1
|
Gaballah ES, Gao L, Shalaby EA, Yang B, Sobhi M, Ali MM, Samer M, Tang C, Zhu G. Performance and mechanism of a novel hydrolytic bacteria pretreatment to boost waste activated sludge disintegration and volatile fatty acids production during acidogenic fermentation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124399. [PMID: 39914216 DOI: 10.1016/j.jenvman.2025.124399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
In this study, an innovative mixed hydrolytic bacteria culture (HB) (the main dominant bacterial species: Lactobacillus acetotolerans), as an environmentally friendly pretreatment technique, was developed to enhance the volatile fatty acids (VFAs) production from waste-activated sludge (WAS). The highest VFAs production of 517 and 518 mg/g VSS were achieved with HB 8% and HB 8%-35 °C pretreatments, which were almost 3.6 folds compared to the control (143 mg/g VSS), respectively. The mechanism analysis revealed that HB boosted the bioavailability of organics released from WAS and significantly accelerated sludge solubilization. Protease and α-glucosidase enzymatic activity were improved and associated with hydrolysis and acidogenesis. Furthermore, the microbial community analysis showed that HB pretreatment significantly increased the hydrolytic and acidifying bacteria proportions (e.g., Veillonella, Macellibacteroides sp., Clostridium_sensu_stricto_1 and Bacteroides sp., etc.). This study provides a promising, low-cost, and eco-friendly approach for recovering resources from WAS and transforming them into high-value products.
Collapse
Affiliation(s)
- Eid S Gaballah
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; Agricultural Engineering Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Lei Gao
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Emad A Shalaby
- Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Biao Yang
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Mostafa Sobhi
- Agricultural and Bio-systems Engineering Department, Faculty of Agriculture, Alexandria University, Alexandria, 21526, Egypt
| | - Mahmoud M Ali
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China; Agricultural Engineering Research Institute (AEnRI), Agricultural Research Center (ARC), Giza, 12611, Egypt
| | - Mohamed Samer
- Department of Agricultural Engineering, Faculty of Agriculture, Cairo University, El-Gammaa Street, 12613, Giza, Egypt
| | - Chongpeng Tang
- China CAMCE Environmental Technology Co., Ltd, Beijing, 100080, China
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
2
|
Pasalari H, Gharibi H, Darvishali S, Farzadkia M. The effects of different pretreatment technologies on microbial community in anaerobic digestion process: A systematic review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:439-453. [PMID: 39464814 PMCID: PMC11499478 DOI: 10.1007/s40201-024-00917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/23/2024] [Indexed: 10/29/2024]
Abstract
Here we comprehensively review the available knowledge on effects of different pretreatment technologies on microbial population and microbial dynamics in anaerobic digestion (AD) fed with different substrates and different operational parameters. To identify peer-reviewed studies published in English-language journals, a comprehensive search was performed across multiple electronic databases. The eligible studies were analyzed to extract data and information pertaining to the configuration of anaerobic reactors, operational parameters, and various pretreatment processes such as chemical, biological, enzymatic, thermal, microaerobic, and ultrasonic. The findings derived from this current review demonstrated that different chemical, biological, and physical pretreatment technologies improve the biomethane potential (BMP) and potentially affect the dominant bacteria and archaea. Moreover, although hydrogenotrophic methanogenesis are more observed due to resistance to extreme conditions, methane production follows both aceticlastic and hydrogenotrophic pathways in AD assisted with different pretreatment process. Firmicutes and Bacteroidetes phyla of bacteria were the dominant hydrolytic bacteria due to synergetic effects of different pretreatment process on solubilization and bioavailability of recalcitrant substrates. In summary, a holistic understanding on bacteria and archaea communities, along with the mechanisms of the dominant microorganisms leads to enhanced stability and overall performance of anaerobic digestion (AD) processes. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-024-00917-x.
Collapse
Affiliation(s)
- Hasan Pasalari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, I.R. of Iran
| | - Hamed Gharibi
- Health Sciences Research Institute, University of California, Merced, USA
| | - Siamak Darvishali
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, I.R. of Iran
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, I.R. of Iran
| |
Collapse
|
3
|
Zhao K, Song G, Lu C, Wang J, Liu R, Hu C. Ultrasonication as anaerobic digestion pretreatment to improve sewage sludge methane production: Performance and microbial characterization. J Environ Sci (China) 2024; 146:15-27. [PMID: 38969444 DOI: 10.1016/j.jes.2023.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 07/07/2024]
Abstract
A large amount of sludge is inevitably produced during sewage treatment. Ultrasonication (US) as anaerobic digestion (AD) pretreatment was implemented on different sludges and its effects on batch and semi-continuous AD performance were investigated. US was effective in sludge SCOD increase, size decrease, and CH4 production in the subsequent AD, and these effects were enhanced with an elevated specific energy input. As indicated by semi-continuous AD experiments, the mean daily CH4 production of US-pretreated A2O-, A2O-MBR-, and AO-AO-sludge were 176.9, 119.8, and 141.7 NmL/g-VSadded, which were 35.1%, 32.1% and 78.2% higher than methane production of their respective raw sludge. The US of A2O-sludge achieved preferable US effects and CH4 production due to its high organic content and weak sludge structure stability. In response to US-pretreated sludge, a more diverse microbial community was observed in AD. The US-AD system showed negative net energy; however, it exhibited other positive effects, e.g., lower required sludge retention time and less residual total solids for disposal. US is a feasible option prior to AD to improve anaerobic bioconversion and CH4 yield although further studies are necessary to advance it in practice.
Collapse
Affiliation(s)
- Kai Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ge Song
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaojie Lu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiping Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Gong H, Zhou Y, Ma P, Xiao X, Liu H. Cobalt-Modified Black Phosphorus Nanosheets-Enabled Ferrate (VI) Activation for Efficient Chemiluminescence Detection of Thiabendazole. ACS Sens 2024; 9:2465-2475. [PMID: 38682311 DOI: 10.1021/acssensors.4c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The development of chemiluminescence-based innovation sensing systems and the construction of a sensing mechanism to improve the analytical performance of compounds remain a great challenge. Herein, we fabricated an advanced oxidation processes pretreated chemiluminescence (AOP-CL) sensing system via the introduction of cobalt-modified black phosphorus nanosheets (Co@BPNs) to achieve higher efficient thiabendazole (TBZ) detection. Co@BPNs, enriched with lattice oxygen, exhibited a superior catalytic performance for accelerating the decomposition of ferrate (VI). This Co@BPNs-based ferrate (VI) AOP system demonstrated a unique ability to selectively decompose TBZ, resulting in a strong CL emission. On this basis, a highly selective and sensitive CL sensing platform for TBZ was established, which exhibited strong resistance to common ions and pesticides interference. This was successfully applied to detecting TBZ in environmental samples such as tea and kiwi fruits. Besides, the TBZ detection mechanism was explored, Co@BPNs-based ferrate (VI) AOP system produced a high yield of ROS (mainly 1O2), which oxidized the thiazole-based structure of TBZ, generating chemical energy that was transferred to Co@BPNs via a chemical electron exchange luminescence (CIEEL) mechanism, leading to intense CL emission. Notably, this study not only proposed an innovative approach to enhance the chemical activity and CL properties of nanomaterials but also offered a new pathway for designing efficient CL probes for pollutant monitoring in complex samples.
Collapse
Affiliation(s)
- Hui Gong
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Yuxian Zhou
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Peihua Ma
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Houjing Liu
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Baffoe EE, Otoo SL, Kareem S, Dankwah JR. Evaluation of initial pH and urea hydrogen peroxide (UHP) co-pretreatment on waste-activated sludge. ENVIRONMENTAL RESEARCH 2024; 246:118155. [PMID: 38211719 DOI: 10.1016/j.envres.2024.118155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/13/2024]
Abstract
Wastewater treatment and conversion into renewable energy sources have been of great interest in recent times due to growing environmental pollution concerns and need for sustainable energy sources. Sewage sludge treatment can convert sludge into renewable energy. In this study, the impact of initial pH and urea hydrogen peroxide (UHP) co-pretreatment on sludge hydrolysis and anaerobic digestion was investigated. The pH of sludge was initially adjusted to 7, 9, and 11 before the addition of 8 mmol/g VS UHP. Under 24 h pretreatment, alkaline medium and UHP effectively enhanced sludge solubilization and hydrolysis. The combination of chemical, sonication, and centrifugation improved the extraction of extracellular polymerase substances released in soluble state. Secondly, anaerobic digestion was performed for 11 days to determine the influence of a lower mesophilic temperature (20 °C) and retention time on the pretreated sludge. The highest NH4+-N concentration of 5.32 g/L was recorded in pH 7+UHP. The most significant total VFA concentration of 13.1 g COD/L was observed in pH 7+UHP on day 9. Acetic acid, isovaleric acid and propionic acid accounted for 80%-83% of the total VFA composition in all pretreated reactors. Lower mesophilic temperature efficiently optimized UHP and VFA production in the pretreated reactors. Microbial metabolism was stabilized under a longer retention time. Alkaline pH and longer retention time elevated NH4+-N and VFA concentration. The results showed that initial pH and UHP co-pretreatment of waste activated sludge offer an alternative pathway for enhancing sludge hydrolysis and VFA production applicable in sludge treatment.
Collapse
Affiliation(s)
- Estella Efiba Baffoe
- School of Resources & Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei Province, 430070, China.
| | - Samuel Leumas Otoo
- School of Materials Science & Engineering, Wuhan University of Technology, Wuhan, Hubei Province, 430070, China
| | - Shefiu Kareem
- School of Materials Science & Engineering, Wuhan University of Technology, Wuhan, Hubei Province, 430070, China
| | | |
Collapse
|
6
|
Xiang Y, Xiong W, Yang Z, Xu R, Zhang Y, Wu M, Ye Y, Peng H, Sun W, Wang D. Metagenomic insights into the toxicity of carbamazepine to functional microorganisms in sludge anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170780. [PMID: 38340855 DOI: 10.1016/j.scitotenv.2024.170780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Contaminants of emerging concern (CECs) contained in sludge, such as carbamazepine, may be toxic to microorganisms and affect the biogenesis of methane during anaerobic digestion. In this study, different scales of anaerobic digesters were constructed to investigate the inhibitory effect of carbamazepine. Results showed that carbamazepine reduced methane production by 11.3 % and 62.1 % at concentrations of 0.4 and 2 mg/g TS, respectively. Carbamazepine hindered the dissolution of organic matter and the degradation of protein. Carbamazepine inhibited some fermentative bacteria, especially uncultured Aminicenantales, whose abundance decreased by 9.5-93.4 % under carbamazepine stress. It is worth noting that most prior studies investigated the effects of CECs only based on well-known microorganisms, ignoring the metabolisms of uncultured microorganisms. Genome-predicted metabolic potential suggested that 54 uncultured metagenome-assembled genomes (MAGs) associated with acidogenesis or acetogenesis. Therein, uncultured Aminicenantales related MAGs were proved to be acetogenic fermenters, their significant reduction may be an important reason for the decrease of methane production under carbamazepine stress. The toxicity of carbamazepine to microorganisms was mainly related to the overproduction of reactive oxygen species. This study elucidates the inhibition mechanism of carbamazepine and emphasizes the indispensable role of uncultured microorganisms in anaerobic digestion.
Collapse
Affiliation(s)
- Yinping Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Yanru Zhang
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, PR China
| | - Mengru Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yuhang Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Haihao Peng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Weimin Sun
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou 510650, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
7
|
Wang Y, Zhang Z, Wang X, Guo H, Zhu T, Ni BJ, Liu Y. Percarbonate-strengthened ferrate pretreatment for enhancing short-chain fatty acids production from sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166771. [PMID: 37660812 DOI: 10.1016/j.scitotenv.2023.166771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/20/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Sewage sludge management poses a pressing environmental challenge, demanding the implementation of sustainable solutions to facilitate resource recovery. Short-chain fatty acids (SCFAs) serve as valuable chemicals and renewable energy sources, underscoring the importance of maximizing their production to achieve sustainable waste management. Therefore, this study proposes a novel and green strategy, i.e., percarbonate-strengthened ferrate pretreatment to enhance SCFAs synthesis from sewage sludge, because percarbonate could activate ferrate oxidation through providing (bi) carbonate and hydrogen peroxide. Results show that percarbonate largely reduces the required ferrate dosage for fermentation improvement, and their combination exhibits obvious synergistic effects on SCFAs accumulation and sludge reduction. Under the optimal pretreatment conditions, SCFAs production is promoted to 3670.2 mg COD/L, representing a remarkable increase of 5512.4 %, 156.0 % or 395.1 % compared to the control, percarbonate alone or ferrate alone, respectively. Mechanism explorations demonstrate that percarbonate-strengthened ferrate pretreatment significantly enhances sludge solubilization, elevates substrate biodegradability, and alters the physiochemical properties of sludge to favor organics fermentation. The synergistic effects on solid organics release and sludge properties can be attributed to the combined mechanisms of enhanced oxidation and alkaline hydrolysis. Further investigations on metabolic pathways reveal that the combination substantially improves key enzyme activities associated with hydrolysis and SCFAs formation, while severely inhibits that of SCFAs consumption. These findings are further supported by the functional genes coding relevant enzymes. Moreover, the combination alters microbial structures and compositions, leading to the screening and enrichment of key microbes that facilitate SCFAs accumulation. This innovative strategy holds significant promise in advancing sewage sludge management towards a more circular and resource-efficient paradigm.
Collapse
Affiliation(s)
- Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zixin Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
8
|
Guo B, Zeng J, Bai H, Hao Y, Yan X, Wang S. Revitalizing urban lake cleanup: optimizing flocculation and dewatering of dredged sludge using cation polyacrylamide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119462-119472. [PMID: 37924408 DOI: 10.1007/s11356-023-30666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023]
Abstract
This study investigated the effect of cation polyacrylamide (CPAM) on the dewatering performance of dredged sludge by batch experiments and compared it with a novel organic agent (DRC-300) and a traditional inorganic agent (PAC). The results of batch experiments suggested that the CPAM could promote the dewatering performance of dredged sludge inland lake. And at the dosage of 0.07% g/g suspended solids (SS), the moisture content of 37% could be achieved with CAPM. CPAM could reduce the sludge resistance filtration (SRF) and capillary adsorption time (CST) by 73% and 62%, respectively. Mechanism experiments revealed that CPAM improved the dewatering performance of dredged mud by increasing the sedimentation rate, accelerating the dissolution of organic matter, neutralizing the surface charge of sludge, and improving the void structure. Furthermore, CPAM outperformed DRC-300 and PAC in above aspects.
Collapse
Affiliation(s)
- Bing Guo
- CCCC National Engineering Research Center of Dredging Technology and Equipment Co., Ltd, Shanghai, 200082, China.
| | - Jiachen Zeng
- CCCC National Engineering Research Center of Dredging Technology and Equipment Co., Ltd, Shanghai, 200082, China
| | - He Bai
- CCCC National Engineering Research Center of Dredging Technology and Equipment Co., Ltd, Shanghai, 200082, China
| | - Yuchi Hao
- CCCC National Engineering Research Center of Dredging Technology and Equipment Co., Ltd, Shanghai, 200082, China
| | - Xiaowei Yan
- CCCC National Engineering Research Center of Dredging Technology and Equipment Co., Ltd, Shanghai, 200082, China
| | - Sheng Wang
- CCCC National Engineering Research Center of Dredging Technology and Equipment Co., Ltd, Shanghai, 200082, China
| |
Collapse
|
9
|
Wang Z, Li X, Liu H, Zhou T, Li J, Siddiqui MA, Lin CSK, Rafe Hatshan M, Huang S, Cairney JM, Wang Q. Enhancing methane production from anaerobic digestion of secondary sludge through lignosulfonate addition: Feasibility, mechanisms, and implications. BIORESOURCE TECHNOLOGY 2023; 390:129868. [PMID: 37844805 DOI: 10.1016/j.biortech.2023.129868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
This study explores the feasibility of using lignosulfonate, a byproduct of the pulp and paper industry, to facilitate sludge anaerobic digestion. Biochemical methane potential assays revealed that the maximum methane production was achieved at 60 mg/g volatile solids (VS) lignosulfonate, 22.18 % higher than the control. One substrate model demonstrated that 60 mg/g VS lignosulfonate boosted the hydrolysis rate, biochemical methane potential, and degradation extent of secondary sludge by 19.12 %, 21.87 %, and 21.11 %, respectively, compared to the control. Mechanisms unveiled that lignosulfonate destroyed sludge stability, promoted organic matter release, and enhanced subsequent hydrolysis, acidification, and methanogenesis by up to 31.30 %, 74.42 % and 28.16 %, respectively. Phytotoxicity assays confirmed that lignosulfonate promoted seed germination and root development of lettuce and Chinese cabbage, with seed germination index reaching 170 ± 10 % and 220 ± 22 %, respectively. The findings suggest that lignosulfonate addition offers a sustainable approach to sludge treatment, guiding effective management practices.
Collapse
Affiliation(s)
- Zhenyao Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Jibin Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Muhammad Ahmar Siddiqui
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Mohammad Rafe Hatshan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Siyu Huang
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
| | - Julie M Cairney
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
10
|
Liu X, Wu F, Zhang M, Wan C. Role of potassium ferrate in anaerobic digestion of waste activated sludge: Phenotypes and genotypes. BIORESOURCE TECHNOLOGY 2023; 383:129247. [PMID: 37247789 DOI: 10.1016/j.biortech.2023.129247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
The specific effects of potassium ferrate (PF) on acid and methane production in anaerobic digestion need further exploration. This study comprehensively investigated the role of PF in organic matter conversion in waste activated sludge (WAS) digestion. Due to the high pH produced by PF self-decomposition, the hydrolysis of organic matter was promoted, whereas the methanogenesis was inhibited. PF could further directly oxidize protein and polysaccharides released by hydrolysis to produce volatile fatty acids (VFAs) and involve in the transformation of ammonia nitrogen. PF could induce the enrichment of functional genes related to fermentation pathways and lessen those related to methanogenesis, and the phylum resistant to PF oxidation and the strains capable of producing VFAs were enriched, resulting in VFAs accumulation. This study analyzed the participation way of PF in anaerobic digestion and provided a theoretical basis for the application of PF in promoting VFAs recovery from sludge digestion.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Fengjie Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Min Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
| |
Collapse
|
11
|
Wang X, Wang Y, Zheng K, Tian L, Zhu T, Chen X, Zhao Y, Liu Y. Enhancing methane production from waste activated sludge with heat-assisted potassium ferrate (PF) pretreatment: Reaction kinetics and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160441. [PMID: 36436650 DOI: 10.1016/j.scitotenv.2022.160441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/10/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
This work proposed a novel strategy via heat-assisted potassium ferrate (PF) pretreatment to enhance methane production from waste activated sludge (WAS) during anaerobic digestion. In this research, five dosages of PF (i.e., 0, 0.05, 0.1, 0.3 and 0.5 g/g VSS) at two temperatures (i.e., 25 °C and 55 °C) were explored. Biochemical methane potential experiments illustrated that heat-assisted PF pretreatment improved cumulative methane production with the maximum yield up to 163.93 mL CH4/g VSS, 149.0 %, 119.6 % and 121.0 % of that in the control, individual 0.5 g PF/g VSS and individual heat (i.e., 55 °C) pretreatment digesters, respectively. The maximum methane potential (B0) was promoted by 63.2 % with heat-assisted PF pretreatment compared to the control, while the hydrolysis rate (k) changed slightly. Mechanism analysis revealed that heat-assisted PF pretreatment accelerated WAS solubilization and enhanced the biodegradability of released substances, providing more available matrix for bacteria during the following anaerobic digestion processes. Microbial community analysis exhibited that several microbes such as Proteiniclasticum sp., Sedimentibacter sp. and Methanosaeta sp. associated with hydrolysis, acidification and methanogenesis respectively were improved after heat-assisted PF pretreatment. In addition, the relative bioactivities of protease, butyrate kinase and acetate kinase were also increased. Furthermore, variation of dominant genes associated with methane production indicated that acetate-dependent methanogenesis was the main pathway while CO2-dependent methanogenesis pathway was inhibited by heat-assisted PF pretreatment.
Collapse
Affiliation(s)
- Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Kaixin Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Lixin Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fujian 350116, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
12
|
Zheng K, Wang Y, Wang X, Zhu T, Chen X, Zhao Y, Sun P, Tong Y, Liu Y. Enhanced methane production from anaerobic digestion of waste activated sludge by combining ultrasound with potassium permanganate pretreatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159331. [PMID: 36220480 DOI: 10.1016/j.scitotenv.2022.159331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The influence of ultrasound (US) and potassium permanganate (KMnO4) co-pretreatment on anaerobic digestion of waste activated sludge (WAS) was investigated in this survey. Results showed that KMnO4 (0.3 g/g TSS) cooperated with US (1 W/mL, 15 min) pretreatment significantly increased the cumulative methane yield to 174.44 ± 3.65 mL/g VS compared to the control group (108.72 ± 2.56 mL/g VS), solo US (125.39 ± 2.56 mL/g VS), and solo KMnO4 pretreatment group (160.83 ± 1.61 mL/g VS). Mechanistic investigation revealed that US combined with KMnO4 pretreatment effectively disrupted the structure of extracellular polymeric substances and cell walls by generating reactive radicals, accelerating the release of organics and hydrolytic enzymes as well as improving the biodegradability of soluble organics. Modeling analysis illustrated that the biochemical methane potential and hydrolysis rate of WAS were enhanced under US + KMnO4 pretreatment. Microbial community distribution indicated that the co-pretreatment of US and KMnO4 elevated the total relative abundance of functional microorganisms associated with anaerobic digestion (22.01 %) compared to the control (10.69 %), US alone (12.24 %) and KMnO4 alone (16.20 %).
Collapse
Affiliation(s)
- Kaixin Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fujian 350116, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
13
|
Zheng K, Wang Y, Guo H, Zhu T, Zhao Y, Liu Y. Potassium permanganate pretreatment effectively improves methane production from anaerobic digestion of waste activated sludge: Reaction kinetics and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157402. [PMID: 35850326 DOI: 10.1016/j.scitotenv.2022.157402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 05/21/2023]
Abstract
As a powerful oxidizing agent, potassium permanganate (KMnO4) has attracted widespread interest in sludge treatment and contaminant removal. However, its effect on the anaerobic digestion of waste activated sludge (WAS) is ambiguous. This investigation was designed to provide perspectives into this problem. In comparison with the control, 0.3 g KMnO4/g TSS pretreatment enhanced the methane production by 78.82 %. Model analysis demonstrated that the KMnO4 pretreatment enhanced the biochemical methane potential (B0) of WAS. Mechanistic studies elucidated that the KMnO4 pretreatment process generated reactive radicals such as ·OH, ·O2- and 1O2, which contributed to sludge disintegration and biodegradation process of dissolved substances, thus resulting in more substances available for subsequent methane generation. Enzyme activity analysis indicated that KMnO4 pretreatment facilitated the activities of key enzymes associated with anaerobic digestion to various degrees. Microbial analysis illustrated that the relative abundance of functional microorganisms was significantly elevated after KMnO4 pretreatment, which was conducive to methane production.
Collapse
Affiliation(s)
- Kaixin Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
14
|
Wang Y, Wang X, Zheng K, Guo H, Tian L, Zhu T, Liu Y. Ultrasound-sodium percarbonate effectively promotes short-chain carboxylic acids production from sewage sludge through anaerobic fermentation. BIORESOURCE TECHNOLOGY 2022; 364:128024. [PMID: 36174896 DOI: 10.1016/j.biortech.2022.128024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Short-chain carboxylic acids (SCCAs) production from sewage sludge via anaerobic fermentation is usually restricted by low substrates availability and rapid products consumption. Therefore, the ultrasound (US)-sodium percarbonate (SPC) technique was proposed to effectively break the bottlenecks. Results showed the total SCCAs yield, acetate yield and particulate organics reduction respectively attained 392.8 mg COD/g VSS, 204.6 mg COD/g VSS and 47.4 % under the optimal condition. Mechanistic explorations disclosed that US + SPC largely reduced biodegradation resistances of particulate organics and improved sludge biodegradability. The destruction of spatial structure was the inherent mechanisms for initial solubilization and further degradation of solid-phase sludge. Besides, US + SCP up-regulated hydrolytic and SCCAs-forming enzymes, but downregulated the key enzyme for methanation. Meanwhile, US + SPC altered the microbial structure and stimulated functional microorganism enrichment, well correlated with substrate biotransformation and products output. Overall, this strategy could effectively enhance SCCAs production from WAS and reduce the environmental risk for subsequent sludge disposal.
Collapse
Affiliation(s)
- Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Kaixin Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Lixin Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
15
|
Godvin Sharmila V, Kumar G, Sivashanmugham P, Piechota G, Park JH, Adish Kumar S, Rajesh Banu J. Phase separated pretreatment strategies for enhanced waste activated sludge disintegration in anaerobic digestion: An outlook and recent trends. BIORESOURCE TECHNOLOGY 2022; 363:127985. [PMID: 36126843 DOI: 10.1016/j.biortech.2022.127985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 05/16/2023]
Abstract
A significant ecological problem was developed on disposing the enormous amounts of waste activated sludge (WAS) produced by traditional wastewater treatment. There have been various attempts recently originated to develop innovative methods for substantial sludge treatment. The most frequently used approach for treating sludge to produces methane and reduces sludge is anaerobic treatment. The hydrolysis phase in WAS limits the breakdown of complex macrobiotic compounds. The presence of extracellular polymeric substances (EPS) in biomass prevents the substrate from being hydrolyzed. Enhancing substrate hydrolysis involves removal of EPS preceded by phase separated pretreatment. Hence, a critical assessment of various phase separated pretreatment that has a remarkable effect on the anaerobic digestion process was documented in detail. Moreover, the economic viability and energy requirement of this treatment process was also discussed. Perspectives and recommendations for methane production were also provided to attain effectual sludge management.
Collapse
Affiliation(s)
- V Godvin Sharmila
- Department of Civil Engineering, Rohini College of Engineering and Technology, Kanyakumari, Tamil Nadu, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - P Sivashanmugham
- Department of Chemical Engineering, National Institute of Technology, Tiruchirapalli, Tamil Nadu, India
| | - Grzegorz Piechota
- GPCHEM, Laboratory of Biogas Research and Analysis, 40a/3 Legionów Str., 87-100 Toruń, Poland
| | - Jeong-Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, Republic of Korea
| | - S Adish Kumar
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamilnadu, India
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamilnadu 610005, India.
| |
Collapse
|
16
|
Park J, Cayetano RDA, Kim GB, Jo Y, Kwon Y, Lei Z, Kim SH. Sludge disintegration and anaerobic digestion enhancement by alkaline-thermal pretreatment: Economic evaluation and microbial population analysis. BIORESOURCE TECHNOLOGY 2022; 346:126594. [PMID: 34953997 DOI: 10.1016/j.biortech.2021.126594] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Alkaline-thermal pretreatment was examined for waste activated sludge (WAS) disintegration and subsequent anaerobic digestion (AD). Pretreatment at 60 °C was estimated to provide better economic benefits than higher temperature conditions. The maximum methane yield of 215.6 mL/g COD was achieved when WAS was pretreated at 60 °C and pH 10 for 24 h, which was 46.6% higher than untreated WAS. The pretreatment condition also provided the maximum net savings. The degree of sludge disintegration, considering both loosely bound-extracellular polymeric substance and soluble COD, would be a better indicator to predict anaerobic digestibility than the solubilization rate that considers soluble COD alone. Microbial analysis implied that pretreatment facilitated the growth of hydrolytic bacteria, phyla Bacteroidetes and Firmicutes. In addition, sludge pretreatment enhanced the growth of both acetoclastic and hydrogenotrophic methanogens, genera Methanosaeta and Methanobacterium. The mild AT-PT would be useful to enhance the digestion performance and economic benefit of WAS digestion.
Collapse
Affiliation(s)
- Jungsu Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Roent Dune A Cayetano
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Gi-Beom Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yura Jo
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yeelyung Kwon
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
17
|
He H, Xin X, Qiu W, Li D, Liu Z, Ma J. Waste sludge disintegration, methanogenesis and final disposal via various pretreatments: Comparison of performance and effectiveness. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2021; 8:100132. [PMID: 36156996 PMCID: PMC9488032 DOI: 10.1016/j.ese.2021.100132] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 05/05/2023]
Abstract
This study compared the three wastewater pretreatments of ozonation, Fe2+-S2O8 2- and freeze-thawing (F/T) in the disintegration, anaerobic digestion (AD) and final disposal of the sludge. The F/T pretreatment increased the dewaterability and settleability of the sludge by 7.8% and 47.1%, respectively. The ozonation pretreatment formed more volatile fatty acids (VFAs), with a peak value of 320.82 mg SCOD/L and controlled the release of sulfides. The Fe2+-S2O8 2- pretreatment removed heavy metals through the absorption and flocculation of ferric particles formed in-situ. During the anaerobic digestion of the sludge, the ozonation pretreatment accelerated the hydrolysis rate (k) rather than the biochemical methane potential (B0) of the sludge due to the high VFA content in the supernatant. Comparatively, the F/T pretreatment facilitated the B0 with great economic efficiency by enhancing the solubilisation of the sludge. Although Fe2+-S2O8 2- pretreatment decreased the methane production, the ferric particle was a unique advantage in the disintegration and harmless disposal of the sludge. The digested sludge had more VFAs after ozonation pretreatment, which contributed to the recycling of carbon. In addition, the lower sludge volume could save the expense of transportation and disposal by ozonation pretreatment. Different pretreatments had different characteristics. The comparative study provided information allowing the selection of the type of pretreatment to achieve different objectives of the treatment and disposal of sludge.
Collapse
Affiliation(s)
- Haiyang He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaodong Xin
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Wei Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- Corresponding author.
| | - Dong Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhicen Liu
- School of Geosciences, The University of Edinburgh, Edinburgh, EH8 9JU, UK
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- Corresponding author.
| |
Collapse
|