1
|
Zhang ZH, Zheng JW, Liu SF, Hao TB, Yang WD, Li HY, Wang X. Impact of butylparaben on growth dynamics and microcystin-LR production in Microcystis aeruginosa. ENVIRONMENTAL RESEARCH 2024; 257:119291. [PMID: 38823607 DOI: 10.1016/j.envres.2024.119291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
The presence of butylparaben (BP), a prevalent pharmaceutical and personal care product, in surface waters has raised concerns regarding its impact on aquatic ecosystems. Despite its frequent detection, the toxicity of BP to the cyanobacterium Microcystis aeruginosa remains poorly understood. This study investigates the influence of BP on the growth and physiological responses of M. aeruginosa. Results indicate that low concentrations of BP (below 2.5 mg/L) have negligible effects on M. aeruginosa growth, whereas higher concentrations (5 mg/L and 10 mg/L) lead to significant growth inhibition. This inhibition is attributed to the severe disruption of photosynthesis, evidenced by decreased Fv/Fm values and chlorophyll a content. BP exposure also triggers the production of reactive oxygen species (ROS), resulting in elevated activity of antioxidant enzymes. Excessive ROS generation stimulates the production of microcystin-LR (MC-LR). Furthermore, lipid peroxidation and cell membrane damage indicate that high BP concentrations cause cell membrane rupture, facilitating the release of MC-LR into the environment. Transcriptome analysis reveals that BP disrupts energy metabolic processes, particularly affecting genes associated with photosynthesis, carbon fixation, electron transport, glycolysis, and the tricarboxylic acid cycle. These findings underscore the profound physiological impact of BP on M. aeruginosa and highlight its role in stimulating the production and release of MC-LR, thereby amplifying environmental risks in aquatic systems.
Collapse
Affiliation(s)
- Zhong-Hong Zhang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jian-Wei Zheng
- College of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Si-Fen Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ting-Bin Hao
- College of Synthetic Biology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Wang X, He GH, Wang ZY, Xu HY, Mou JH, Qin ZH, Lin CSK, Yang WD, Zhang Y, Li HY. Purple acid phosphatase promoted hydrolysis of organophosphate pesticides in microalgae. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 18:100318. [PMID: 37860829 PMCID: PMC10582367 DOI: 10.1016/j.ese.2023.100318] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 10/21/2023]
Abstract
When organophosphate pesticides (OPs) are not used and handled in accordance with the current rules and standards, it results in serious threats to the aquatic environment and human health. Phaeodactylum tricornutum is a prospective microalgae-based system for pollutant removal and carbon sequestration. Genetically engineered P. tricornutum, designated as the OE line (endogenously expressing purple acid phosphatase 1 [PAP1]), can utilize organic phosphorus for cellular metabolism. However, the competencies and mechanisms of the microalgae-based system (namely the OE line of P. tricornutum) for metabolizing OPs remain to be addressed. In this study, the OE line exhibited the effective biodegradation competencies of 72.12% and 68.2% for 30 mg L-1 of dichlorvos and 50 mg L-1 of glyphosate, accompanied by synergistic accumulations of biomass (0.91 and 0.95 g L-1) and lipids (32.71% and 32.08%), respectively. Furthermore, the biodiesel properties of the lipids from the OE line manifested a high potential as an alternative feedstock for microalgae-based biofuel production. A plausible mechanism of OPs biodegraded by overexpressed PAP1 is that sufficient inorganic P for adenosine triphosphate and concurrent carbon flux for the reduced form of nicotinamide adenine dinucleotide phosphate biosynthesis, which improved the OP tolerance and biodegradation competencies by regulating the antioxidant system, delaying programmed cell death and accumulating lipids via the upregulation of related genes. To sum up, this study demonstrates a potential strategy using a genetically engineered strain of P. tricornutum to remove high concentrations of OPs with the simultaneous production of biomass and biofuels, which might provide novel insights for microalgae-based pollutant biodegradation.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Guo-Hui He
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zhen-Yao Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Hui-Ying Xu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jin-Hua Mou
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510000, China
| | - Zi-Hao Qin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510000, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
3
|
Liu J, Wang Z, Zhao C, Lu B, Zhao Y. Phytohormone gibberellins treatment enhances multiple antibiotics removal efficiency of different bacteria-microalgae-fungi symbionts. BIORESOURCE TECHNOLOGY 2024; 394:130182. [PMID: 38081467 DOI: 10.1016/j.biortech.2023.130182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 02/04/2024]
Abstract
To develop and characterize novel antibiotics removal biomaterial technology, we constructed three different bacteria-microalgae-fungi consortiums containing Chlorella vulgaris (C. vulgaris), endophytic bacterium, Clonostachys rosea (C. rosea), Ganoderma lucidum, and Pleurotus pulmonarius. The results showed that under treatment with 50 mg/L of gibberellins (GAs), the three bacteria-microalgae-fungi symbionts had maximal growth rates (0.317 ± 0.030 d-1) and the highest removal efficiency for seven different antibiotics. Among them, C. vulgaris-endophytic bacterium-C. rosea symbiont had the best performance, with antibiotics removal efficiencies of 96.0 ± 1.4 %, 91.1 ± 7.9 %, 48.7 ± 5.1 %, 34.6 ± 2.9 %, 61.0 ± 5.5 %, 63.7 ± 5.6 %, and 54.3 ± 4.9 % for tetracycline hydrochloride, oxytetracycline hydrochloride, ciprofloxacin, norfloxacin, sulfadiazine, sulfamethazine, and sulfamethoxazole, respectively. Overall, the present study demonstrates that 50 mg/L GAs enhances biomass production and antibiotics removal efficiency of bacteria-microalgae-fungi symbionts, providing a framework for future antibiotics-containing wastewater treatment using three-phase symbionts.
Collapse
Affiliation(s)
- Jun Liu
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhengfang Wang
- Suzhou Institute of Trade & Commerce, Suzhou 215009, China
| | - Chunzhi Zhao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201400, China
| | - Bei Lu
- School of Ecological Technology & Engineering, Shanghai Institute of Technology, Shanghai 201400, China
| | - Yongjun Zhao
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
4
|
Ochatt SJ. Less Frequently Used Growth Regulators in Plant Tissue Culture. Methods Mol Biol 2024; 2827:109-143. [PMID: 38985266 DOI: 10.1007/978-1-0716-3954-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Plant growth regulators are routinely added to in vitro culture media to foster the growth and differentiation of the cells, tissues, and organs. However, while the literature on usage of the more common auxins, cytokinins, gibberellins, abscisic acid, and ethylene is vast, other compounds that also have shown a growth-regulating activity have not been studied as frequently. Such substances are also capable of modulating the responses of plant cells and tissues in vitro by regulating their growth, differentiation, and regeneration competence, but also by enhancing their responses toward biotic and abiotic stress agents and improving the production of secondary metabolites of interest. This chapter will discuss the in vitro effects of several of such less frequently added plant growth regulators, including brassinosteroids (BRS), strigolactones (SLs), phytosulfokines (PSKs), methyl jasmonate, salicylic acid (SA), sodium nitroprusside (SNP), hydrogen sulfite, various plant growth retardants and inhibitors (e.g., ancymidol, uniconazole, flurprimidol, paclobutrazol), and polyamines.
Collapse
Affiliation(s)
- Sergio J Ochatt
- Agroécologie, InstitutAgro Dijon, INRAE, Université de Bourgogne, Université de Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
5
|
Shu L, Li J, Xu J, Zheng Z. Nutrient removal and biogas upgrade using co-cultivation of Chlorella vulgaris and three different bacteria under various GR24 concentrations by induction with 5-deoxystrigol. World J Microbiol Biotechnol 2023; 39:245. [PMID: 37420159 DOI: 10.1007/s11274-023-03647-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/14/2023] [Indexed: 07/09/2023]
Abstract
Algae symbiosis technology shows great potential in the synchronous treatment of biogas slurry and biogas, which has promising applications. For improving nutrients and CO2 removal rates, the present work constructed four microalgal systems: Chlorella vulgaris (C. vulgaris) monoculture, C. vulgaris-Bacillus licheniformis (B. licheniformis), C. vulgaris-activated sludge, and C. vulgaris-endophytic bacteria (S395-2) to simultaneously treat biogas as well as biogas slurry under GR24 and 5DS induction. Our results showed that the C. vulgaris-endophytic bacteria (S395-2) showed optimal growth performance along with photosynthetic activity under the introduction of GR24 (10-9 M). Under optimal conditions, CO2 removal efficiency form biogas, together with chemical oxygen demand, total phosphorus and total nitrogen removal efficiencies from biogas slurry reached 67.25 ± 6.71%, 81.75 ± 7.93%, 83.19 ± 8.32%, and 85.17 ± 8.26%, respectively. The addition of symbiotic bacteria isolated from microalgae can promote the growth of C. vulgaris, and the exogenous addition of GR24 and 5DS can strengthen the purification performance of the algae symbiosis to achieve the maximum removal of conventional pollutants and CO2.
Collapse
Affiliation(s)
- Lixing Shu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, People's Republic of China
| | - Junfeng Li
- School of Advanced Materials and Engineering, Jiaxing Nanhu University, Jiaxing, 314001, People's Republic of China
- Jiaxing Key Laboratory of Preparation and Application of Advanced Materials for Energy Conservation and Emission Reduction, Jiaxing, 314001, People's Republic of China
| | - Jun Xu
- School of Advanced Materials and Engineering, Jiaxing Nanhu University, Jiaxing, 314001, People's Republic of China
- Jiaxing Key Laboratory of Preparation and Application of Advanced Materials for Energy Conservation and Emission Reduction, Jiaxing, 314001, People's Republic of China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
6
|
Xu P, Li J, Qian J, Wang B, Liu J, Xu R, Chen P, Zhou W. Recent advances in CO 2 fixation by microalgae and its potential contribution to carbon neutrality. CHEMOSPHERE 2023; 319:137987. [PMID: 36720412 DOI: 10.1016/j.chemosphere.2023.137987] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Many countries and regions have set their schedules to achieve the carbon neutrality between 2030 and 2070. Microalgae are capable of efficiently fixing CO2 and simultaneously producing biomass for multiple applications, which is considered one of the most promising pathways for carbon capture and utilization. This work reviews the current research on microalgae CO2 fixation technologies and the challenges faced by the related industries and government agencies. The technoeconomic analysis indicates that cultivation is the major cost factor. Use of waste resources such as wastewater and flue gas can significantly reduce the costs and carbon footprints. The life cycle assessment has identified fossil-based electricity use as the major contributor to the global warming potential of microalgae-based CO2 fixation approach. Substantial efforts and investments are needed to identify and bridge the gaps among the microalgae strain development, cultivation conditions and systems, and use of renewable resources and energy.
Collapse
Affiliation(s)
- Peilun Xu
- School of Resources and Environment, And Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Jun Li
- School of Resources and Environment, And Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Jun Qian
- School of Resources and Environment, And Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Bang Wang
- School of Resources and Environment, And Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Jin Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Rui Xu
- Jiangxi Ganneng Co., Ltd., Nanchang, 330096, China
| | - Paul Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN, 55108, USA.
| | - Wenguang Zhou
- School of Resources and Environment, And Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
7
|
Wei J, Wang Z, Zhao C, Sun S, Xu J, Zhao Y. Effect of GR24 concentrations on tetracycline and nutrient removal from biogas slurry by different microalgae-based technologies. BIORESOURCE TECHNOLOGY 2023; 369:128400. [PMID: 36442601 DOI: 10.1016/j.biortech.2022.128400] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
A biogas slurry composed of carbon, nitrogen, phosphorus, and antibiotics was generated. Investigations into the nutrient and tetracycline removal performance of four microalgae-based contaminant removal technologies, including Chlorella vulgaris, C. vulgaris co-cultured with endophytic bacteria, C. vulgaris co-cultured with Ganoderma lucidum, and C. vulgaris co-cultured with G. lucidum and endophytic bacteria, were conducted. The algal-bacterial-fungal consortium with 10-9 M strigolactone (GR24) yielded the maximum growth rate and average daily yield for algae at 0.325 ± 0.03 d-1 and 0.192 ± 0.02 g L-1 d-1, respectively. The highest nutrient/ tetracycline removal efficiencies were 83.28 ± 7.95 % for chemical oxygen demand (COD), 82.62 ± 7.97 % for total nitrogen (TN), 85.15 ± 8.26 % for total phosphorus (TP) and 83.92 ± 7.65 % for tetracycline. Adding an algal-bacterial-fungal consortium with an optimal synthetic analog GR24 concentration is seemingly an encouraging strategy for enhancing pollutant removal by algae, possibly overcoming the challenges of eutrophication and antibiotic pollution.
Collapse
Affiliation(s)
- Jing Wei
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, PR China
| | - Zhengfang Wang
- Suzhou Institute of Trade & Commerce, Suzhou 215000, PR China
| | - Chunzhi Zhao
- School of Ecological Technology & Engineering, Shanghai Institute of Technology, Shanghai 201400, PR China
| | - Shiqing Sun
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, PR China
| | - Jie Xu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Yongjun Zhao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China.
| |
Collapse
|
8
|
Algal-fungal interactions and biomass production in wastewater treatment: Current status and future perspectives. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
9
|
Wang H, Wu B, Jiang N, Liu J, Zhao Y, Xu J, Wang H. The effects of influent chemical oxygen demand and strigolactone analog concentration on integral biogas upgrading and pollutants removal from piggery wastewater by different microalgae-based technologies. BIORESOURCE TECHNOLOGY 2023; 370:128483. [PMID: 36513303 DOI: 10.1016/j.biortech.2022.128483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Microalgae-based technologies are promising strategies for efficient wastewater treatment and biogas upgrading. In this study, three types of microalga-fungi/bacteria symbiotic systems stimulated with the strigolactone analog (GR24) were used to simultaneously remove nutrients from treated piggery wastewater and CO2 from biogas. The effects of initial concentrations of chemical oxygen demand (COD) and GR24 on nutrient removal and biogas upgrading were investigated. When the initial COD concentration was 1200 mg/L, the Chlorella vulgaris-Ganoderma lucidum-endophytic bacteria co-cultivation systems achieved the best photosynthetic performance and microalgae growth. Moreover, under the appropriate COD concentration (1200 mg/L), the highest nutrient/CO2 removal efficiencies were obtained. In addition, 10-9 M GR24 significantly accelerated nutrient/CO2 removal efficiencies. These findings provide a theoretical basis for scale-up experiments using microalgae-based technologies.
Collapse
Affiliation(s)
- Heyuan Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Bing Wu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130000, China
| | - Nan Jiang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130000, China
| | - Jinhua Liu
- Changchun Customs Technology Center, Changchun 130062, China
| | - Yongjun Zhao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Jie Xu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Haotian Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
10
|
Xu B, Zhao Y, Zhao C, Wei J. Effect of different CO 2 concentrations on biogas upgrading and nutrient removal by microalgae-fungi co-culture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:91345-91355. [PMID: 35896875 DOI: 10.1007/s11356-022-22165-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Owing to the high carbon dioxide (CO2)-fixation efficiency, microalgae-based technology has been widely used for biogas purification. The present study explored the effect of CO2 concentration on biogas purification by an algal-fungal-bacterial symbiotic system. Two algal-fungal-bacterial symbiotic systems were cultivated to purify four simulated biogas samples with different CO2 concentrations. The results showed that GR24, a synthetic analog of strigolactone, stimulated the growth of the algal-fungal-bacterial symbiotic system. The optimal CO2 concentration for the purification of the simulated biogas was 45% (V/V), and the optimal symbiotic system was Chlorella vulgaris-Ganoderma lucidum-endophytic bacteria-GR24. The maximum chemical oxygen demand (COD; 82.61 ± 7.73%), total nitrogen (TN; 81.36 ± 7.97%), total phosphorus (TP; 85.69 ± 8.19), and CO2 (69.23 ± 6.56%) removal efficiencies were detected with the addition of 10-9 M GR24 to the C. vulgaris-G. lucidum-endophytic bacterial symbiotic system. These findings confirmed the effect of CO2 concentration on the purification of biogas by the algal-bacterial symbiotic system. The study provides a theoretical basis for further research on the treatment of wastewater and biogas.
Collapse
Affiliation(s)
- Bing Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Yongjun Zhao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Chunzhi Zhao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 200235, People's Republic of China
| | - Jing Wei
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, 314001, People's Republic of China.
| |
Collapse
|
11
|
Yang M, Dong X, Zhu Y, Song J, Wei J, Wu Z, Zhao Y. Effect of different mixed light-emitting diode light wavelengths on CO 2 absorption from biogas and nutrient removal from biogas slurry by microalgae and fungi induced using strigolactone and endophytic bacteria. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10812. [PMID: 36433882 DOI: 10.1002/wer.10812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/22/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
In this study, biogas and biogas slurry were simultaneously treated using two symbiotic systems: Chlorella vulgaris-Ganoderma lucidum-S395-2 (endophytic bacteria) and Scenedesmus obliquus-G. lucidum-S395-2. The influence of different mixed illumination (red and blue) intensity ratios on the algal symbionts' extracellular carbonic anhydrase activities was investigated, as well as the rates of microalgal growth and photosynthesis. The treatment performance was simultaneously assessed in terms of the efficiency of organic matter or nutrient removal and the level of CO2 absorption. The results indicated that red-blue light combinations with an intensity ratio of 5:5 were optimal. When comparing the performance of the two symbiotic systems, the C. vulgaris-G. lucidum-S395-2 symbiont co-culture system achieved significantly improved photosynthetic rates, biomass growth, and treatment effects. Under the optimal treatment conditions, the organic matter and nutrient removal rates were 81.06% ± 7.06% for chemical oxygen demand, 82.32% ± 7.18% for total nitrogen, and 82.98% ± 7.26% for total phosphorus. In addition, the rate of CO2 removal from biogas was 63.38% ± 5.35%. PRACTITIONER POINTS: The red and blue light intensity ratio of 5:5 showed the best removal performance. C. vulgaris-G. lucidum-S395-2 system obtained the best photosynthetic performance. The carbonic anhydrase activity had positive effects on CO2 removal performance.
Collapse
Affiliation(s)
- Meiying Yang
- College of life sciences, Jilin Agricultural University, Changchun, China
| | - Xuechang Dong
- College of life sciences, Jilin Agricultural University, Changchun, China
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Yuan Zhu
- College of life sciences, Jilin Agricultural University, Changchun, China
| | - Jian Song
- College of life sciences, Jilin Agricultural University, Changchun, China
| | - Jing Wei
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, China
| | - Zhihai Wu
- College of agronomy, Jilin Agricultural University, Changchun, China
| | - Yongjun Zhao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| |
Collapse
|
12
|
Lastochkina O, Aliniaeifard S, SeifiKalhor M, Bosacchi M, Maslennikova D, Lubyanova A. Novel Approaches for Sustainable Horticultural Crop Production: Advances and Prospects. HORTICULTURAE 2022; 8:910. [DOI: 10.3390/horticulturae8100910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Reduction of plant growth, yield and quality due to diverse environmental constrains along with climate change significantly limit the sustainable production of horticultural crops. In this review, we highlight the prospective impacts that are positive challenges for the application of beneficial microbial endophytes, nanomaterials (NMs), exogenous phytohormones strigolactones (SLs) and new breeding techniques (CRISPR), as well as controlled environment horticulture (CEH) using artificial light in sustainable production of horticultural crops. The benefits of such applications are often evaluated by measuring their impact on the metabolic, morphological and biochemical parameters of a variety of cultures, which typically results in higher yields with efficient use of resources when applied in greenhouse or field conditions. Endophytic microbes that promote plant growth play a key role in the adapting of plants to habitat, thereby improving their yield and prolonging their protection from biotic and abiotic stresses. Focusing on quality control, we considered the effects of the applications of microbial endophytes, a novel class of phytohormones SLs, as well as NMs and CEH using artificial light on horticultural commodities. In addition, the genomic editing of plants using CRISPR, including its role in modulating gene expression/transcription factors in improving crop production and tolerance, was also reviewed.
Collapse
Affiliation(s)
- Oksana Lastochkina
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre RAS, 450054 Ufa, Russia
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Tehran 33916-53755, Iran
| | | | | | - Dilara Maslennikova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre RAS, 450054 Ufa, Russia
| | - Alsu Lubyanova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre RAS, 450054 Ufa, Russia
| |
Collapse
|
13
|
Wang Y, Li J, Lei Y, Cui R, Liang A, Li X, Kit Leong Y, Chang JS. Enhanced sulfonamides removal via microalgae-bacteria consortium via co-substrate supplementation. BIORESOURCE TECHNOLOGY 2022; 358:127431. [PMID: 35671911 DOI: 10.1016/j.biortech.2022.127431] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Both co-cultivation and co-substrate addition strategies have exhibited massive potential in microalgae-based antibiotic bioremediation. In this study, glucose and sodium acetate were employed as co-substrate in the cultivation of microalgae-bacteria consortium for enhanced sulfadiazine (SDZ) and sulfamethoxazole (SMX) removal. Glucose demonstrated a two-fold increase in biomass production with a maximum specific growth rate of 0.63 ± 0.01 d-1 compared with sodium acetate. The supplementation of co-substrate enhanced the degradation of SDZ significantly up to 703 ± 18% for sodium acetate and 290 ± 22% for glucose, but had almost no effect on SMX. The activities of antioxidant enzymes, including peroxidase, superoxide dismutase and catalase decreased with co-substrate supplementation. Chlorophyll a was associated with protection against sulfonamides and chlorophyll b might contribute to SDZ degradation. The addition of co-substrates influenced bacterial community structure greatly. Glucose enhanced the relative abundance of Proteobacteria, while sodium acetate improved the relative abundance of Bacteroidetes significantly.
Collapse
Affiliation(s)
- Yue Wang
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Jinghua Li
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Yao Lei
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Rong Cui
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Aiping Liang
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Xiaoqiang Li
- School of Materials and Environmental Engineering, Yantai University, Yantai, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|
14
|
Effect of different microalga-based technologies on biogas upgrading and nutrient removal by induction with strigolactone and endophytic bacteria. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Popa DG, Lupu C, Constantinescu-Aruxandei D, Oancea F. Humic Substances as Microalgal Biostimulants—Implications for Microalgal Biotechnology. Mar Drugs 2022; 20:md20050327. [PMID: 35621978 PMCID: PMC9143693 DOI: 10.3390/md20050327] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Humic substances (HS) act as biostimulants for terrestrial photosynthetic organisms. Their effects on plants are related to specific HS features: pH and redox buffering activities, (pseudo)emulsifying and surfactant characteristics, capacity to bind metallic ions and to encapsulate labile hydrophobic molecules, ability to adsorb to the wall structures of cells. The specific properties of HS result from the complexity of their supramolecular structure. This structure is more dynamic in aqueous solutions/suspensions than in soil, which enhances the specific characteristics of HS. Therefore, HS effects on microalgae are more pronounced than on terrestrial plants. The reported HS effects on microalgae include increased ionic nutrient availability, improved protection against abiotic stress, including against various chemical pollutants and ionic species of potentially toxic elements, higher accumulation of value-added ingredients, and enhanced bio-flocculation. These HS effects are similar to those on terrestrial plants and could be considered microalgal biostimulant effects. Such biostimulant effects are underutilized in current microalgal biotechnology. This review presents knowledge related to interactions between microalgae and humic substances and analyzes the potential of HS to enhance the productivity and profitability of microalgal biotechnology.
Collapse
Affiliation(s)
- Daria Gabriela Popa
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv, No. 59, Sector 1, 011464 Bucharest, Romania;
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
| | - Carmen Lupu
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
| | - Diana Constantinescu-Aruxandei
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
- Correspondence: (D.C.-A.); (F.O.)
| | - Florin Oancea
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Mărăști Blv, No. 59, Sector 1, 011464 Bucharest, Romania;
- Bioproducts Team, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independenței No. 202, Sector 6, 060021 Bucharest, Romania;
- Correspondence: (D.C.-A.); (F.O.)
| |
Collapse
|
16
|
Liu X, Yu X, He A, Xia J, He J, Deng Y, Xu N, Qiu Z, Wang X, Zhao P. One-pot fermentation for erythritol production from distillers grains by the co-cultivation of Yarrowia lipolytica and Trichoderma reesei. BIORESOURCE TECHNOLOGY 2022; 351:127053. [PMID: 35337991 DOI: 10.1016/j.biortech.2022.127053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
A co-fermentation process involving Yarrowia lipolytica and Trichoderma reesei was studied, using distillers grains (DGS) as feedstocks for erythritol production. DGS can be effectively hydrolyzed by cellulase in the single-strain culture of T. reesei. One-pot solid state fermentation for erythritol production was then established by co-cultivating Y. lipolytica M53-S with the 12 h delay inoculated T. reesei Rut C-30, in which efficient saccharification of DGS and improved production of erythritol were simultaneously achieved. The 10:1 inoculation proportion of Y. lipolytica and T. reesei contributed to the maximum erythritol production of 267.1 mg/gds under the optimal conditions including initial moisture of 55%, pH of 5.0, NaCl addition of 0.02 g/gds and DGS mass of 200 g in 144 h co-cultivation. Being compared with the attempts to produce erythritol from other raw materials, the one-pot SSF with DGS is proposed to be a potential strategy for efficient and economical erythritol production.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, PR China.
| | - Xinjun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, PR China
| | - Jun Xia
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, PR China
| | - Jianlong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, PR China
| | - Yuanfang Deng
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, PR China
| | - Ning Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, PR China
| | - Zhongyang Qiu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, PR China
| | - Xiaoyu Wang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, PR China
| | - Pusu Zhao
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, PR China
| |
Collapse
|
17
|
Zhang H, Xu B, Zhao C, Liu J, Zhao Y, Sun S, Wei J. Simultaneous biogas upgrading and biogas slurry treatment by different microalgae-based technologies under various strigolactone analog (GR24) concentrations. BIORESOURCE TECHNOLOGY 2022; 351:127033. [PMID: 35314306 DOI: 10.1016/j.biortech.2022.127033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
In this research, the effects of exogenous strigolactone analog (GR24) on the growth rate, daily productivity and photosynthesis of symbiotes of Chlorella vulgaris (C. vulgaris)-Ganoderma lucidum (G. lucidum)-endophytic bacteria, C. vulgaris-G. lucidum-activated sludge and C. vulgaris-G. lucidum-multi-walled carbon nanotube, and the simultaneous treatment of biogas slurry and biogas were examined. The C. vulgaris-G. lucidum-endophytic bacteria symbiote achieved the best treatment effectiveness for biogas slurry and biogas, with removal efficiencies of chemical oxygen demand, total nitrogen, total phosphorus and CO2 of 81.4 ± 7.6%, 79.6 ± 7.6%, 82.5 ± 8.2%, and 67.3 ± 6.3% under the optimal GR24 concentration of 10-9 M. Moreover, the treatment effects were positively correlated with growth performance and photosynthesis efficiency of the symbiote. These findings advance the development and application of symbiotic systems in the field of wastewater treatment and biogas upgrading.
Collapse
Affiliation(s)
- Hui Zhang
- College of Data Science, Jiaxing University, Jiaxing 314001, PR China
| | - Bing Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Chunzhi Zhao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 200235, PR China
| | - Juan Liu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Yongjun Zhao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China.
| | - Shiqing Sun
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, PR China
| | - Jing Wei
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, PR China
| |
Collapse
|
18
|
Wang X, Mou JH, Qin ZH, Hao TB, Zheng L, Buhagiar J, Liu YH, Balamurugan S, He Y, Lin CSK, Yang WD, Li HY. Supplementation with rac-GR24 Facilitates the Accumulation of Biomass and Astaxanthin in Two Successive Stages of Haematococcus pluvialis Cultivation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4677-4689. [PMID: 35384649 DOI: 10.1021/acs.jafc.2c00479] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The unicellular freshwater green alga Haematococcus pluvialis has attracted much research attention due to its biosynthetic ability for large amounts of astaxanthin, a blood-red ketocarotenoid that is used in cosmetics, nutraceuticals, and pharmaceuticals. Recently, numerous studies have investigated the functions of natural astaxanthin; however, the high cost of the production of astaxanthin from H. pluvialis cultures restricts its commercial viability. There is an urgent need to fulfill commercial demands by increasing astaxanthin accumulation from H. pluvialis cultures. In this study, we discovered that treatment of H. pluvialis cultures at the beginning of the macrozooid stage (day 0) with 1 μM rac-GR24, a synthetic analogue of strigolactones (a class of phytohormones), led to significant increases in biomass [up to a maximum dry cell weight (DCW) of 0.53 g/L] during the macrozooid stage and astaxanthin (from 0.63 to 5.32% of DCW) during the hematocyst stage. We elucidated that this enhancement of biomass accumulation during the macrozooid stage by rac-GR24 is due to its increasing CO2 utilization efficiency in photosynthesis and carbohydrate biosynthesis. We also found that rac-GR24 stimulated the overproduction of nicotinamide adenine dinucleotide phosphate (NADPH) and antioxidant enzymes in H. pluvialis cultures, which alleviated the oxidative damage caused by reactive oxygen species generated during the hematocyst stage due to the exhaustion of nitrogen supplies. Moreover, rac-GR24 treatment of H. pluvialis synergistically altered the activity of the pathways of fatty acid biosynthesis and astaxanthin esterification, which resulted in larger amounts of astaxanthin being generated by rac-GR24-treated cultures than by controls. In summary, we have developed a feasible and economic rac-GR24-assisted strategy that increases the amounts of biomass and astaxanthin generated by H. pluvialis cultures, and have provided novel insights into the mechanistic roles of rac-GR24 to achieve these effects.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Jin-Hua Mou
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Zi-Hao Qin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Ting-Bin Hao
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lan Zheng
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Joseph Buhagiar
- Department of Biology, University of Malta, Msida 2080, Malta
| | - Yu-Hong Liu
- Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | | | - Yuhe He
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
19
|
Dong X, Wei J, Huang J, Zhao C, Sun S, Zhao Y, Liu J. Performance of different microalgae-fungi-bacteria co-culture technologies in photosynthetic and removal performance in response to various GR24 concentrations. BIORESOURCE TECHNOLOGY 2022; 347:126428. [PMID: 34838968 DOI: 10.1016/j.biortech.2021.126428] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
The purification effect of two different microalgae-fungi-bacteria symbiosis technologies on biogas and biogas slurry was studied to determine the best symbiosis treatment technology and the suitable concentration of GR24. The results showed that the purification effect of biogas slurry in Chlorella vulgaris-Ganoderma lucidum-endophytic bacteria (S395-2) symbiont co-culture system was better than that of the biogas slurry in Scenedesmus obliquus-Pleurotus ostreatus-S395-2 symbionts. Following 10-9 M GR24 treatment, Chlorella vulgaris-Ganoderma lucidum-S395-2 symbionts had elevated mean daily production rate and growth rate by 1.92 and 1.46 folds in comparison with blank group. After adjusting the GR24 level within the range of 10-9 M-10-7 M, Ganoderma lucidum-assisted Chlorella vulgaris-S395-2 attained higher maximal removal rates for TN, COD, CO2, and TP by 10.78%, 14.62%, 3.86%, and 9.07%, respectively, compared to the rates when GR24 was not added.
Collapse
Affiliation(s)
- Xuechang Dong
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China; Agronomy College, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Jing Wei
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, PR China
| | - Jing Huang
- College of Data Science, Jiaxing University, Jiaxing 314001, PR China
| | - Chunzhi Zhao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 200235, PR China
| | - Shiqing Sun
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, PR China
| | - Yongjun Zhao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China.
| | - Juan Liu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China
| |
Collapse
|