Zheng
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Li D, Ping Q, Mo R, Guo W, Zhang S, Wang L, Li Y. Revealing synergistic mechanisms of biochar-assisted microbial electrolysis cells in enhancing the anaerobic digestion performance of waste activated sludge: Extracellular polymeric substances characterization, enzyme activity assay, and multi-omics analysis. WATER RESEARCH 2024; 267:122501. [PMID: 39326182 DOI: 10.1016/j.watres.2024.122501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Although biochar (BC)-assisted microbial electrolysis cells (MEC) has been shown to improve anaerobic digestion (AD) performance of waste activated sludge (WAS), the underlying mechanisms remain unclear. This study conducted an in-depth investigation into the mechanism based on analyses of extracellular polymeric substances (EPS) characteristics, enzyme activities and multi-omics. The results showed that compared with the control group, methane production improved by 16.73 %, 21.32 %, and 29.37 % in the BC, MEC, and BC-assisted MEC (BC-MEC) groups, respectively. The reconfiguration of the protein secondary structure increased the hydrophobicity of the EPS, thereby promoting microbial aggregation. In addition, partial least-squares path modeling (PLS-PM) and mantel test based on the enzyme activity and multi-omics analyses revealed that the promotional effect of MEC on the hydrolysis of WAS was superior to that of BC, while BC was more advantageous in promoting electron transfer and biofilm formation regulated by quorum sensing. The synergistic effects of BC and MEC were exemplified in the BC-MEC group. g_norank_Aminicenantales responsible for the hydrolysis of WAS was enriched (29.6 %), and the activities of hydrolytic enzymes including α-glucosidases and proteases were increased by 29.1 % and 43.6 %, respectively. Further, the expressions of genes related to acyl homoserine lactones (AHLs) and diffusible signal factor (DSF) in quorum sensing systems, as well as the genes related to hydrogenase involved in electron transfer (mbhJKL, hyfB-JR, hypA-F, and hoxFHUY), were up-regulated in the BC-MEC group. This facilitated electron transfer and microbial communication, consequently enhancing methane production. This research significantly advances the understanding of the mechanism by which BC-assisted MEC enhances AD performance and provides valuable insights into strategies for improving energy recovery from WAS.
Collapse
Affiliation(s)
- Dunjie Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Rongrong Mo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wenjie Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shuang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
3
|
Zhao ZJ, Liu XL, Wang YX, Wang YS, Shen JY, Pan ZC, Mu Y. Material and microbial perspectives on understanding the role of biochar in mitigating ammonia inhibition during anaerobic digestion. WATER RESEARCH 2024; 255:121503. [PMID: 38537488 DOI: 10.1016/j.watres.2024.121503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/24/2024]
Abstract
With the increasing adoption of carbon-based strategies to enhance methanogenic processes, there is a growing concern regarding the correlation between biochar properties and its stimulating effects on anaerobic digestion (AD) under ammonia inhibition. This study delves into the relevant characteristics and potential mechanisms of biochar in the context of AD system under ammonia inhibition. The introduction of optimized biochar, distinguished by rich CO bond, abundant defect density, and high electronic capacity, resulted in a significant reduction in the lag period of anaerobic digestion system under 5.0 g/L ammonia stress, approximately by around 63 % compared to the control one. Biochar helps regulate the community structure, promotes the accumulation of acetate-consuming bacteria, in the AD system under ammonia inhibition. More examinations show that biochar promotes direct interspecies electron transfer in AD system under ammonia inhibition, as evidenced by diminished levels of bound electroactive extracellular polymeric substances, increased abundance of electroactive bacteria, and notably, the up-regulation of direct interspecies electron transfer associated genes, including the conductive pili and Cytochrome C genes, as revealed by meta-transcriptomic analysis. Additionally, gene expression related to proteins associated with ammonium detoxification were found to be up-regulated in systems supplemented with biochar. These findings provide essential evidence and insights for the selection and potential engineering of effective biochar to enhance AD performance under ammonia inhibition.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Li Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Xuan Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yan-Shan Wang
- School of Geographic Sciences, Nantong University, Nantong 226007, China
| | - Jin-You Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhi-Cheng Pan
- Laboratory of Urban Wastewater Treatment Technology in Sichuan Province of Haitian Water Group Co., Ltd, Chengdu 610041, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
4
|
Wei Y, Chen W, Hou J, Qi X, Ye M, Jiang N, Meng F, Xi B, Li M. Biogas upgrading performance and underlying mechanism in microbial electrolysis cell and anaerobic digestion integrated system. BIORESOURCE TECHNOLOGY 2024; 400:130683. [PMID: 38599352 DOI: 10.1016/j.biortech.2024.130683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
The productivity and efficiency of two-chamber microbial electrolysis cell and anaerobic digestion integrated system (MEC-AD) were promoted by a complex of anaerobic granular sludge and iron oxides (Fe-AnGS) as inoculum. Results showed that MEC-AD with Fe-AnGS achieved biogas upgrading with a 23%-29% increase in the energy recovery rate of external circuit current and a 26%-31% decrease in volatile fatty acids. The energy recovery rate of MEC-AD remained at 52%-57%, indicating a stable operation performance. The selectively enriched methanogens and electroactive bacteria resulted in dominant hydrogenotrophic and acetoclastic methanogenesis in the cathode and anode chambers. Mechanistic analysis revealed that MEC-AD with Fe-AnGS led to specifically upregulated enzymes related to energy metabolism and electron transfer. Fe-AnGS as inoculum could improve the long-term operation performance of MEC-AD. Consequently, this study provides an efficient strategy for biogas upgrading in MEC-AD.
Collapse
Affiliation(s)
- Yufang Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Wangmi Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jiaqi Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xuejiao Qi
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Meiying Ye
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Ning Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fanhua Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
5
|
Hassaan MA, Elkatory MR, El-Nemr MA, Ragab S, Yi X, Huang M, El Nemr A. Synthesis, characterization, optimization and application of Pisum sativum peels S and N-doping biochars in the production of biogas from Ulva lactuca. RENEWABLE ENERGY 2024; 221:119747. [DOI: 10.1016/j.renene.2023.119747] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
6
|
Liu J, Wang S, Wang Z, Shen C, Liu D, Shen X, Weng L, He Y, Wang S, Wang J, Zhuang W, Cai Y, Xu J, Ying H. Pretreatment of Luzhou distiller's grains for feed protein production using crude enzymes produced by a synthetic microbial consortium. BIORESOURCE TECHNOLOGY 2023; 390:129852. [PMID: 37839649 DOI: 10.1016/j.biortech.2023.129852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Chinese distillers' grains (CDGs) have low fermentation efficiency due to the presence of lignocellulosic components, such as rice husk. In this study, a microbial consortium synthesized was used based on the "functional complementarity" principle to produce lignocellulolytic crude enzyme. The crude enzyme was used to hydrolyze CDGs. After enzymatic hydrolysis, lignocellulose was damaged to varying degrees and the crystallinity decreased. Subsequently, the feed protein was produced using yeast through two pathways. The results showed that the crude enzyme produced by the microbial consortium (comprising Trichoderma reesei, Aspergillus niger, and Penicillium) exhibited excellent enzymatic efficiency, yielding 27.88%, 19.64%, and 10.88% of reducing sugar, cellulose, and hemicellulose. The true protein content of CDGs increased by 53.49% and 48.35% through the first and second pathways, respectively. Notably, the second pathway demonstrated higher economic benefits to produce feed protein. This study provides a pathway for high-quality utilization of CDGs.
Collapse
Affiliation(s)
- Jixiang Liu
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Zhi Wang
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | | | - Dong Liu
- National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | | | - Longfei Weng
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Yun He
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Simin Wang
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Jiaxin Wang
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Wei Zhuang
- National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China.
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Hanjie Ying
- National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
7
|
Gao Y, Cai T, Yin J, Li H, Liu X, Lu X, Tang H, Hu W, Zhen G. Insights into biodegradation behaviors of methanolic wastewater in up-flow anaerobic sludge bed (UASB) reactor coupled with in-situ bioelectrocatalysis. BIORESOURCE TECHNOLOGY 2023; 376:128835. [PMID: 36889605 DOI: 10.1016/j.biortech.2023.128835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Granular sludge disintegration and washing out pose a challenge to up-flow anaerobic sludge bed (UASB) reactor treating methanolic wastewater. Herein, in-situ bioelectrocatalysis (BE) was integrated into UASB (BE-UASB) reactor to alter microbial metabolic behaviors and enhance the re-granulation process. BE-UASB reactor exhibited the highest methane (CH4) production rate of 388.0 mL/Lreactor/d and chemical oxygen demand (COD) removal of 89.6 % at 0.8 V. Sludge re-granulation was strengthened with particle size over 300 µm of up to 22.4%. Bioelectrocatalysis stimulated extracellular polymeric substances (EPS) secretion and formation of granules with rigid [-EPS-cell-EPS-] matrix by enhancing the proliferation of key functional microorganisms (Acetobacterium, Methanobacterium, and Methanomethylovorans) and diversifying metabolic pathways. Particularly, a high Methanobacterium richness (10.8%) drove the electroreduction of CO2 into CH4 and reduced its emissions (52.8%). This study provides a novel bioelectrocatalytic strategy for controlling granular sludge disintegration, which will facilitate the practical application of UASB in methanolic wastewater treatment.
Collapse
Affiliation(s)
- Yijing Gao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Teng Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Jian Yin
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Huan Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xinyu Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd, Shanghai 200062, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China.
| | - Hongxia Tang
- Shanghai Solid Waste and Chemicals Management Center, Shanghai, No. 55, Sanjiang Road, Xuhui District, PR China
| | - Weijie Hu
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd, Shanghai 200092, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N Zhongshan Road, Shanghai 200062, PR China
| |
Collapse
|
8
|
Liu J, Yun S, Wang K, Liu L, An J, Ke T, Gao Y, Zhang X. Enhanced methane production in microbial electrolysis cell coupled anaerobic digestion system with MXene accelerants. BIORESOURCE TECHNOLOGY 2023; 380:129089. [PMID: 37116623 DOI: 10.1016/j.biortech.2023.129089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023]
Abstract
Accelerants can improve the anaerobic performance of a microbial electrolysis cell coupled anaerobic digestion (MEC-AD). MAX phase titanium aluminum carbide (MAX), multilayer Ti3C2TX MXene (ML-MXene) and few-layer Ti3C2TX MXene (FL-MXene) were utilized as accelerants for MEC-AD to promote CH4 production and CO2 reduction at a voltage of 0.6 V. The highest CH4 yield (358.7 mL/g VS) and the lowest CO2 yield (57.4 mL/g VS) relative to the control group (170.6 and 125.1 mL/g VS) were obtained in MEC-AD with ML-MXene (0.035 wt%). The digestates of MEC-AD with 0.035 wt% ML-MXene have superior thermal stability (40.9%) and total nutrient content (42.1 g/kg). The ML-MXene enhanced the abundances of Methanosarcina and Methanobacterium. This work highlights the possible role of MXene in promoting methanogenesis. These important findings provide a novel avenue for the development of MXene accelerants for MEC-AD systems.
Collapse
Affiliation(s)
- Jiayu Liu
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China; Qinghai Building and Materials Research Academy Co., Ltd, the Key Lab of Plateau Building and Eco-community in Qinghai, Xining, Qinghai 810000, China.
| | - Kaijun Wang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Lijianan Liu
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Jinhang An
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Teng Ke
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Yangyang Gao
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Xiaoxue Zhang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| |
Collapse
|
9
|
Li Y, Wang S, Dong R, Li X. A large cathode surface area promotes electromethanogenesis at a proper external voltage in a single coaxial microbial electrolysis cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161721. [PMID: 36682571 DOI: 10.1016/j.scitotenv.2023.161721] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/07/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Microbial electrolysis cell coupled with anaerobic digestion (MEC-AD) is currently encountering constraints on electromethanogenesis. The electrode configuration modification can be a simple yet efficient way to improve electromethanogenesis. This study evaluated two coaxial electrode configurations (large anode and small cathode: A10C1; small anode and large cathode: A1C10) using carbon felt as the electrode material. At an external voltage of 1.7 V, CH4 content was found exclusively higher in A1C10 (11 % and 13 % higher for acetate-fed and cow manure-fed, respectively) than that of the control reactors. Consequently, CH4 production was 13 % and 29 % higher in acetate-fed and CM-fed A1C10, respectively. The strengthened electromethanogenesis was attributed to the enrichment of interspecies hydrogen transfer microbes (i.e., Mesotoga and Bathyarchaeia). The coaxial configuration with a large cathode surface area demonstrated a viable stereotype in MEC-AD for improved waste treatment and energy recovery.
Collapse
Affiliation(s)
- Yu Li
- College of Engineering, China Agricultural University (Key laboratory for clean renewable energy utilization technology, Ministry of Agriculture), Beijing 100083, People's Republic of China
| | - Siqi Wang
- College of Engineering, China Agricultural University (Key laboratory for clean renewable energy utilization technology, Ministry of Agriculture), Beijing 100083, People's Republic of China
| | - Renjie Dong
- College of Engineering, China Agricultural University (Key laboratory for clean renewable energy utilization technology, Ministry of Agriculture), Beijing 100083, People's Republic of China
| | - Xin Li
- College of Engineering, China Agricultural University (Key laboratory for clean renewable energy utilization technology, Ministry of Agriculture), Beijing 100083, People's Republic of China.
| |
Collapse
|
10
|
Liu L, Yun S, Ke T, Wang K, An J, Liu J. Dual utilization of aloe peel: Aloe peel-derived carbon quantum dots enhanced anaerobic co-digestion of aloe peel. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 159:163-173. [PMID: 36764241 DOI: 10.1016/j.wasman.2023.01.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Carbon materials have been widely used in anaerobic digestion (AD), but the role of zero-dimensional carbon quantum dots (CQDs) in anaerobic co-digestion (AcoD) has not yet been reported. In this work, the effect of aloe peel-derived CQDs (AP-CQDs) on the AcoD system of aloe peel and dairy manure was investigated. The addition of AP-CQDs accelerants increased the cumulative CH4 yield from 201.14 to 266.92-339.64 mL/g VS and increased total chemical oxygen demand removal efficiency from 34.72 % to 48.77-57.87 %. The use of a digestate with 0.36 wt.% of AP-CQDs resulted in a thermogravimetric mass loss of 47.15 % and a promising total nutrient content of 46.65 g/kg. The excellent electron exchange capacity of AP-CQDs may facilitate direct interspecies electron transfer during the AD process. Moreover, the use of AP-CQDs can enrich methanogenic microorganisms (Methanosarcina and Methanobacterium). These findings provide a viable strategy for improving methane production and create awareness regarding the dual use of biomass waste.
Collapse
Affiliation(s)
- Lijianan Liu
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China; Qinghai Building and Materials Research Academy Co., Ltd, the Key Lab of Plateau Building and Eco-community in Qinghai, Xining, Qinghai 810000, China.
| | - Teng Ke
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Kaijun Wang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Jinhang An
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Jiayu Liu
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| |
Collapse
|
11
|
An J, Yun S, Wang W, Wang K, Ke T, Liu J, Liu L, Gao Y, Zhang X. Enhanced methane production in anaerobic co-digestion systems with modified black phosphorus. BIORESOURCE TECHNOLOGY 2023; 368:128311. [PMID: 36370940 DOI: 10.1016/j.biortech.2022.128311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Black phosphorus (BP) and BP modified by hydrogen peroxide (MBP) were used as accelerants to enhance CH4 production and CO2 reduction in microbial electrolysis cells (MECs) coupled with anaerobic co-digestion systems (MEC-AcoD). The MEC-AcoD group with a voltage of 0.6 V and 0.03 wt.% of MBP accelerant (MEC0.6MBP0.03) had the largest CH4 yield (242.1 mL/g VS) and the smallest carbon dioxide yield (97.6 mL/g VS) compared with the control group (141.2 mL/g VS, 146.9 mL/g VS). The digestates that used MEC0.6MBP0.03 exhibited superior thermal stability (46.2 %) and total nutrient contents (44.5 g/kg). These improvements may be attributed to the superior electron exchange capacity and physicochemical properties of MBP. Herein, we propose a strategy to understand enhanced CH4 production and CO2 reduction in anaerobic co-digestion and MEC-AcoD systems using MBP accelerants. Notably, combining MBP and MEC could effectively promote anaerobic co-digestion performance.
Collapse
Affiliation(s)
- Jinhang An
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China; Qinghai Building and Materials Research Academy Co., Ltd, The Key Lab of Plateau Building and Eco-community in Qinghai, Xining, Qinghai 810000, China.
| | - Wei Wang
- School of Metallurgy Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaijun Wang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Teng Ke
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Jiayu Liu
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Lijianan Liu
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Yangyang Gao
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Xiaoxue Zhang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| |
Collapse
|
12
|
Aliyah, Nasution MAF, Ayudia Putri YMT, Gunlazuardi J, Ivandini TA. Modification of carbon foam with 4-mercaptobenzoic acid functionalised gold nanoparticles for an application in a yeast-based microbial fuel cell. RSC Adv 2022; 12:28647-28657. [PMID: 36320496 PMCID: PMC9540246 DOI: 10.1039/d2ra05100a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/30/2022] [Indexed: 02/24/2023] Open
Abstract
Modification of carbon foam with gold nanoparticles (AuNPs) was successfully performed through a hydrothermal method. The modified AuNPs were functionalised with 4-mercaptobenzoic acid (MBA) to improve their affinity toward microorganisms. TEM and SEM characterization indicated that although polydisperse spherical nanoparticles of AuNPs with particle sizes around 17 nm were obtained, the attached nanoparticles were agglomerated to be around 0.4 to 1.5 μm in size on the carbon foam surface. The electrochemical studies using cyclic voltammetry technique affirmed that the modified carbon foam electrodes have electroactive properties against glucose. Evaluation of the electrode was performed for a microbial fuel cell using Candida fukuyamaensis yeast as the microorganisms. The polarization curves showed that functionalisation of AuNPs-modified carbon foam with MBA provides around three times higher current density (1226.93 mA m-2) and power density (330.61 mW m-2) compared to the unmodified one. This result indicated that the modification is suitable to improve yeast attachment on the electrode surface.
Collapse
Affiliation(s)
- Aliyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Kampus UI Depok Depok 16424 Indonesia
| | | | - Yulia Mariana Tesa Ayudia Putri
- Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Kampus UI Depok Depok 16424 Indonesia
| | - Jarnuzi Gunlazuardi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Kampus UI Depok Depok 16424 Indonesia
| | - Tribidasari Anggraningrum Ivandini
- Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Kampus UI Depok Depok 16424 Indonesia
| |
Collapse
|
13
|
Zhuravleva EA, Shekhurdina SV, Kotova IB, Loiko NG, Popova NM, Kryukov E, Kovalev AA, Kovalev DA, Litti YV. Effects of various materials used to promote the direct interspecies electron transfer on anaerobic digestion of low-concentration swine manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156073. [PMID: 35618137 DOI: 10.1016/j.scitotenv.2022.156073] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 05/23/2023]
Abstract
The activation of direct interspecies electron transfer (DIET) by the supplementation of conductive materials is one of the effective and available methods to enhance anaerobic digestion (AD). Microorganisms that colonize the surface of these materials form biofilms, the study of which could provide new insights into the character of the DIET process and its effect on AD. The present study focused on AD performance, microbial community, as well as morphological and topological features of biofilms on various materials used to promote DIET during AD of low-concentration swine manure. The best AD characteristics were observed in stainless steel mesh (SM)/digested cow manure (CM) and polyester felt (PF)/digested sewage sludge (SS) combinations used as material/inoculum, respectively. Thus, potential methane yields in CM-SM and SS-PF were up to 26.4% and 26.2% higher compared to the corresponding controls. Microbial analysis of biofilms revealed the dominance of putatively syntrophic bacteria of the MBA03 group of the Limnochordia class in CM inoculated reactors, and syntrophic proteolytic bacteria of the genus Coprothermobacter and acetogenic Clostridium sensu stricto 1, known for their ability to carry out DIET, in SS inoculated reactors. Biofilms on non-conductive materials contained pili-like structures, which were observed only in SS inoculated reactors. Polyester felt tended to biofoul better than carbon felt, resulting in up to 2.8, 3.2 and 1.8 higher nucleic acid, extracellular polymeric substances, and total biomass content, respectively, depending on the inoculum. These results provide new insights into the different types of DIET that can occur in low-loaded AD systems with attached growth.
Collapse
Affiliation(s)
- Elena A Zhuravleva
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312 Moscow, Russia; Department of Biology, Lomonosov Moscow State University, Vorob'jovy gory, 119899 Moscow, Russia
| | - Svetlana V Shekhurdina
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312 Moscow, Russia; Department of Biology, Lomonosov Moscow State University, Vorob'jovy gory, 119899 Moscow, Russia
| | - Irina B Kotova
- Department of Biology, Lomonosov Moscow State University, Vorob'jovy gory, 119899 Moscow, Russia
| | - Natalia G Loiko
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312 Moscow, Russia
| | - Nadezhda M Popova
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 31, bld.4, Leninsky prospect, 119071 Moscow, Russia
| | - Emil Kryukov
- Department of Physiology and Pharmacology, Karolinska Institute, 17165 Stockholm, Sweden; International School 'Future Medicine', IM Sechenov First Moscow State Medical University, 8-2 Trubetskaya str., 119435 Moscow, Russia
| | - Andrey A Kovalev
- Federal Scientific Agroengineering Center VIM, 1st Institutsky proezd, 5, 109428 Moscow, Russia
| | - Dmitriy A Kovalev
- Federal Scientific Agroengineering Center VIM, 1st Institutsky proezd, 5, 109428 Moscow, Russia
| | - Yuriy V Litti
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312 Moscow, Russia.
| |
Collapse
|
14
|
Gatidou G, Samanides CG, Fountoulakis MS, Vyrides I. Microbial electrolysis cell coupled with anaerobic granular sludge: A novel technology for real bilge water treatment. CHEMOSPHERE 2022; 296:133988. [PMID: 35181427 DOI: 10.1016/j.chemosphere.2022.133988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
In the current study, treatment of undiluted real bilge water (BW) and the production of methane was examined for the first time using a membraneless single chamber Microbial Electrolysis Cell (MEC) with Anaerobic Granular Sludge (AGS) for its biodegradation. Initially, Anaerobic Toxicity Assays (ATAs) were used to evaluate the effect of undiluted real BW on the methanogenic activity of AGS. According to the results, BW shown higher impact to acetoclastics compared to hydrogenotrophic methanogens which proved to be more tolerant. However, dilution of BW caused lower inhibition allowing BW biodegradation. Maximum methane production (142.2 ± 4.8 mL) was observed at 50% of BW. Operation of MEC coupled with AGS, seemed to be very promising technology for BW treatment. During 80 days of operation in increasing levels of BW, R2 (1 V) reactor resulted in better performance than AGS alone. Exposure of AGS to gradual increase of BW content revealed that CH4 production was possible and reached 51% in five days even after feeding with 90% of BW using simple commercial iron electrodes. Successful chemical oxygen demand (sCOD) removal (up to 70%) was observed after gradual biomass acclimatization. Among the different monitored volatile fatty acids (VFAs), acetic and valeric acids were the most frequently detected compounds with concentrations up to 2.79 and 1.81 g L-1, respectively. The recalcitrant nature of BW did not allow the MEC-AD (anaerobic digester) to balance the consumed energy. Microbial profile analysis confirmed the existence of several methanogenic microorganisms of which Desulfovibrio and Methanobacterium presented significantly higher abundance in the cathodes compared to anodes and AGS.
Collapse
Affiliation(s)
- Georgia Gatidou
- Laboratory of Environmental Engineering, Department of Chemical Engineering, Cyprus University of Technology, Anexartisias 57 Str, Lemesos, 3603, Cyprus.
| | - Charis G Samanides
- Laboratory of Environmental Engineering, Department of Chemical Engineering, Cyprus University of Technology, Anexartisias 57 Str, Lemesos, 3603, Cyprus
| | - Michalis S Fountoulakis
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, University Hill, 81100, Mytilene, Greece
| | - Ioannis Vyrides
- Laboratory of Environmental Engineering, Department of Chemical Engineering, Cyprus University of Technology, Anexartisias 57 Str, Lemesos, 3603, Cyprus
| |
Collapse
|
15
|
Zilio M, Pigoli A, Rizzi B, Herrera A, Tambone F, Geromel G, Meers E, Schoumans O, Giordano A, Adani F. Using highly stabilized digestate and digestate-derived ammonium sulphate to replace synthetic fertilizers: The effects on soil, environment, and crop production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152919. [PMID: 34998783 DOI: 10.1016/j.scitotenv.2022.152919] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/01/2022] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Recovered fertilizers (a highly stabilized digestate and ammonium sulphate) obtained from anaerobic digestion of sewage sludge, were used on plot trials with a maize crop, in a comparison with synthetic fertilizers. After three consecutive cropping seasons, the soils fertilized with the recovered fertilizers (RF), compared to those fertilized with synthetic fertilizers (SF), did not show significant differences either in their chemical characteristics or in the accumulation of inorganic and organic pollutants (POPs). The RF ensured an ammonia N availability in the soil equal to that of the soil fertilized with SF, during the whole period of the experiment. Furthermore, no risks of N leaching were detected, and the use of RF did not result in a greater emission of ammonia or greenhouse gases than the use of SF. The agronomic results obtained using RF were equivalent to those obtained with SF (fertilizer use efficiency of 85.3 ± 10 and 93.6 ± 4.4% for RF and SF respectively). The data show that utilising a very stable digestate can be a good strategy to produce a bio-based fertilizer with similar performance to that of a synthetic fertilizer, without environmental risks.
Collapse
Affiliation(s)
- Massimo Zilio
- Gruppo Ricicla labs, DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy.
| | - Ambrogio Pigoli
- Gruppo Ricicla labs, DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Bruno Rizzi
- Gruppo Ricicla labs, DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Axel Herrera
- Gruppo Ricicla labs, DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Fulvia Tambone
- Gruppo Ricicla labs, DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Gabriele Geromel
- Acqua & Sole Srl Via Giulio Natta, 27010 Vellezzo Bellini (PV), Italy
| | - Erik Meers
- Dept. Green Chemistry & Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Oscar Schoumans
- Wageningen Environmental Research, Wageningen University and Research, PO Box 47, 6700AA Wageningen, the Netherlands
| | - Andrea Giordano
- Acqua & Sole Srl Via Giulio Natta, 27010 Vellezzo Bellini (PV), Italy
| | - Fabrizio Adani
- Gruppo Ricicla labs, DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
16
|
Ke T, Yun S, Wang K, An J, Liu L, Liu J. Enhanced anaerobic co-digestion performance by using surface-annealed titanium spheres at different atmospheres. BIORESOURCE TECHNOLOGY 2022; 347:126341. [PMID: 34785328 DOI: 10.1016/j.biortech.2021.126341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
A series of surface-annealed titanium spheres (Ti-A, Ti-B, and Ti-C) in different atmospheres were used as accelerants in anaerobic co-digestion (AcoD) systems under magnetic field (MF). Surface-annealed titanium spheres and MF exhibit remarkable coupling and promoting effects on the AcoD performance. The cumulative biogas yield (435.84-552.60 mL/g VS) and total chemical oxygen demand (COD) degradation efficiency (59.76%-71.28%) of the AcoD systems with TiMF, Ti-AMF, Ti-BMF, and Ti-CMF were significantly higher than control (357.66 mL/g VS and 51.5%). The digestates of the AcoD system with surface-annealed Ti spheres delivered excellent stability (49.83%-59.90%) and fertilizer (4.21%-4.56%). This work clarifies the possible role of surface-annealed Ti spheres in enhancing methanogenesis.
Collapse
Affiliation(s)
- Teng Ke
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China; Qinghai Building and Materials Research Academy Co., Ltd, The Key Lab of Plateau Building and Eco-community in Qinghai, Xining, Qinghai 810000, China.
| | - Kaijun Wang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Jinhang An
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Lijianan Liu
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Jiayu Liu
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| |
Collapse
|
17
|
Carbon nanomaterials for highly stable Zn anode: Recent progress and future outlook. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|