1
|
Guo L, Guo W, Luan C, Luo X, Yin R, Chen J, Li G, Luo W, Qi C. The effect of auxiliary conditioning on humification of high-solids anaerobic digestion residues in aerobic composting processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125566. [PMID: 40300545 DOI: 10.1016/j.jenvman.2025.125566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/17/2025] [Accepted: 04/25/2025] [Indexed: 05/01/2025]
Abstract
This study investigated the impact of cornstalk, bagasse, and spent mushroom substrate (SMS) as auxiliary materials on the nitrogen cycling and humification during the aerobic composting of high-solids anaerobically digested residues using high-throughput 16S rRNA sequencing and PICRUSt2 functional prediction. Results showed that cornstalk and SMS accelerated compost warming and upregulated the expression of nitrogen-cycling-related genes (e.g. ureC, narH, and narG), thereby significantly reducing (P < 0.05) N2O and NH3 emissions and increasing the NO3--N content in the compost. Furthermore, cornstalk enriched the microbial diversity and abundance of key bacteria involved in degradation and humification (e.g. Sphingobacterium and Moheibacter), which increased the humic acid content (HA) (78.4 g/kg DM). Although bagasse promoted aerobic conditions, it had less effect on nitrogen cycling and humification. The study highlights the intricate relationship between nitrogen metabolism and humification, demonstrating how selection of auxiliary materials can optimize composting for environmental sustainability.
Collapse
Affiliation(s)
- Lei Guo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenxuan Guo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Chunli Luan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyu Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Rongrong Yin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Jie Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Chuanren Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Lin B, Zhang Y, Hao Y, Lu M, Xiang H, Ding D, Niu S, Li K, Li J, Huang Z. Insights into nitrogen metabolism and humification process in aerobic composting facilitated by microbial inoculation. ENVIRONMENTAL RESEARCH 2025; 269:120894. [PMID: 39828197 DOI: 10.1016/j.envres.2025.120894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
To enhance the retention of compost nutrients, specifically in nitrogen metabolism and humification, compound microbial agents were added during the aerobic composting of bagasse pith and buffalo manure. The introduction of the microbial agent successfully colonized the mixture, boosted the degradation capacity of organic matter, and facilitated the formation of nitrogenous substances and humic substances (HSs). The incorporation of a composite microbial inoculum led to a substantial rise in total Kjeldahl nitrogen (TKN) by 62.04%, nitrate nitrogen (NO- 3-N) by 291.65%, and amino acid (AA) by 78.77%. Furthermore, this intervention resulted in achieving a humic acid (HA) to fulvic acid (FA) ratio of 1.64. Metagenomic sequencing revealed enhanced synergistic interactions among microorganisms through inoculation, increasing the abundance of functional genes related to nitrification and nitrogen fixation compared to the uninoculated control. Spearman correlation analysis identified unclassified_c__Deltaproteobacteria, unclassified_f__Planctomycetaceae, Chryseosolibacter, unclassified_f__Hyphomicrobiaceae as the principal producers of HA. This research provides insights into the interactions between nitrogen metabolism and humification in composting, aiming to effectively retain compost nutrients and support the long-term sustainability of agriculture.
Collapse
Affiliation(s)
- Binfeng Lin
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yu Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yuhao Hao
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Mengling Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Hongquan Xiang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - De Ding
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Shiyuan Niu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China; Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning, 530004, Guangxi, China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning, 530004, Guangxi, China
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China; Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning, 530004, Guangxi, China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning, 530004, Guangxi, China.
| | - Zhi Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China; Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning, 530004, Guangxi, China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning, 530004, Guangxi, China.
| |
Collapse
|
3
|
Xu Z, Deng X, Lin Z, Wang L, Lin L, Wu X, Wang Y, Li H, Shen J, Sun W. Microplastics in agricultural soil: Unveiling their role in shaping soil properties and driving greenhouse gas emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177875. [PMID: 39644637 DOI: 10.1016/j.scitotenv.2024.177875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Microplastics (MPs) contamination is pervasive in agricultural soils, significantly influencing carbon and nitrogen biogeochemical cycles and altering greenhouse gas (GHG) fluxes. This review examines the sources, status, mechanisms, and ecological consequences of MPs pollution in agricultural soils, with a focus on how MPs modified soil physicochemical properties and microbial gene expression, ultimately impacting GHG emissions. MPs were found to reduce soil water retention, decreasing soil respiration and increasing emissions of CO2, CH₄, and N2O. They also enhanced soil aggregate stability and influenced soil organic carbon (SOC) sequestration, contributing further to GHG emissions. MPs-induced increases in soil pH were associated with suppressed CH₄ and N2O emissions, whereas the abundance of genes encoding enzymes for cellulose and lignin decomposition (e.g., abfA and mnp) stimulated enzyme activity, intensifying N2O release. Additionally, a reduced soil C/N ratio promoted denitrification processes. Changes in microbial communities, including increases in Actinomycetes and Proteobacteria, were observed, with a rise in genes associated with carbon cycling (abfA, manB, xylA) and nitrification-denitrification (nifH, amoA, nirS, nirK), further exacerbating CO2 and N2O emissions. This review provides valuable insights into the complex roles of MPs in GHG dynamics in agricultural soils, offering perspectives for improving environmental management strategies.
Collapse
Affiliation(s)
- Zhimin Xu
- Key Laboratory for Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xingying Deng
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zheng Lin
- Key Laboratory for Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Lihong Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xinyue Wu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yifan Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Huankai Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Jianlin Shen
- Key Laboratory for Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Weimin Sun
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
4
|
Cai T, Ming Y, Zhang Y, Zhang Q. Unraveling the role of black soldier fly larvae in chicken manure conversion: Facilitating maturation and enhancing humification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175952. [PMID: 39222815 DOI: 10.1016/j.scitotenv.2024.175952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/09/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Black soldier fly larvae (BSFL) have garnered considerable attention for their efficacy in mitigating waste management challenges. However, their potential in treating antibiotics contaminated chicken manure remains uncertain. This study investigates the physicochemical properties changes and nutrient dynamics during the composting of contaminated-chicken manure using BSFL. The results indicate that BSFL treatment reduces electrical conductivity (by 6.01-58.09 %), organic matter, and dissolved organic carbon content in chicken manure throughout the composting process, while maintaining a more stable pH value (pH ∼ 6.0-8.0). This is attributed to the consumption of organic matter by BSFL and the subsequent promotion of organic acid formation. Additionally, BSFL treatment improves the degree of aromatization of dissolved organic matter (DOM) in chicken manure and increases the proportions of fulvic acid (up to 48.77 %) and humic acid (maximally 14.27 %) within the DOM. The germination index and pot experiments indicated improved compost maturity and plant growth in BSFL-treated composts. Furthermore, BSFL meal demonstrated high protein and essential fatty acid content, highlighting its potential as a protein supplement in animal feed. This study underscores the efficacy of BSFL in enhancing compost quality and nutrient availability, offering a sustainable solution for waste management and animal feed production.
Collapse
Affiliation(s)
- Tong Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Yuanbo Ming
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Yangboxuan Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Road, 200062 Shanghai, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, 200062 Shanghai, China.
| |
Collapse
|
5
|
Xu W, Wang W, Ma R, Guo D, Wang Y, Li X, Yuan J, Wang Y, Dong H. Dual mechanism of membrane covering on GHG and NH 3 mitigation during industrial-scale experiment on dairy manure composting: Inhibiting formation and blocking emissions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122585. [PMID: 39303595 DOI: 10.1016/j.jenvman.2024.122585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
An industrial-scale experiment on dairy manure composting with the control group (Ctrl) and the membrane covering group (CM) was conducted to explore the effects of functional membrane covering on gas emissions, the conversion of carbon and nitrogen, and revealing the underlying mechanisms. Results indicated that CM achieved the synergistic effects on gas mitigation and improved compost product quality. CO2, CH4, N2O, and NH3 emissions were reduced by 81.8%, 87.0%, 82.6%, and 82.2%, respectively. The micro-aerobic condition formed in membrane covering compost pile together with the covering inhibiting effect dominated the mitigation effect. CM significantly downregulated the mcrA gene copies and the value of mcrA/pmoA (p < 0.01), which reduced CH4 emission. CM decreased the nirS and nirK gene copies and increased the nosZ gene copies to reduce N2O emission. Functional Annotation of Prokaryotic Taxa showed that membrane covering effectively amended part of carbon and nitrogen cycles, which stimulated the degradation of organic matter, accelerated compost maturity and reduced the gaseous emissions.
Collapse
Affiliation(s)
- Wenqian Xu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenzan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruiqiang Ma
- Zhongnong Chuangda Environmental Protection Technology Co., Ltd., Beijing, 100081, China
| | - Dongpo Guo
- Beijing Green Tech Science and Technology Co., Ltd., Beijing, 100080, China
| | - Youxu Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Yue Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
6
|
Sossa EL, Agbangba CE, Koura TW, Ayifimi OJ, Houssoukpèvi IA, Bouko NDB, Yalinkpon F, Amadji GL. Dynamics of co-composting of pineapple harvest and processing residues with poultry litter and compost quality. Sci Rep 2024; 14:17194. [PMID: 39060260 PMCID: PMC11282232 DOI: 10.1038/s41598-024-66335-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
The production of pineapple generates significant quantities of harvest and processing residues, which are very little used. This study evaluates compost quality using pineapple residues and poultry litter. Five composting treatments were tested, varying following proportions of crown, pineapple processing wastes (PPW), pineapple harvest residue (PHR), and poultry litter (PL). Various parameters were analyzed, including pH, electrical conductivity, CO2 evolution rate, water content, organic carbon, nitrogen compounds, phosphorus, potassium, calcium, magnesium, copper, and zinc. Additionally, the perceptions of producers and processors regarding compost quality were gathered. Results indicated that microbial decomposition increased temperature, pH, CO2 release, and nitrogen content while reducing electrical conductivity and organic carbon. Composts demonstrated favorable characteristics for crop fertilization, with C4 (75% PHR + 25% PL) compost showing the best chemical properties. Producers and processors preferred the color, odor, and structure of C4 (75% PHR + 25% PL) and C5 (56.25% crown + 18.75% PPW + 25% PL) composts. Overall, composting pineapple residues with poultry litter yields composts suitable for plant fertilization, particularly C4 and C5 formulations, offering potential for sustainable waste valorization in agriculture.
Collapse
Affiliation(s)
- Elvire Line Sossa
- Research Unit in Sustainable Management of Soil Fertility, Laboratory of Soil Sciences, Faculty of Agronomics Sciences, University of Abomey-Calavi, Calavi, 01, P.O. Box 526, Cotonou, Benin.
| | - Codjo Emile Agbangba
- Laboratory of Research in Applied Biology, Department of Environment Engineering, University of Abomey-Calavi, Calavi, 01, P.O. Box 2009, Cotonou, Benin
- Laboratory of Biomathematics and Forest Estimations, University of Abomey-Calavi, Calavi, 03, P.O. Box 2819, Cotonou, Benin
| | - Tatiana Windékpè Koura
- National Institute of Agricultural Research of Benin, 01, P.O. Box 884, Abomey-Calavi, Benin
| | - Oladéji Jamali Ayifimi
- Research Unit in Sustainable Management of Soil Fertility, Laboratory of Soil Sciences, Faculty of Agronomics Sciences, University of Abomey-Calavi, Calavi, 01, P.O. Box 526, Cotonou, Benin
| | - Issiakou Alladé Houssoukpèvi
- Research Unit in Sustainable Management of Soil Fertility, Laboratory of Soil Sciences, Faculty of Agronomics Sciences, University of Abomey-Calavi, Calavi, 01, P.O. Box 526, Cotonou, Benin
| | - Nadège Donsaré Bana Bouko
- Research Unit in Sustainable Management of Soil Fertility, Laboratory of Soil Sciences, Faculty of Agronomics Sciences, University of Abomey-Calavi, Calavi, 01, P.O. Box 526, Cotonou, Benin
| | - Florent Yalinkpon
- National Institute of Agricultural Research of Benin, 01, P.O. Box 884, Abomey-Calavi, Benin
| | - Guillaume Lucien Amadji
- Research Unit in Sustainable Management of Soil Fertility, Laboratory of Soil Sciences, Faculty of Agronomics Sciences, University of Abomey-Calavi, Calavi, 01, P.O. Box 526, Cotonou, Benin
| |
Collapse
|
7
|
Duan L, Liu X, Sun Y, Wu Y. Elucidating biogeochemical characterization of nitrogen in the vadose zone integrating geochemistry, microorganism, and numerical simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174687. [PMID: 38997026 DOI: 10.1016/j.scitotenv.2024.174687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
A thorough comprehension of nitrogen biogeochemical processes in the vadose zone is crucial for the effective prevention and remediation of soil-groundwater system contamination. Despite the growing research on this subject, the full scope of nitrogen biogeochemical characterization in different geological environments remains poorly understood. This study addresses this knowledge gap by integrating geochemical, microbiological and numerical simulation approaches to gain a deeper insight into nitrogen biogeochemistry in agriculture. Our findings indicate the biogeochemical behavior of nitrogen in the vadose zone is mediated by microorganisms, driven by hydraulics, influenced by geological conditions and environmental factors. Along the groundwater flow, NH4+-N was found to be heavily accumulated in the topsoil of 0-40 cm, while NO3--N was transported and driven by hydrodynamics from both vertical and horizontal directions. Microbial diversity, species composition and functional microorganisms were significantly influenced by soil depth, rather than geomorphological types. Oxidation-reduction potential (ORP), total organic carbon (TOC), soil moisture (MOI), bicarbonate (HCO3-), and ferrous (Fe2+) were identified as the principal environmental factors that regulate nitrogen metabolism and the dominant biochemical processes, encompassing nitrogen fixation, nitrification, and denitrification. Driven by hydrodynamics, NH4+-N, NO2--N and NO3--N tend to form distinct biochemical reaction zones in the vertical vadose zone. These areas are dynamic and subject to geomorphologies. It should be noted that NO3--N can migrate towards groundwater from the clayey sand in the Alluvial Plain, which presents a potential risk of groundwater contamination. The fissure structure of loess may serve as the major transport pathway for groundwater nitrogen contamination in the Loess Tableland. This finding highlights the importance of integrating microbiology, geochemistry and hydraulics to elucidate the biogeochemical processes of nitrogen in the vadose zone with a dynamic mindset.
Collapse
Affiliation(s)
- Lei Duan
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China.
| | - Xiaobang Liu
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China
| | - Yaqiao Sun
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China
| | - Yakun Wu
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Underground Hydrology and Ecological Effects in Arid Regions of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China
| |
Collapse
|
8
|
Xu Z, Li R, Liu J, Xu X, Wang S, Gao F, Yang G, Yao Y, Zhang Z, Zhang X, Zhang Y, Quan F. The impact of ammonifying microorganisms on the stabilization and carbon conversion of cow manure and wheat husk co-composting. CHEMICAL ENGINEERING JOURNAL 2024; 490:151626. [DOI: 10.1016/j.cej.2024.151626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
9
|
Jiao M, Yang Z, Xu W, Zhan X, Ren X, Zhang Z. Elucidating carbon conversion and bacterial succession by amending Fenon-like systems during co-composting of pig manure and branch. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170279. [PMID: 38280577 DOI: 10.1016/j.scitotenv.2024.170279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
The essential point of current study was to investigate the effect of a Fenton-like system established by oxalic acid and Fe(II) on gas emission, organic matter decomposition and humification during composting. Branches were pretreated with Fenton reagents (0.02 M FeCl2·4H2O + 1.5 M H2O2) and then adding 10 % oxalic acid (OA). The treatments were marked as B1 (control), B2 (Fenton reagent), B3 (10% OA) and B4 (Fenton-like reagent). The results collected from 80 d of composting showed that adding Fenton-like reagent benefited the degradation of organic substances, as reflected by the total organic carbon and dissolved organic carbon, and the maximum decomposition rate was observed in B4. In addition, the Fenton-like reagent could improve the synthesis of humus characterized by complex and stable compounds, which was consistent with the spectral parameters (SUVA254, SUVA280, E253/E203 and Fourier transform-infrared indicators) of DOC. Furthermore, the functional microbial succession performance and linear discriminant effect size analyses provided microbial evidence of humification improvement. Notably, compared with the control, the minimum value of CH4 cumulation was reported in B4, which decreased by 30.44 %. Concluded together, the addition of a Fenton-like reagent composed by OA and Fe(II) is a practical way to improve the humification. Furthermore, the mechanisms related to the promotion of humification should be investigated from free radicals, functional genes, and metabolic pathways.
Collapse
Affiliation(s)
- Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zhaowen Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Wanying Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiangyu Zhan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
10
|
Gao X, Zhang J, Liu G, Kong Y, Li Y, Li G, Luo Y, Wang G, Yuan J. Enhancing the transformation of carbon and nitrogen organics to humus in composting: Biotic and abiotic synergy mediated by mineral material. BIORESOURCE TECHNOLOGY 2024; 393:130126. [PMID: 38036150 DOI: 10.1016/j.biortech.2023.130126] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
To investigate the conversion of carbon and nitrogen organic matter to humus mediated by mineral material additives through biotic and abiotic pathways, three chicken manure composting experiments were conducted using calcium superphosphate (CS) and fly ash (FA). Results showed that CS and FA promoted carbon and nitrogen organic degradation and improved compost maturity. The ratio of humic acid-like to fulvic acid-like substances for FA (30) was significantly higher than for control (18) and CS (13). Excitation-emission-matrix spectra and parallel factor analysis identified a higher transformation of protein-like components into humic-like components in FA. Network analysis showed that CS improved compost maturity by promoting the rapid conversion of humus precursors to humus, while FA increased the richness and diversity of the microbial community, such as Chloroflexi, the unique phylum in FA. Overall, CS and FA facilitated the humification process through abiotic and biotic pathways, and FA had better humification performance.
Collapse
Affiliation(s)
- Xia Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing 100193, China
| | - Jing Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing 100193, China
| | - Guoliang Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing 100193, China
| | - Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing 100193, China
| | - Yun Li
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing 100193, China
| | - Yiming Luo
- Beijing General Station of Animal Husbandry, Beijing, China
| | - Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing 100193, China.
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing 100193, China
| |
Collapse
|
11
|
Yang X, Mazarji M, Li M, Li A, Li R, Zhang Z, Pan J. Mechanism of magnetite-assisted aerobic composting on the nitrogen cycle in pig manure. BIORESOURCE TECHNOLOGY 2024; 391:129985. [PMID: 37931761 DOI: 10.1016/j.biortech.2023.129985] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Magnetite affects nitrogen cycle of pig manure (PM) biostabilisation was investigated. Various doses of magnetite (0 % (T1); 2.5 % (T2); 5 % (T3); 7.5 % (T4)) were homogeneously added into PM and wolfberry branch fillings (BF) mixture for a 50-day composting. Compared to T1, total nitrogen (TN) loss in gaseous form increased remarkably by 17.51 %, 56.31 %, and 24.91 %, respectively, in T2-T4. In particular, T3 dramatically increased the cumulative N2O emission but decreased NH3 emissions. However, T2 and T3 enhanced the total nitrogen contents by 7.24 % and 3.09 %. Structural equation models (SEM) analysis indicated that magnetite addition increased the direct and indirect pathways of N2O emission. Further analysis revealed that Ruminofilibacter and N2O emission were significantly correlated, and Pseudomonas played a vital role in nitrogen preservation. Although using 2 % magnetite as an additive could increase the TN content, the obvious increase of N2O emission should be considered in engineering practice.
Collapse
Affiliation(s)
- Xu Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mahmoud Mazarji
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengtong Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Aohua Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
12
|
Ren X, Jiao M, Zhang Z, Syed A, Bahkali AH. The efficient solution to decline the greenhouses emission and enrich the bacterial community during pig manure composting: Regulating the particle size of cornstalk. BIORESOURCE TECHNOLOGY 2023; 387:129596. [PMID: 37541547 DOI: 10.1016/j.biortech.2023.129596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
In present study, four lengths of chopped cornstalks were amended with pig manure respectively for 100 days aerobic fermentation, which aimed to evaluate the impact of different length of agricultural solid wastes on gaseous emission and dominating bacterial community succession and connection. The result revealed that the maximum ammonia volatilization was observed in 5 cm of straw samples attributed to the prominent mineralization, which was opposite to the emission of CH4 and N2O. As for global warming potential, the minimum value was detected in 5 cm of straw samples, which decreased by 5.03-24.75% compared with other samples. Additionally, the strongest correlation and complexity of bacterial community could be detected in 5 cm of straw treatment, representing the most vigorous bacterial metabolic ability could be recorded by optimizing the microbial habitat. Therefore, in order to decline the greenhouse effect in livestock manure composting, the 5 cm of corn straw was recommended.
Collapse
Affiliation(s)
- Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
13
|
Wang Y, Wang J, Yi G, Wu X, Zhang X, Yang X, Ho Daniel Tang K, Xiao R, Zhang Z, Qu G, Li R. Sulfur-aided aerobic biostabilization of swine manure and sawdust mixture: Humification and carbon loss. BIORESOURCE TECHNOLOGY 2023; 387:129602. [PMID: 37536465 DOI: 10.1016/j.biortech.2023.129602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
To investigate how sulfur addition affects humification and carbon loss during swine manure (SM) biostabilisation, various proportions of sulfur, i.e., 0 (CK), 0.2%-0.8% (S1-S4) were added to SM in a 70-day pilot-scale test. Compared to CK (16.07%), sulfur addition resulted in the mineralization of 17.05%-24.27% of the total organic carbon. Sulfur addition also reduced CH4 emissions, which were 3.7%-29.3% lower than that of CK. The total global warming potential values were in the range of 913.1-968.2 g CO2 eq kg-1 for all treatments. Although the sulfur-added treatments showed lower HA/FA ratios than CK after 70 days, no significant impact on the maturity of the final products was observed. Sulfur addition impacted the microbial community, CH4, CO2, N2O emissions, and affected the variation of temperature in biowaste biostabilization. These discoveries provided an important basis for understanding the function of sulfur in regulating the aerobic bio-decomposition of organic waste.
Collapse
Affiliation(s)
- Yang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingwen Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guorong Yi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuan Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Xu Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kuok Ho Daniel Tang
- The University of Arizona, The Department of Environmental Science, Shantz Building Rm 4291177 E 4th St., Tucson, AZ 85721, USA
| | - Ran Xiao
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Chen K, Zhou S, Long Y, Xu H, Zhou J, Jiang Z, Xi M, Zheng H. Long-term aged fibrous polypropylene microplastics promotes nitrous oxide, carbon dioxide, and methane emissions from a coastal wetland soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:166332. [PMID: 37597563 DOI: 10.1016/j.scitotenv.2023.166332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
Microplastics (MPs) has been suggested that it can greatly affect soil greenhouse gases (GHGs) emissions via altering soil physical, chemical, and biological properties. However, the difference in GHGs emissions, especially for those from coastal wetland soils, between varied aged MPs was rarely explored and the underlying mechanisms of GHGs emissions affected by the aged MPs were poorly understood. Therefore, the implications of fibrous polypropylene MPs (FPP-MPs) exposure on N2O, CO2, and CH4 emissions were examined by a 60-day soil incubation experiment. Compared with the control, the additions of un-aged FPP-MPs with both two rates (0.2 and 2 %) and aged FPP-MPs with a low rate (0.2 %) showed an insignificant effect on N2O emission, while the aged FPP-MPs added with a high rate (2 %) resulted in a remarkably increase in N2O emission, especially for those of the 30-day-aged FPP-MPs. A significant increase in CO2 emission was only observed in the 30-day-aged FPP-MPs treatments, compared with the control, and a higher addition rate produced a higher increase of CO2 emission. Regarding CH4 emission, it was significantly increased by adding aged FPP-MPs, and a longer aging period or/and a higher addition rate generated a higher degree of promotion of CH4 emission. However, compared with the CO2 emission, the quantity of CH4 emission was extremely low. These increased GHGs emissions can be ascribed to the improvements in soil physical structure and other chemical properties (e.g., pH and contents of soil organic matter and dissolved organic carbon) and enhancements in the abundances of denitrification- and carbon mineralization-related microorganisms. Overall, our results highlight the risk of elevated GHGs emissions from the soil polluted with 30-day-aged FPP-MPs, which should not be ignored as long-term aged FPP-MPs continue to increase in coastal wetland soils.
Collapse
Affiliation(s)
- Kun Chen
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Shunxi Zhou
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yunze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Hongxing Xu
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Jing Zhou
- Department of Epidemiology and Health Statistics, Qingdao University, Qingdao 266071, Shandong, China
| | - Zhixiang Jiang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| | - Min Xi
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| |
Collapse
|
15
|
Xu Z, Liang W, Zhang X, Yang X, Zhou S, Li R, Syed A, Bahkali AH, Kumar Awasthi M, Zhang Z. Effects of magnesite on nitrogen conversion and bacterial community during pig manure composting. BIORESOURCE TECHNOLOGY 2023; 384:129325. [PMID: 37315627 DOI: 10.1016/j.biortech.2023.129325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
The objective of this research was to elucidate the effect of varying proportions of magnesite (MS) addition - 0% (T1), 2.5% (T2), 5% (T3), 7.5% (T4), and 10% (T5) - on nitrogen transformation and bacterial community dynamics during pig manure composting. In comparison to T1 (control), MS treatments amplified the abundance of Firmicutes, Actinobacteriota, and Halanaerobiaeota, bolstered the metabolic functionality of associated microorganisms, and enhanced the nitrogenous substance metabolic pathway. A complementary effect in core bacillus species played a key role in nitrogen preservation. Compared to T1, 10% MS demonstrated the most substantial influence on composting because Total Kjeldahl Nitrogen increased by 58.31% and NH3 emission decreased by 41.52%. In conclusion, 10% MS appears to be optimal for pig manure composting, as it can augment microbial abundance and mitigate nitrogen loss. This study offers a more ecologically sound and economically viable method for curtailing nitrogen loss during composting.
Collapse
Affiliation(s)
- Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Wen Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Xu Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Shunxi Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
16
|
Xu Z, Li R, Zhang X, Liu J, Xu X, Wang S, Lan T, Zhang K, Gao F, He Q, Pan J, Quan F, Zhang Z. Mechanisms and effects of novel ammonifying microorganisms on nitrogen ammonification in cow manure waste composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:167-178. [PMID: 37442037 DOI: 10.1016/j.wasman.2023.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
It is essential to reduce nitrogen losses and to improve nitrogen conversion during organic waste composting because of environmental protection and sustainable development. To reveal newly domesticated ammonifying microorganisms (AM) cultures on the ammonification and nitrogen conversion during the composting, the screened microbial agents were inoculated at 5 % concentration (in weight basis) into cow manure compost under five different treatments: sterilized distilled water (Control), Amm-1 (mesophilic fungus-F1), Amm-2 (mesophilic bacterium-Z1), Amm-3 (thermotolerant bacterium-Z2), and Amm-4 (consortium: F1, Z1, and Z2), and composted for 42 days. Compared to control, AM inoculation prolonged the thermophilic phases to 9-19 days, increased the content of NH4+-N to 1.60-1.96 g/kg in the thermophilic phase, reduced N2O and NH3 emissions by 22.85-61.13 % and 8.45-23.29 %, increased total Kjeldahl nitrogen, and improved cell count and viability by 12.09-71.33 % and 66.71-72.91 %. AM was significantly associated with different nitrogen and microbial compositions. The structural equation model (SEM) reveals NH4+-N is the preferable nitrogen for the majority of bacterial and fungal growth and that AM is closely associated with the conversion between NH3 and NH4+-N. Among the treatments, inoculation with Amm-4 was more effective, as it significantly enhanced the driving effect of the critical microbial composition on nitrogen conversion and accelerated nitrogen ammonification and sequestration. This study provided new concepts for the dynamics of microbial in the ammonification process of new AM bacterial agents in cow manure compost, and an understanding of the ecological mechanism underlying the ammonification process and its contribution to nitrogen (N) cycling from the perspective of microbial communities.
Collapse
Affiliation(s)
- Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xuerui Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Shaowen Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tianyang Lan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Kang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Feng Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Qifu He
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Junting Pan
- Key Laboratory of Non-point Source Pollution of Ministry of Agricultural and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
17
|
Wang Y, Wang J, Wu X, Zhao R, Zhang Z, Zhu J, Azeem M, Xiao R, Pan J, Zhang X, Li R. Synergetic effect and mechanism of elementary sulphur, MgSO 4 and KH 2PO 4 progressive reinforcement on pig manure composting nitrogen retention. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121934. [PMID: 37263560 DOI: 10.1016/j.envpol.2023.121934] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/09/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
The potential of sulphur (S), MgSO4 (Mg), and KH2PO4 (P) in nitrogen retention, ammonia emission decrease, and microbial community succession during composting needs to be investigated. To achieve this, different levels of S (0, 0.2, 0.4, 0.6, and 0.8% in dry weight) plus Mg and P (S + Mg + P) were progressively added in 70 days pig manure aerobic composting. The results revealed that the amendment increased salinity and lowered pH and dephytotoxication of the product with the increase of S amount. However, no significant inhibition effects were observed on the evolution of the thermophilic phase and product maturity. In addition, the amendment significantly reduced the total NH3 and N2O emissions by 29.66%-58.81% and 20.6%-56.7%, increased NH4+ level by 17.22%-73.21% in thermophilic phase and NO3- content by 26.17%-57.48% in a mature phase, and elevated the total Kjeldahl nitrogen content by 34.28%-46.6% during the composting. In addition, compared to the control, the supplement markedly encouraged the formation of guanite in the compost product. The S addition stimulated the growth of Anseongella, Actinomadura, Chelativorans, Castellaniella, Luteimonas, and Steroidobacter microbial communities which functioned well in the degradation of nitrogen-containing compounds and organic matter. Evidence from Redundancy Analysis, Firmicutes, Myxococcus, Chloroflexi, Gemmatimonadota, and Deinococcota showed positive correlations with pH. These results imply that adding S-Mg-P amendment encourages the population and activity of specific functional microorganisms, and facilitated the ammonia emission reduction by lowering pH and thus reserved nitrogen through the formation of guanite during composting. The investigation of bacterial community abundance and environmental variables at the phylum and genus levels over time revealed that adding of 0.6% S in conjunction with P and Mg minerals was suitable for nitrogen loss mitigation in composting. The findings suggest using S + Mg + P supplement to conserve nitrogen in pig dung aerobic composting.
Collapse
Affiliation(s)
- Yang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingwen Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuan Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ran Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juanjuan Zhu
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Muhammad Azeem
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Punjab 46300, Pakistan
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
18
|
Jiao M, Ren X, Zhan X, Hu C, Wang J, Syed A, Bahkali AH, Zhang Z. Exploring gaseous emissions and pivotal enzymatic activity during co-composting of branch and pig manure: The effect of particle size of bulking agents. BIORESOURCE TECHNOLOGY 2023; 382:129199. [PMID: 37201868 DOI: 10.1016/j.biortech.2023.129199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/20/2023]
Abstract
The purpose of current study was to probe the effect of various length of branch on gaseous emissions and vital enzymatic activity. Four lengths (< 2 cm, 2 cm, 5 cm, and > 5 cm) of clipped branch were mingled with collected pig manure for 100 days aerobic fermentation. The consequence demonstrated that the amendment of 2 cm of branch showed conducive to decline the greenhouse gas emissions, which the CH4 emissions decreased by 1.62-40.10%, and the N2O emissions decreased by 21.91-34.04% contrasted with other treatments. Furthermore, the peak degree of enzymatic activities was also observed in 2 cm of branch treatment by the optimizing living condition for microbes. In view of microbiological indicators, the most abundant and complex bacterial community could be monitor in 2 cm of branch composting pile, which verified the microbial facilitation. Summing up, the strategy of 2 cm branch amendment would be recommended.
Collapse
Affiliation(s)
- Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiangyu Zhan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Cuihuan Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Juan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
19
|
Zhu L, Zhao Y, Yao X, Zhou M, Li W, Liu Z, Hu B. Inoculation enhances directional humification by increasing microbial interaction intensity in food waste composting. CHEMOSPHERE 2023; 322:138191. [PMID: 36812995 DOI: 10.1016/j.chemosphere.2023.138191] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/04/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Inoculation can effectively improve the recycling level of organic waste in composting process. However, the role of inocula in the humification process has been rarely studied. Therefore, we constructed a simulated food waste composting system by adding commercial microbial agents to explore the function of inocula. The results showed that adding microbial agents extended the high temperature maintenance time by 33% and increased the humic acid content by 42%. Inoculation significantly improved the degree of directional humification (HA/TOC = 0.46, p < 0.001). The proportion of positive cohesion in the microbial community underwent an overall increase. The strength of bacterial/fungal community interaction increased by 1.27-fold after inoculation. Furthermore, the inoculum stimulated the potential functional microbes (Thermobifida and Acremonium) which were highly related to the formation of humic acid and the degradation of organic matter. This study showed that additional microbial agents could strengthen microbial interaction to raise the humic acid content, thus opening the door for the development of targeted biotransformation inocula in the future.
Collapse
Affiliation(s)
- Lin Zhu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuxiang Zhao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangwu Yao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meng Zhou
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenji Li
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zishu Liu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Baolan Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang, 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
20
|
Bao M, Cui H, Lv Y, Wang L, Ou Y, Hussain N. Greenhouse gas emission during swine manure aerobic composting: Insight from the dissolved organic matter associated microbial community succession. BIORESOURCE TECHNOLOGY 2023; 373:128729. [PMID: 36774985 DOI: 10.1016/j.biortech.2023.128729] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Greenhouse gas emissions during aerobic composting is unavoidable, but good practices can minimize emission. Therefore, to explore the key factors influencing the release of greenhouse gas emissions during composting, the inaction of organic matter conversion, greenhouse gas emissions and bacterial community structure during co-composting with different ratio (pig manure and corn straw) over a 6-week period was studied. The excitation-emission matrix fluorescence spectroscopy with the parallel factor was used to identify that dissolved organic matter associated microbial community succession mainly influenced greenhouse gas emissions. Protein-like fractions of dissolved organic matter were more likely to decompose and promote CH4 and CO2 emissions, while the humic-like fractions of dissolved organic matter positively affected N2O emissions. The largest of greenhouse gas emissions was appeared in MR2 with 12.7 kg CO2-eq, and the MR3 and MR4 reduced greenhouse gas emissions by 26.8 % and 11.4 %, respectively.
Collapse
Affiliation(s)
- Meiwen Bao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hu Cui
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yan Lv
- Soil and Fertilizer Station of Jilin Province, Changchun 130033, China
| | - Lixia Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Yang Ou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Naseer Hussain
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| |
Collapse
|
21
|
Yang X, Li R, Li Y, Mazarji M, Wang J, Zhang X, Song D, Wang Y, Zhang Z, Yang Y, Pan J. Composting pig manure with nano-zero-valent iron amendment: Insights into the carbon cycle and balance. BIORESOURCE TECHNOLOGY 2023; 371:128615. [PMID: 36640823 DOI: 10.1016/j.biortech.2023.128615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The effectiveness of nano-zero-valent-iron (NZVI) addition during composting of pig manure (PM) was investigated. Different dosages of NZVI were mixed with PM substrate during a 50 days composting process. The results revealed that the higher share of NZVI addition, the higher OM degradation rate is. On contrary, it was observed that the higher share of NZVI addition, the lower the fulvic acid and the humin degradation rate is. Meanwhile, NZVI amendment increased the CO2 and CH4 emissions by 29-47 % and 53-57 %, respectively. The in-depth analysis showed that NZVI addition increased the activity of Sphaerobacter and Luteimonas, which eventually led to the degradation of hard-to-degrade OM faster. Additionally, NZVI was found to increase the filtration of microorganisms, reducing the toxicity and hygiene of compost products. No significant improvement in humic substance enhancement was observed during composting with NZVI addition but improved OM degradation.
Collapse
Affiliation(s)
- Xu Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - You Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Mahmoud Mazarji
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingwen Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Dan Song
- Chongqing Academy of Ecology and Environmental Sciences, Chongqing 401147, China
| | - Yajing Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yadong Yang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
22
|
Fu X, Yu Z, Kong F, Duan P, Li F, Zhang L, Liu Z, Cui Y. Application of an integrated loach-plant-substrate-microbes non-aerated saturated vertical flow constructed wetlands: Mechanisms of pollutants removal and greenhouse gases reduction. BIORESOURCE TECHNOLOGY 2023; 368:128337. [PMID: 36403915 DOI: 10.1016/j.biortech.2022.128337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
This study established an integrated loach-plant-substrate-microbes non-aerated saturated vertical flow constructed wetlands (VFCWs) to enhance pollutants removal efficiencies and reduce greenhouse gas emissions simultaneously. The results of the VFCWs experiment indicated that the removal efficiencies of chemical oxygen demand, total phosphorous, and total nitrogen in loach systems were significantly higher than those of non-loach systems, achieving 59.16%, 35.98%, and 40.96%, respectively. The CH4 and N2O emission fluxes were also significantly reduced in the integrated system, resulting in lower global warming potential (GWP) and GWP per unit of pollutants removal. Loaches promoted the transportation of oxygen, facilitated the re-contact and utilization of sediments, reduced CH4 emission, and enhanced nitrogen conversion and phosphorus accumulation. Increased bioavailable carbon and nitrate-nitrogen in the integrated system improved the abundance of denitrifying bacteria, which supported complete denitrification, reducing N2O emissions with high pollutant removal.
Collapse
Affiliation(s)
- Xiuzheng Fu
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhengda Yu
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Pingping Duan
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Fanyi Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Lingzhu Zhang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhongying Liu
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yuqian Cui
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| |
Collapse
|
23
|
Liu X, Zhang L. Effects of additives on the co-composting of forest residues with cattle manure. BIORESOURCE TECHNOLOGY 2023; 368:128384. [PMID: 36423762 DOI: 10.1016/j.biortech.2022.128384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Co-composting of forest residues (FR) with cattle manure (CM) results in a low nitrogen (N) conversion efficiency, a low organic matter (OM) degradation rate, and a low quality compost product. This study evaluated the effects of addition of bone charcoal (BC), pumice (PM), or straw biochar (SB) at a ratio of 10 % (w/w) on the co-composting of FR with CM. The highest quality compost was obtained with addition of 10 % PM. Compared with the control (without any additive), PM addition increased the OM degradation rate, the nitrate-N, the available phosphorus, and the available potassium by 25 %, 110 %, 24 %, and 9 %, respectively, and increased the relative abundance of bacteria (Planomicrobium, Flavobacterium, and Pseudomonas) involved in lignocellulose degradation and N transformation. With the addition of PM, the co-composting of FR with CM generated a high quality, useful product in only 39 days.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| | - Lu Zhang
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
24
|
Jia P, Huang Y, Chen M, Qi X, Hou H. Comprehensive evaluation of spent mushroom substrate-chicken manure co-composting by garden waste improvement: physicochemical properties, humification process, and the spectral characteristics of dissolved organic matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8987-8997. [PMID: 35606581 DOI: 10.1007/s11356-022-20879-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The performance of garden waste on spent mushroom substrate (SMS) and chicken manure (CM) co-composting efficiency and humification is unclear. Therefore, this study investigated the impact of garden waste addition on SMS-CM co-composting physicochemical properties, humification process, and the spectral characteristics of dissolved organic matter (DOM). The results showed that garden waste improved the physicochemical properties of SMS-CM co-compost, the thermophilic period was advanced 2 days, the seed germination index increased by 30.2%, and the total organic carbon and total nitrogen content increased by 8.80% and 15.0%, respectively. In addition, garden waste increased humic substances (HS) and humic acid (HA) contents by 10.62% and 34.52%, respectively; the HI, PHA and DP increased by 31.53%, 43.19% and 55.53%, respectively; and the SUVA254 and SUVA280 of DOM also increased by 6.39% and 4.39%, respectively. In particular, HA content and DOM humification increase rapidly in the first 10 days. The increase of HA accounted for 52% of the total increase during composting. Fourier-transform infrared and two-dimensional correlation analysis further confirmed that garden waste could facilitate the degradation of organic molecules, including amino acids, polysaccharides, carboxyl groups, phenols, and alcohol, and contributed to the preferential utilization of carboxyl groups and polysaccharides and thus enhanced humification.
Collapse
Affiliation(s)
- Penghui Jia
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, No.3, Rd.Tai Cheng, Shaanxi, 712100, Yangling, China
| | - Yimei Huang
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, No.3, Rd.Tai Cheng, Shaanxi, 712100, Yangling, China.
| | - Mengli Chen
- School of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing, 400045, China
| | - Xiping Qi
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, No.3, Rd.Tai Cheng, Shaanxi, 712100, Yangling, China
| | - Hongyang Hou
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, No.3, Rd.Tai Cheng, Shaanxi, 712100, Yangling, China
| |
Collapse
|
25
|
Li Y, Zhou M, Li C, Pan X, Lv N, Ye Z, Zhu G, Zhao Q, Cai G. Inoculating indoleacetic acid bacteria promotes the enrichment of halotolerant bacteria during secondary fermentation of composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116021. [PMID: 36067675 DOI: 10.1016/j.jenvman.2022.116021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The secondary fermentation stage is critical for stabilizing composting products and producing various secondary metabolites. However, the low metabolic rate of mesophilic bacteria is regarded as the rate-limiting stage in composting process. In present study, two indoleacetic acid (IAA)-producing bacteria (Bacillus safensis 33C and Corynebacterium stationis subsp. safensis 29B) were inoculated to strengthen the secondary fermentation stage to improve the plant-growth promoting potential of composting products. The results showed that the addition of IAA-producing bacteria promoted the assimilation of soluble salt, the condensation and aromatization of humus, and the accumulation of dissolved organic nitrogen (DON) and dissolved organic carbon (DOC). The bioaugmentation strategy also enabled faster microbial community succession during the medium-late phase of secondary fermentation. However, the colonization of Bacillus and Corynebacterium could not explain the disproportionate increase of IAA yield, which reached up to 5.6 times compared to the control group. Deeper analysis combined with physicochemical properties and microbial community structure suggested that IAA-producing bacteria might induce the increase of salinity, which enriched halotolerant bacteria capable of producing IAA, such as Halomonas, Brachybacterium and Flavobacterium. In addition, the results also proved that it was necessary to shorten secondary fermentation time to avoid IAA degradation without affecting composting maturity. In summary, enhancing secondary fermentation of composting via adding proper IAA-producing bacteria is an efficient strategy for upgrading the quality of organic fertilizer.
Collapse
Affiliation(s)
- Yanlin Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingdian Zhou
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Nan Lv
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhilong Ye
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Gefu Zhu
- School of Environment and Nature Resources, Renmin University of China, Beijing, 100872, China; Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture and Rural Affairs, China.
| | - Quanbao Zhao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Guanjing Cai
- Biology Department and Institute of Marine Sciences, College of Science, And Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| |
Collapse
|
26
|
Yang Y, Yin Z, Li L, Li Y, Liu Y, Luo Y, Li G, Yuan J. Effects of dicyandiamide, phosphogypsum and superphosphate on greenhouse gas emissions during pig manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157487. [PMID: 35870587 DOI: 10.1016/j.scitotenv.2022.157487] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the effects of dicyandiamide, phosphogypsum and superphosphate on greenhouse gas emissions and compost maturity during pig manure composting. The results indicated that the addition of dicyandiamide and phosphorus additives had no negative effect on organic matter degradation, and could improve the compost maturity. Adding dicyandiamide alone reduced the emissions of ammonia (NH3), methane (CH4) and nitrous oxide (N2O) by 9.37 %, 9.60 % and 31.79 %, respectively, which was attributed that dicyandiamide effectively inhibited nitrification to reduce the formation of N2O. Dicyandiamide combined with phosphogypsum or superphosphate could enhance mitigation of the total greenhouse gas (29.55 %-37.46 %) and NH3 emission (18.28 %-21.48 %), which was mainly due to lower pH value and phosphoric acid composition. The combination of dicyandiamide and phosphogypsum exhibited the most pronounced emission reduction effect, simultaneously decreasing the NH3, CH4 and N2O emissions by 18.28 %, 38.58 % and 36.14 %, respectively. The temperature and C/N content of the compost were significantly positively correlated with greenhouse gas emissions.
Collapse
Affiliation(s)
- Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ziming Yin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Liqiong Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yun Li
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yiming Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
27
|
Ma S, Liu H. Effects of 3D-printed bulking agent on microbial community succession and carbohydrate-active enzymes genes during swine manure composting. CHEMOSPHERE 2022; 306:135513. [PMID: 35777538 DOI: 10.1016/j.chemosphere.2022.135513] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/30/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
The bulking agent plays an important role in aerobic composting, but their shape, porosity, and homogeneity need to be optimized. In the present work, a bulking agent with a uniform shape was prepared by 3D printing to explore its influence on physicochemical parameters, microbial community succession, and gene abundance of carbohydrate-active enzymes (CAZymes) in swine manure aerobic composting. The results showed that adding 3D-printed bulking agents can increase maximum temperature, prolong the thermophilic period, and improve the degradation rate of volatile solids, which was attributed to ameliorative air permeability by the porous 3D-printed bulking agent. The abundances of some pathogenic bacteria decreased and CAZymes genes increased respectively in response to the addition of the 3D-printed bulking agent, implying it has a certain positive effect on improving the safety of compost products and promoting the degradation of organic matter. In summary, the 3D-printed bulking agent has good application potential in laboratory-scale aerobic composting.
Collapse
Affiliation(s)
- Shuangshuang Ma
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; Engineering Laboratory for Yellow River Delta Modern Agriculture, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongtao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; Engineering Laboratory for Yellow River Delta Modern Agriculture, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
28
|
Liang W, Jiao M, Hu E, Liu T, Ren X, Wang P, Kumar Awasthi M, Li R, Zhang Z. Magnesite driven the complementary effects of core fungi by optimizing the physicochemical parameters in pig manure composting. BIORESOURCE TECHNOLOGY 2022; 360:127541. [PMID: 35777646 DOI: 10.1016/j.biortech.2022.127541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
The effects of magnesite (MS) on fungi communities and the core fungi complementarity during pig manure (PM) composting were explored. Different dosage of MS [0% (T1), 2.5% (T2), 5% (T3), 7.5% (T4) and 10% (T5)] as amendments mixed with PM for 42 days composting. The results showed the dominant of phyla were Ascomycota (78.87%), Neocallimastigomycota (41.40%), Basidiomycota (30.81%) and Aphelidiomycota (29.44%). From day 7 to 42, the abundance of Ascomycota and Aphelidiomycota were increased from 7.75% to 42.41% to 57.27%-78.87% and 0-0.70% to 11.73%-29.44% among all treatments. Nevertheless, the phyla abundance of Neocallimastigomycota and Basidiomycota decreased from day 7 to 42. The co-occurrence network indicated that the high additive amendment could enhance the core fungi complementarity effects capacity. The 10% MS addition was a promisable candidate to optimum fungal communities, and causing a better compost quality. This study illustrated the potential and fungi communities changing of MS as additives in composting.
Collapse
Affiliation(s)
- Wen Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Endian Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ping Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
29
|
Zheng G, Cheng Y, Zhu Y, Yang J, Wang L, Chen T. Correlation of microbial dynamics to odor production and emission in full-scale sewage sludge composting. BIORESOURCE TECHNOLOGY 2022; 360:127597. [PMID: 35835422 DOI: 10.1016/j.biortech.2022.127597] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Odor is inevitably produced during sewage sludge composting, and the subsequent pollution hinders the further development of composting technologies. Third-generation high-throughput sequencing was used to analyze microbial community succession, and the correlations between odor and microbial communities were evaluated. Hydrogen sulfide (47.5-87.9 %) and ammonia (9.4-49.9 %) contributed majorly to odor emissions, accounting for 93.7-98.5 % of the emissions. Volatile sulfur compounds were mainly produced in the mesophilic and pre-thermophilic phases (43.0-83.4 %), whereas ammonia was mainly produced in the thermophilic phase (52.1-59.4 %). Microorganisms dominant in the mesophilic and thermophilic phases correlated positively with odor production in the following order: Rhodocyclaceae > Clostridiaceae_1 > Hyphomicrobiaceae > Acidimicrobiales > Family_XI, whereas those dominant in the cooling phase showed negative correlations with odor production in the following order: Bacillus > Sphingobacteriaceae > Pseudomonadaceae > DSSF69 > Chitinophagaceae. The back mixing of mature compost is expected to serve as an economical measure for controlling odor during sewage sludge composting.
Collapse
Affiliation(s)
- Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuan Cheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Zhu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junxing Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Liu T, Klammsteiner T, Dregulo AM, Kumar V, Zhou Y, Zhang Z, Awasthi MK. Black soldier fly larvae for organic manure recycling and its potential for a circular bioeconomy: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155122. [PMID: 35405225 DOI: 10.1016/j.scitotenv.2022.155122] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Livestock farming and its products provide a diverse range of benefits for our day-to-day life. However, the ever-increasing demand for farmed animals has raised concerns about waste management and its impact on the environment. Worldwide, cattle produce enormous amounts of manure, which is detrimental to soil properties if poorly managed. Waste management with insect larvae is considered one of the most efficient techniques for resource recovery from manure. In recent years, the use of black soldier fly larvae (BSFL) for resource recovery has emerged as an effective method. Using BSFL has several advantages over traditional methods, as the larvae produce a safe compost and extract trace elements like Cu and Zn. This paper is a comprehensive review of the potential of BSFL for recycling organic wastes from livestock farming, manure bioconversion, parameters affecting the BSFL application on organic farming, and process performance of biomolecule degradation. The last part discusses the economic feasibility, lifecycle assessment, and circular bioeconomy of the BSFL in manure recycling. Moreover, it discusses the future perspectives associated with the application of BSFL. Specifically, this review discusses BSFL cultivation and its impact on the larvae's physiology, gut biochemical physiology, gut microbes and metabolic pathways, nutrient conservation and global warming potential, microbial decomposition of organic nutrients, total and pathogenic microbial dynamics, and recycling of rearing residues as fertilizer.
Collapse
Affiliation(s)
- Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Thomas Klammsteiner
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, 6020 Innsbruck, Austria
| | - Andrei Mikhailovich Dregulo
- Federal State Budgetary Educational Institution of Higher Education "Saint-Petersburg State University" 7-9 Universitetskaya emb., 199034, Saint- Petersburg, Russia.
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee 247667, Uttarakhand, India
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
31
|
Liu T, Awasthi MK, Wang X, Awasthi SK, Jiao M, Shivpal V, Zhou Y, Liu H, Zhang Z. Effects of further composting black soldier fly larvae manure on toxic metals and resistant bacteria communities by cornstalk amendment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150699. [PMID: 34600993 DOI: 10.1016/j.scitotenv.2021.150699] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Rapid composting by black soldier fly larvae (BSFL) may be insufficient to maturation and humification of composting and further composting is necessary. The purpose of this study was to explore cornstalk addition on toxic metals (Cu, Zn, Pb and Cd), toxic metals resistance bacterial (TMRB) destiny and their relationship with physicochemical factors during BSFL manure composting. High-throughput sequencing was performed by six treatments, namely T1 to T6, where T1 to T3 were BSFL manures from chicken, pig and dairy manure, respectively, and T4 to T6 were same manures and utilized cornstalk to adjust C/N to 25. The results showed that cornstalk amendment could enhance the toxic metals immobilization rate compared to control treatments in the ultimate product. TMRB indicated that the major potential hosts bacteria were Firmicutes, Bacteroidota, Proteobacteria, Acidobacteriota and Actinobacteriota, and the sum relative abundance were 63.33%, 90.62%, 83.62%, 69.38%, 50.66% and 90.52% in T1 to T6 at the end of composting. Bacteria diversity and heat map revealed composting micro-ecology with additive cornstalk to remarkably effect main resistant bacterial distribution via adjusting environmental factors and potential hosts bacterial. Finally, T5 treatment was able to greatly decrease the TMRB abundance, and improve the ability of composting and ultimate product quality.
Collapse
Affiliation(s)
- Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xuejia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Verma Shivpal
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
32
|
Wu D, Qu F, Li D, Zhao Y, Li X, Niu S, Zhao M, Qi H, Wei Z, Song C. Effect of Fenton pretreatment and bacterial inoculation on cellulose-degrading genes and fungal communities during rice straw composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151376. [PMID: 34740666 DOI: 10.1016/j.scitotenv.2021.151376] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/21/2021] [Accepted: 10/29/2021] [Indexed: 05/26/2023]
Abstract
The aims of this article were to study the effect of Fenton pretreatment and bacterial inoculation on cellulose-degrading genes and fungal communities during rice straw composting. The rice straw was pretreated by Fenton reactions and functional bacterial agents were then inoculated during the cooling phase of composting. Three treatment groups were carried out, the control (CK), Fenton pretreatment (FeW) and Fenton pretreatment and bacterial inoculation (FeWI). The results indicated that Fenton pretreatment and bacterial inoculation changed the fungal communities composition and increased fungal diversity, leading to changes in the cellulose-degrading genes. In addition, a network analysis showed that in the FeWI treatment, the fungi from modules 1, 5 and 8 were core hosts of the cellulose-degrading genes driving the cellulosic degradation. Moreover, Fenton pretreatment and bacterial inoculation changed the core module fungal communities and strengthened the correlation between the core fungi and the cellulose-degrading genes, thereby promoting cellulosic degradation. Based on redundancy and structural equation model analyses, the NH4+-N, TOC, pH and Shannon index were important factors influencing the variations in the cellulose-degrading genes. This study provides a foundation for cellulosic degradation during cellulosic waste composting.
Collapse
Affiliation(s)
- Di Wu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Fengting Qu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Dan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiang Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Sijie Niu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Maoyuan Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Haishi Qi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
33
|
Zhang M, Niu Y, Wang W, Bai SH, Luo H, Tang L, Chen F, Xu Z, Guo X. Responses of microbial function, biomass and heterotrophic respiration, and organic carbon in fir plantation soil to successive nitrogen and phosphorus fertilization. Appl Microbiol Biotechnol 2021; 105:8907-8920. [PMID: 34734313 DOI: 10.1007/s00253-021-11663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022]
Abstract
Carbon dioxide (CO2) emissions from forest ecosystems originate largely from soil respiration, and microbial heterotrophic respiration plays a critical role in determining organic carbon (C) stock. This study investigated the impacts of successive nitrogen (N) and phosphorus (P) fertilization after 9 years on soil organic C stock; CO2 emission; and microbial biomass, community, and function in a Chinese fir plantation. The annual fertilization rates were (1) CK, control without N or P fertilization; (2) N50, 50 kg N ha-1; (3) N100, 100 kg N ha-1; (4) P50, 50 kg P ha-1; (5) N50P50, 50 kg N ha-1 + 50 kg P ha-1; and (6) N100P50, 100 kg N ha-1 + 50 kg P ha-1. The N100P50 treatment had the highest cumulative soil CO2 emissions, but the CK treatment had the lowest cumulative soil CO2 emissions among all treatments. The declines of soil organic C (SOC) after successive 9-year fertilization were in the order of 100 kg N ha-1 year-1 > 50 kg N ha-1 year-1 > CK. Compared to the CK treatment, successive N fertilization significantly changed soil microbial communities at different application rates and increased the relative gene abundances of glycoside hydrolases, glycosyl transferases, carbohydrate-binding modules, and polysaccharide lyases at 100 kg N ha-1 year-1. Relative to P fertilization alone (50 kg P ha-1 year-1), combined N and P fertilization significantly altered the soil microbial community structure and favored more active soil microbial metabolism. Microbial community and metabolism changes caused by N fertilization could have enhanced CO2 emission from heterotrophic respiration and eventually led to the decrease in organic C stock in the forest plantation soil. KEY POINTS: • N fertilization, alone or with P, favored more active microbial metabolism genes. • 100 kg N ha-1 fertilization significantly changed microbial community and function. • N fertilization led to a "domino effect" on the decrease of soil C stock.
Collapse
Affiliation(s)
- Manyun Zhang
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.,Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
| | - Yun Niu
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia.,Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.,Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Weijin Wang
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
| | - Shahla Hosseini Bai
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
| | - Handong Luo
- Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Li Tang
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
| | - Fusheng Chen
- Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhihong Xu
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia. .,Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Xiaomin Guo
- Jiangxi Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|