1
|
Liu H, Zhou Z, Long C, Qing T, Feng B, Zhang P, Chen YP. Light/dark synergy enhances cyanophycin accumulation in algal-bacterial consortia: Boosted strategy for nitrogen recovery from wastewater. BIORESOURCE TECHNOLOGY 2025; 425:132309. [PMID: 40023333 DOI: 10.1016/j.biortech.2025.132309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Recovering the nitrogen-rich biopolymer cyanophycin [(β-Asp-Arg)n] from algal-bacterial consortia enhances the reclamation of value-added chemicals from wastewater. However, the modulation of light/dark conditions on cyanophycin accumulation remain unknown. In this study, the trends and mechanisms of cyanophycin synthesis in algal-bacterial consortia under light/dark conditions were investigated. The results showed that cyanophycin production during the dark periods ranged from 137-150 mg/g MLSS (mixed liquid suspended solids), which was 32 %-38 % higher than those during the light period (p < 0.001). Metatranscriptomics results demonstrated that 50 metagenome-assembled genomes contribute to cyanophycin production, with the Planktothrix genus being the dominant contributor. Metabolomics findings suggested that algal-bacterial consortia produce higher level of arginine for cyanophycin synthesis under light conditions. This study demonstrates the feasibility of increasing cyanophycin production by merging light/dark cycles, and offers a novel strategy for high yield of valuable biopolymers from wastewater substrate.
Collapse
Affiliation(s)
- Hongyuan Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Zirui Zhou
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Caicheng Long
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Taiping Qing
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Bo Feng
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Peng Zhang
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - You-Peng Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400000, China
| |
Collapse
|
2
|
Lakshmikandan M, Li M. Advancements and hurdles in symbiotic microalgal co-cultivation strategies for wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125018. [PMID: 40106994 DOI: 10.1016/j.jenvman.2025.125018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/15/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Microalgae offer significant potential in various industrial applications, such as biofuel production and wastewater treatment, but the economic barriers to their cultivation and harvesting have been a major obstacle. However, a promising strategy involving co-cultivating microalgae in wastewater treatment could overcome the limitations of monocultivation and open the possibility for increased integration of microalgae into various industrial processes. This symbiotic relationship between microalgae and other microbes can enhance nutrient removal efficiency, increase value-added bioproduct production, promote carbon capture, and decrease energy consumption. However, unresolved challenges, such as the competition between microalgae and other microbes within the wastewater treatment system, may result in imbalances and reduced efficiency. The complexity of managing multiple microbes in a co-cultivation system poses difficulties in achieving stability and consistency in bioproduct production. In response to these challenges, strategies such as optimizing nutrient ratios, manipulating environmental conditions, understanding the dynamics of microbial relationships, and employing genetic modification to enhance the metabolic capabilities of microalgae and improve their competitiveness are critical in transitioning to a more sustainable path. Hence, this review will provide an in-depth analysis of recent advancements in symbiotic microalgal co-cultivation for applications in wastewater treatment and CO2 utilization, as well as discuss approaches for improving microalgal strains through genetic modification. Furthermore, the review will explore the use of efficient bioreactors, advanced control systems, and advancements in biorefinery processes.
Collapse
Affiliation(s)
- Manogaran Lakshmikandan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
3
|
Toia GV, Ananthakrishnan L. The Environmental Impact of Iodinated Contrast Media: Strategies for Optimized Use and Recycling. J Comput Assist Tomogr 2025; 49:203-214. [PMID: 39631428 DOI: 10.1097/rct.0000000000001674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
ABSTRACT Iodinated contrast media (ICM) is an integral and ubiquitous component of modern diagnostic imaging. Although most radiology practices are familiar with ICM administration and physiological excretion, they may be less aware of how much ICM is wasted on a per exam basis. Furthermore, radiologists may not recognize the environmental fate of discarded ICM waste. In an evolving world where medical practices are increasingly cognizant of their environmental footprint and radiology practices are considered high consumers of resources, it behooves the radiology community to understand the ICM lifecycle and ways to mitigate unnecessary waste. This review article explains the origin and environmental fate of discarded ICM, with special focus on wastewater contamination. Secondly, the article focuses on feasible options to both optimize use and decrease consumable waste. Specifically, the article addresses ICM vial size inventory diversification, multi-use ICM vials, syringeless contrast injectors, and the potential for using multi-energy imaging (dual-energy or photon counting CT) to accomplish these goals. Finally, the authors share their institutional experience participating in an ICM recycling program and its current departmental impact.
Collapse
Affiliation(s)
- Giuseppe V Toia
- Departments of Radiology and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison WI; and
| | | |
Collapse
|
4
|
Macías-de la Rosa A, López-Rosales L, Contreras-Gómez A, Sánchez-Mirón A, García-Camacho F, Cerón-García MDC. Salinity as an Abiotic Stressor for Eliciting Bioactive Compounds in Marine Microalgae. Toxins (Basel) 2024; 16:425. [PMID: 39453201 PMCID: PMC11510898 DOI: 10.3390/toxins16100425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
This study investigated the impact of culture medium salinity (5-50 PSU) on the growth and maximum photochemical yield of photosystem II (Fv/Fm) and the composition of carotenoids, fatty acids, and bioactive substances in three marine microalgae (Chrysochromulina rotalis, Amphidinium carterae, and Heterosigma akashiwo). The microalgae were photoautotrophically cultured in discontinuous mode in a single stage (S1) and a two-stage culture with salt shock (S2). A growth model was developed to link biomass productivity with salinity for each species. C. rotalis achieved a maximum biomass productivity (Pmax) of 15.85 ± 0.32 mg·L-1·day-1 in S1 and 16.12 ± 0.13 mg·L-1·day-1 in S2. The salt shock in S2 notably enhanced carotenoid production, particularly in C. rotalis and H. akashiwo, where fucoxanthin was the main carotenoid, while peridinin dominated in A. carterae. H. akashiwo also exhibited increased fatty acid productivity in S2. Salinity changes affected the proportions of saturated, monounsaturated, and polyunsaturated fatty acids in all three species. Additionally, hyposaline conditions boosted the production of haemolytic substances in A. carterae and C. rotalis.
Collapse
Affiliation(s)
- Adrián Macías-de la Rosa
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain; (A.M.-d.l.R.); (A.C.-G.); (A.S.-M.); (F.G.-C.); (M.d.C.C.-G.)
| | - Lorenzo López-Rosales
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain; (A.M.-d.l.R.); (A.C.-G.); (A.S.-M.); (F.G.-C.); (M.d.C.C.-G.)
- Research Centre on Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, 04120 Almeria, Spain
| | - Antonio Contreras-Gómez
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain; (A.M.-d.l.R.); (A.C.-G.); (A.S.-M.); (F.G.-C.); (M.d.C.C.-G.)
- Research Centre on Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, 04120 Almeria, Spain
| | - Asterio Sánchez-Mirón
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain; (A.M.-d.l.R.); (A.C.-G.); (A.S.-M.); (F.G.-C.); (M.d.C.C.-G.)
- Research Centre on Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, 04120 Almeria, Spain
| | - Francisco García-Camacho
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain; (A.M.-d.l.R.); (A.C.-G.); (A.S.-M.); (F.G.-C.); (M.d.C.C.-G.)
- Research Centre on Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, 04120 Almeria, Spain
| | - María del Carmen Cerón-García
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain; (A.M.-d.l.R.); (A.C.-G.); (A.S.-M.); (F.G.-C.); (M.d.C.C.-G.)
- Research Centre on Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, 04120 Almeria, Spain
| |
Collapse
|
5
|
Panchal SK, Heimann K, Brown L. Improving Undernutrition with Microalgae. Nutrients 2024; 16:3223. [PMID: 39339823 PMCID: PMC11435262 DOI: 10.3390/nu16183223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Undernutrition is an important global health problem, especially in children and older adults. Both reversal of maternal and child undernutrition and heathy ageing have become United Nations-supported global initiatives, leading to increased attention to nutritional interventions targeting undernutrition. One feasible option is microalgae, the precursor of all terrestrial plants. Most commercially farmed microalgae are photosynthetic single-celled organisms producing organic carbon compounds and oxygen. This review will discuss commercial opportunities to grow microalgae. Microalgae produce lipids (including omega-3 fatty acids), proteins, carbohydrates, pigments and micronutrients and so can provide a suitable and underutilised alternative for addressing undernutrition. The health benefits of nutrients derived from microalgae have been identified, and thus they are suitable candidates for addressing nutritional issues globally. This review will discuss the potential benefits of microalgae-derived nutrients and opportunities for microalgae to be converted into food products. The advantages of microalgae cultivation include that it does not need arable land or pesticides. Additionally, most species of microalgae are still unexplored, presenting options for further development. Further, the usefulness of microalgae for other purposes such as bioremediation and biofuels will increase the knowledge of these microorganisms, allowing the development of more efficient production of these microalgae as nutritional interventions.
Collapse
Affiliation(s)
- Sunil K Panchal
- School of Science, Western Sydney University, Richmond, NSW 2753, Australia
| | - Kirsten Heimann
- College of Medicine and Public Health, Flinders University, Health Science Building, Building 4, Registry Road, Bedford Park, Adelaide, SA 5042, Australia
| | - Lindsay Brown
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
6
|
Ravi Kiran B, Singh P, Kuravi SD, Mohanty K, Venkata Mohan S. Modulating cultivation regimes of Messastrum gracile SVMIICT7 for biomass productivity integrated with resource recovery via hydrothermal liquefaction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120458. [PMID: 38479286 DOI: 10.1016/j.jenvman.2024.120458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/09/2023] [Accepted: 02/20/2024] [Indexed: 04/07/2024]
Abstract
The present study was designed to assess Messastrum gracile SVMIICT7 potential in treating dairy wastewater (autoclaved (ADWW) and raw (DWW)) with relation to nutrient removal, in-vivo Chl-a-based biomass, and bio-oil synthesis. Chlorophyll a fluorescence kinetics revealed improved photochemical efficiency (0.639, Fv/Fm) in M. gracile when grown with DWW. This may be owing to enhanced electron transport being mediated by an effective water-splitting complex at photosystem (PSII) of thylakoids. The increase in ABS/RC observed in DWW can be attributed to the elevated chlorophyll content and reduced light dissipation, as evident by higher values of ETo/RC and a decrease in non-photochemical quenching (NPQ). M. gracile inoculated in DWW had the highest Chl-a-biomass yield (1.8 g L-1) and biomolecules while maximum nutrient removal efficiency was observed in ADWW (83.7% TN and 60.07% TP). M. gracile exhibited substantial bio-oil yield of 29.6% and high calorific value of 37.19 MJ kg-1, predominantly composed of hydrocarbons along with nitrogen and oxygen cyclic compounds. This research offers a thorough investigation into wastewater treatment, illustrating the conversion of algal biomass into valuable energy sources and chemical intermediates within the framework of a biorefinery.
Collapse
Affiliation(s)
- Boda Ravi Kiran
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500 007, India
| | - Pooja Singh
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Sri Divya Kuravi
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - S Venkata Mohan
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Bulynina SS, Ziganshina EE, Ziganshin AM. Growth Efficiency of Chlorella sorokiniana in Synthetic Media and Unsterilized Domestic Wastewater. BIOTECH 2023; 12:53. [PMID: 37606440 PMCID: PMC10443301 DOI: 10.3390/biotech12030053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
Incorporating a variety of microalgae into wastewater treatment is considered an economically viable and environmentally sound strategy. The present work assessed the growth characteristics of Chlorella sorokiniana during cultivation in balanced synthetic media and domestic wastewater. Increasing the NH4+-N concentration to 360 mg L-1 and adding extra PO43--P and SO42--S (up to 80 and 36 mg L-1, respectively) contributed to an increase in the total biomass levels (5.7-5.9 g L-1) during the cultivation of C. sorokiniana in synthetic media. Under these conditions, the maximum concentrations of chlorophylls and carotenoids were 180 ± 7.5 and 26 ± 1.4 mg L-1, respectively. Furthermore, when studying three types of domestic wastewaters, it was noted that only one wastewater contributed to the productive growth of C. sorokiniana, but all wastewaters stimulated an increased accumulation of protein. Finally, the alga, when growing in optimal unsterilized wastewater, showed a maximum specific growth rate of 0.73 day-1, a biomass productivity of 0.21 g L-1 day-1, and 100% NH4+-N removal. These results demonstrate that the tested alga actively adapts to changes in the composition of the growth medium and accumulates high levels of protein in systems with poor-quality water.
Collapse
Affiliation(s)
| | | | - Ayrat M. Ziganshin
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Republic of Tatarstan, Russia; (S.S.B.); (E.E.Z.)
| |
Collapse
|
8
|
Hou X, Li Y, Zhang X, Ge S, Mu Y, Shen J. Unraveling the intracellular and extracellular self-defense of Chlorella sorokiniana toward highly toxic pyridine stress. BIORESOURCE TECHNOLOGY 2023:129366. [PMID: 37343803 DOI: 10.1016/j.biortech.2023.129366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/17/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
A bottleneck of microalgae-based techniques for wastewater bioremediation is activity inhibition of microalgae by toxic pollutants. The defense strategies of Chlorella sorokinana against toxic pyridine were studied. Results indicated that pyridine caused photoinhibition and reactive oxygen species overproduction in a concentration-dependent manner. The 50% inhibitory concentration of pyridine (147 mg L-1) destroyed C/N balance, disrupted multiple metabolic pathways of C. sorokinana. In response to pyridine stress, ascorbate peroxidase and catalase activities increased to scavenge reactive oxygen species under pyridine concentrations lower than 23 mg L-1. At higher pyridine concentrations, the activation of calcium signaling pathways and phytohormones represented the predominant defense response. Extracellular polymeric substances increased 3.6-fold in 147 mg L-1 group than control, which interacted with pyridine through hydrophobic and aromatic stacking to resist pyridine entering algal cells. Unraveling the intracellular and extracellular self-defense mechanisms of microalgae against pyridine stress facilitates the development of microalgal-based technology in wastewater bioremediation.
Collapse
Affiliation(s)
- Xinying Hou
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yan Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaoyu Zhang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shijian Ge
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jinyou Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
9
|
Gorzelnik SA, Zhu X, Angelidaki I, Koski M, Valverde-Pérez B. Daphnia magna as biological harvesters for green microalgae grown on recirculated aquaculture system effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162247. [PMID: 36791858 DOI: 10.1016/j.scitotenv.2023.162247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The sustainability of recycling aquaculture systems (RAS) is challenged by nutrient discharges, which cause water eutrophication. Efficient treatments for RAS effluents are needed to mitigate its environmental impacts. Microalgae assimilate nutrients and dissolved carbon into microbial biomass with value as feed or food ingredient. However, they are difficult to harvest efficiently. Daphnia magna is an efficient filter feeder that grazes on microalgae at high rates and serves as valuable fish feed. Combining nutrient removal by microalgae and biomass harvesting by D. magna could be a cost-effective solution for wastewater valorization. Nutrient removal from unsterilized aquaculture wastewater was evaluated using the microalgae species Chlorella vulgaris, Scenedesmus dimorphus, and Haematococcus pluvialis. The first two algae were subsequently harvested using D. magna as a grazer, while H. pluvialis failed to grow stably. All phosphorus was removed, while only 50-70 % nitrogen was recovered, indicating phosphorus limitation. Shortening the hydraulic retention time (HRT) or phosphorus dosing resulted in increased nitrogen removal. C. vulgaris cultivation was unstable at 3 days HRT or when supplied with extra phosphorus at 5 days HRT. D. magna grew on produced algae accumulating protein at 20-30 % of dry weight, with an amino acid profile favorable for use as high value fish feed. Thus, this study demonstrates the application of a two steps multitrophic process to assimilate residual nutrients into live feeds suitable for fish.
Collapse
Affiliation(s)
- Stanley A Gorzelnik
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark
| | - Xinyu Zhu
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DTU, Søltofts Plads 228A, 2800 Kgs. Lyngby, Denmark
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DTU, Søltofts Plads 228A, 2800 Kgs. Lyngby, Denmark
| | - Marja Koski
- National Institute for Aquatic Resources, Technical University of Denmark, DTU, Kemitorvet 202, 2800 Kgs. Lyngby, Denmark
| | - Borja Valverde-Pérez
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
10
|
Alazaiza MYD, Albahnasawi A, Ahmad Z, Bashir MJK, Al-Wahaibi T, Abujazar MSS, Abu Amr SS, Nassani DE. Potential use of algae for the bioremediation of different types of wastewater and contaminants: Production of bioproducts and biofuel for green circular economy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116415. [PMID: 36206653 DOI: 10.1016/j.jenvman.2022.116415] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Remediation by algae is a very effective strategy for avoiding the use of costly, environmentally harmful chemicals in wastewater treatment. Recently, industries based on biomass, especially the bioenergy sector, are getting increasing attention due to their environmental acceptability. However, their practical application is still limited due to the growing cost of raw materials such as algal biomass, harvesting and processing limitations. Potential use of algal biomass includes nutrients recovery, heavy metals removal, COD, BOD, coliforms, and other disease-causing pathogens reduction and production of bioenergy and valuable products. However, the production of algal biomass using the variable composition of different wastewater streams as a source of growing medium and the application of treated water for subsequent use in agriculture for irrigation has remained a challenging task. The present review highlights and discusses the potential role of algae in removing beneficial nutrients from different wastewater streams with complex chemical compositions as a biorefinery concept and subsequent use of produced algal biomass for bioenergy and bioactive compounds. Moreover, challenges in producing algal biomass using various wastewater streams and ways to alleviate the stress caused by the toxic and high concentrations of nutrients in the wastewater stream have been discussed in detail. The technology will be economically feasible and publicly accepted by reducing the cost of algal biomass production and reducing the loaded or attached concentration of micropollutants and pathogenic microorganisms. Algal strain improvement, consortium development, biofilm formation, building an advanced cultivation reactor system, biorefinery concept development, and life-cycle assessment are all possible options for attaining a sustainable solution for sustainable biofuel production. Furthermore, producing valuable compounds, including pharmaceutical, nutraceutical and pigment contents generated from algal biomass during biofuel production, could also help reduce the cost of wastewater management by microalgae.
Collapse
Affiliation(s)
- Motasem Y D Alazaiza
- Department of Civil and Environmental Engineering, College of Engineering, A'Sharqiyah University, 400, Ibra, Oman.
| | - Ahmed Albahnasawi
- Department of Environmental Engineering, Gebze Technical University, 41400, Kocaeli, Turkey
| | - Zulfiqar Ahmad
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| | - Mohammed J K Bashir
- Department of Environmental Engineering, Faculty of Engineering and Green Technology (FEGT), Universiti Tunku Abdul Rahman, 31900, Kampar, Perak, Malaysia
| | - Talal Al-Wahaibi
- Department of Civil and Environmental Engineering, College of Engineering, A'Sharqiyah University, 400, Ibra, Oman
| | | | - Salem S Abu Amr
- International College of Engineering and Management, P.O. Box 2511, C.P.O Seeb, P.C. 111, Oman
| | - Dia Eddin Nassani
- Department of Civil Engineering, Hasan Kalyoncu University, 27500, Gaziantep, Turkey
| |
Collapse
|
11
|
Chen J, Dai L, Mataya D, Cobb K, Chen P, Ruan R. Enhanced sustainable integration of CO 2 utilization and wastewater treatment using microalgae in circular economy concept. BIORESOURCE TECHNOLOGY 2022; 366:128188. [PMID: 36309175 DOI: 10.1016/j.biortech.2022.128188] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Microalgae have been shown to have a promising potential for CO2 utilization and wastewater treatment which still faces the challenges of high resource and energy requirements. The implementation of the circular economy concept is able to address the issues that limit the application of microalgae-based technologies. In this review, a comprehensive discussion on microalgae-based CO2 utilization and wastewater treatment was provided, and the integration of this technology with the circular economy concept, for long-term economic and environmental benefits, was described. Furthermore, technological challenges and feasible strategies towards the improvement of microalgae cultivation were discussed. Finally, necessary regulations and effective policies favoring the implementation of microalgae cultivation into the circular economy were proposed. These are discussed to support sustainable development of microalgae-based bioremediation and bioproduction. This work provides new insights into the implementation of the circular economy concept into microalgae-based CO2 utilization and wastewater treatment to enhance sustainable production.
Collapse
Affiliation(s)
- Junhui Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA
| | - Leilei Dai
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA
| | - Dmitri Mataya
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA
| | - Kirk Cobb
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA
| | - Paul Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108, USA.
| |
Collapse
|
12
|
Tasnim Sahrin N, Shiong Khoo K, Wei Lim J, Shamsuddin R, Musa Ardo F, Rawindran H, Hassan M, Kiatkittipong W, Alaaeldin Abdelfattah E, Da Oh W, Kui Cheng C. Current perspectives, future challenges and key technologies of biohydrogen production for building a carbon-neutral future: A review. BIORESOURCE TECHNOLOGY 2022; 364:128088. [PMID: 36216282 DOI: 10.1016/j.biortech.2022.128088] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The ever-increasing quantity of greenhouse gases in the atmosphere can be attributed to the rapid increase in the world population as well as the expansion of globalization. Hence, achieving carbon neutrality by 2050 stands as a challenging task to accomplish. Global industrialization had necessitated the need to enhance the current production systems to reduce greenhouse gases emission, whilst promoting the capture of carbon dioxide from atmosphere. Hydrogen is often touted as the fuel of future via substituting fossil-based fuels. In this regard, renewable hydrogen happens to be a niche sector of novel technologies in achieving carbon neutrality. Microalgae-based biohydrogen technologies could be a sustainable and economical approach to produce hydrogen from a renewable source, while simultaneously promoting the absorption of carbon dioxide. This review highlights the current perspectives of biohydrogen production as an alternate source of energy. In addition, future challenges associated with biohydrogen production at large-scale application, storage and transportation are included. Key technologies in producing biohydrogen are finally described in building a carbon-neutral future.
Collapse
Affiliation(s)
- Nurul Tasnim Sahrin
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Rashid Shamsuddin
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Fatima Musa Ardo
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Hemamalini Rawindran
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Muzamil Hassan
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Eman Alaaeldin Abdelfattah
- Lecturer of Biochemistry and Molecular Science, Entomology Department, Faculty of Science, Cairo University, Egypt
| | - Wen Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Chin Kui Cheng
- Center for Catalysis and Separation (CeCaS), Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
13
|
Han F, Zhou W. Nitrogen recovery from wastewater by microbial assimilation - A review. BIORESOURCE TECHNOLOGY 2022; 363:127933. [PMID: 36100188 DOI: 10.1016/j.biortech.2022.127933] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The increased nitrogen (N) input with low utilization rate in artificial N management has led to massive reactive N (Nr) flows, putting the Earth in a high-risk state. It is essential to recover and recycle Nr during or after Nr removal from wastewater to reduce N input while simultaneously mitigate Nr pollution in addressing the N stress. However, mechanisms for efficient Nr recovery during or after Nr removal remain unclear. Here, the occurrence of N risk and progress in wastewater treatment in recent years as well as challenges of the current technologies for N recovery from wastewater were reviewed. Through analyzing N conversion fluxes in biogeochemical N-cycling networks, microbial N assimilation through photosynthetic and heterotrophic microorganisms was highlighted as promising alternative for synergistic N removal and recovery in wastewater treatment. In addition, the prospects and gaps of Nr recovery from wastewater through microbial assimilation are discussed.
Collapse
Affiliation(s)
- Fei Han
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong 250002, China.
| |
Collapse
|
14
|
Keerthana Devi M, Manikandan S, Oviyapriya M, Selvaraj M, Assiri MA, Vickram S, Subbaiya R, Karmegam N, Ravindran B, Chang SW, Awasthi MK. Recent advances in biogas production using Agro-Industrial Waste: A comprehensive review outlook of Techno-Economic analysis. BIORESOURCE TECHNOLOGY 2022; 363:127871. [PMID: 36041677 DOI: 10.1016/j.biortech.2022.127871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Agrowaste sources can be utilized to produce biogas by anaerobic digestion reaction. Fossil fuels have damaged the environment, while the biogas rectifies the issues related to the environment and climate change problems. Techno-economic analysis of biogas production is followed by nutrient recycling, reducing the greenhouse gas level, biorefinery purpose, and global warming effect. In addition, biogas production is mediated by different metabolic reactions, the usage of different microorganisms, purification process, upgrading process and removal of CO₂ from the gas mixture techniques. This review focuses on pre-treatment, usage of waste, production methods and application besides summarizing recent advancements in biogas production. Economical, technical, environmental properties and factors affecting biogas production as well as the future perspective of bioenergy are highlighted in the review. Among all agro-industrial wastes, sugarcane straw produced 94% of the biogas. In the future, to overcome all the problems related to biogas production and modify the production process.
Collapse
Affiliation(s)
- M Keerthana Devi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3# Shaanxi, Yangling 712100, China; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - M Oviyapriya
- Department of Biotechnology, Kamaraj College of Engineering and Technology, Near Virudhunagar, Madurai 625 701, Tamil Nadu, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - N Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - S W Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3# Shaanxi, Yangling 712100, China.
| |
Collapse
|
15
|
Mahmoud RH, Wang Z, He Z. Production of algal biomass on electrochemically recovered nutrients from anaerobic digestion centrate. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
You X, Yang L, Zhou X, Zhang Y. Sustainability and carbon neutrality trends for microalgae-based wastewater treatment: A review. ENVIRONMENTAL RESEARCH 2022; 209:112860. [PMID: 35123965 DOI: 10.1016/j.envres.2022.112860] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
As the global economy develops and the population increases, greenhouse gas emissions and wastewater discharge have become inevitable global problems. Conventional wastewater treatment processes produce direct or indirect greenhouse gas, which can intensify global warming. Microalgae-based wastewater treatment technology can not only purify wastewater and use the nutrients in wastewater to produce microalgae biomass, but it can also absorb CO2 in the atmosphere or flue gas through photosynthesis, which demonstrates great potential as a sustainable and economical wastewater treatment technology. This review highlights the multifaceted roles of microalgae in different types of wastewater treatment processes in terms of the extent of their bioremediation function and microalgae biomass production. In addition, various newly developed microalgae cultivation systems, especially biofilm cultivation systems, were further characterized systematically. The performance of different microalgae cultivation systems was studied and summarized. Current research on the technical approaches for the modification of the CO2 capture by microalgae and the maximization of CO2 transfer and conversion efficiency were also reviewed. This review serves as a useful and informative reference for the application of wastewater treatment and CO2 capture by microalgae, aiming to provide a reference for the realization of carbon neutrality in wastewater treatment systems.
Collapse
Affiliation(s)
- Xiaogang You
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, 200092, China
| | - Libin Yang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, 200092, China.
| | - Xuefei Zhou
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, 200092, China
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, 200092, China
| |
Collapse
|
17
|
Ummalyma SB, Singh A. Biomass production and phycoremediation of microalgae cultivated in polluted river water. BIORESOURCE TECHNOLOGY 2022; 351:126948. [PMID: 35257884 DOI: 10.1016/j.biortech.2022.126948] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The present study evaluated polluted river water as a medium for the growth of oleaginous microalgae under mixotrophic conditions. Microalgae grow in the medium and produce biomass, pigments, and lipids with the removal of pollution loads from wastewater. Selenastrum sp. SL7 produced maximum biomass and lipids of 660 mg L-1 and 194.5 mg L-1, respectively. Fatty acid profiling data showed that elevated saturated fatty acid production and major fatty acids found in lipid from these algae were palmitic acids, oleic acid, stearic acid, linolenic acid, and linoleic acid. The low percentage of polyunsaturated fatty acids of EPA was also detected. Water quality in terms of pH, DO, TDS, COD, and BOD was significantly improved. The use of this medium for microalgae cultivation not only improves the biomass and lipid yields but also serves as an excellent means of phycoremediation of pollutants in waste streams with value addition and environmental benefits.
Collapse
Affiliation(s)
- Sabeela Beevi Ummalyma
- Institute of Bioresources and Sustainable Development (IBSD), An Autonomous Institute Under the Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India.
| | - Anamika Singh
- Institute of Bioresources and Sustainable Development (IBSD), An Autonomous Institute Under the Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| |
Collapse
|
18
|
Kant Bhatia S, Ahuja V, Chandel N, Mehariya S, Kumar P, Vinayak V, Saratale GD, Raj T, Kim SH, Yang YH. An overview on microalgal-bacterial granular consortia for resource recovery and wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 351:127028. [PMID: 35318147 DOI: 10.1016/j.biortech.2022.127028] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Excessive generation of wastewater is a matter of concern around the globe. Wastewater treatment utilizing a microalgae-mediated process is considered an eco-friendly and sustainable method of wastewater treatment. However, low biomass productivity, costly harvesting process, and energy extensive cultivation process are the major bottleneck. The use of the microalgal-bacteria granular consortia (MBGC) process is economic and requires less energy. For efficient utilization of MBGC, knowledge of its structure, composition and interaction are important. Various microscopic, molecular and metabolomics techniques play a significant role in understating consortia structure and interaction between partners. Microalgal-bacteria granular consortia structure is affected by various cultivation parameters like pH, temperature, light intensity, salinity, and the presence of other pollutants in wastewater. In this article, a critical evaluation of recent literature was carried out to develop an understanding related to interaction behavior that can help to engineer consortia having efficient nutrient removal capacity with reduced energy consumption.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea
| | - Vishal Ahuja
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, India
| | - Neha Chandel
- School of Medical and Allied Sciences, GD Goenka University, Gurugram-122103, Haryana, India
| | | | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | - Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea.
| |
Collapse
|