1
|
Du R, Cui L, Feng Y, Lv X, Gao Y, Li A, Wang Q, Ma Y. Enhancing the decomposition and composting of food waste by in situ directional enzymatic hydrolysis: performance, ARGs removal and engineering application. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 200:114774. [PMID: 40163955 DOI: 10.1016/j.wasman.2025.114774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
This research utilized food waste (FW) as substrate, innovatively developed a directional multienzyme applied for accelerating FW hydrolysis and composting, and an in situ enzymatic hydrolysis combining in composting has been developed to manage FW. Results showed that the composting was achieved at 4 days and the humification index was increased by 2.60 compared with that of without enzymatic hydrolysis. FTIR analysis revealed that following multienzyme pretreatment, the primary constituents of FW, including protein, starch and lipid, underwent structural breakdown, among which protein exhibited the higher susceptibility to multienzyme action and was the first to disintegrated, and the structure also became looser. Moreover, the total antibiotic resistance gene (ARGs) was reduced more than 90 % in the proposed composting process. Analysis of microbial communities and metagenomes showed that multienzyme pretreatment reshaped microbial communities towards favoring FW hydrolysis and humification. The engineering application analysis further implied that the proposed composting approach is scale flexible, engineering applicable, economic viability and environmentally sustainability. It was anticipated that this study has the potential to trigger a paradigm shift in future in-situ treatment of FW to achieve full resource recovery towards zero solid discharge.
Collapse
Affiliation(s)
- Rongkun Du
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lihui Cui
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yizhuo Feng
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiangbo Lv
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yehan Gao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Aipeng Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China; Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yingqun Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China; Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
2
|
Lu Y, He F, Zhu X, Tang J, Lu Y, Wang J, Yu J, Chen L, Cheng X, Liu T, Tang L. On-site tracking of trace Aflatoxin B1 in food waste composting via a portable colorimetric sensing platform with nanozymes. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138333. [PMID: 40262314 DOI: 10.1016/j.jhazmat.2025.138333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/18/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
Rapid, on-site accurate tracking of harmful mycotoxin in food waste composting is essential to provide instant content information for efficient supervision. However, on-site analytical tools especially colorimetric sensors currently suffer from low sensitivity/selectivity and poor environment robustness, posing hurdles for their applications. In this work, we have proposed a portable paper-based colorimetric sensor to detect the representative mycotoxin (aflatoxin B1, AFB1) in the composting process, where the superior catalytic velocity (6-fold higher than the natural enzyme) and well-regulated catalytic activity of nanozyme by the aptamers ensure the high sensitivity (a wide linear range: 0.1-1000 ng/mL; an ultra-low limit of detection: 0.082 ng/mL) and good selectivity of the colorimetric sensing, respectively. The smartphone-based platform exhibits high accuracy with the relative standard deviation within 3.67 % compared commercial enzyme-linked immunosorbent assay. Finally, on-site tracking of the AFB1 content in food waste during the composting process with or without the oxidant (potassium persulfate) has been carried out using the developed colorimetric sensor. It is concluded that reducing the AFB1 generation in the food waste is more meaningful than the compost treatment. This study offers a promising method for in situ analysis of trace AFB1 in food waste compost to ensure environmental and human health safety.
Collapse
Affiliation(s)
- Yating Lu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Fuqing He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xu Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Jing Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Yue Lu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Jiangfang Yu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xingyang Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Tianhao Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
3
|
Xu L, Lin Q, Wang S, Chen S, Yang R, Liu C, Hu Q, Zhao Z, Cao Z. Efficacy of black soldier fly larvae in converting kitchen waste and the dynamic alterations of their gut microbiome. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124613. [PMID: 39986157 DOI: 10.1016/j.jenvman.2025.124613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/26/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
The escalating demand for food, driven by population growth and improved living standards, has prompted the development of efficient and eco-friendly kitchen waste (KW) treatment technologies. This study focused on the feasibility of utilizing KW through the application of black soldier fly larvae (BSFL), with a specific interest in the dynamic changes in the intestinal bacterial community during the treatment process. After a 10-day KW processing period, BSFL gained an average of 0.84 g/hundred worms/day, achieving a conversion efficiency of 18.52% for KW. This demonstrated their capacity to efficiently utilize KW nutrients for good growth performance. Additionally, the bioconversion of KW by BSFL could markedly decrease the presence of potentially pathogenic bacteria in the feed matrix within one day (P < 0.001), including Escherichia coli, Shigella spp., Salmonella spp., and Staphylococcus aureus. Notably, the diversity of the intestinal bacterial community in BSFL increased with age and sustained KW consumption (P < 0.05), accompanied by enhanced stability. In particular, the average relative abundance of potential probiotic genera associated with nutrient absorption and antimicrobial compounds synthesis, including Fusobacterium, Phascolarctobacterium, Enterococcus, and Actinomyces, increased. Conversely, the prevalence of pathogenic genera like Morganella and Escherichia-Shigella, decreased. Co-occurrence network analysis identified Lactobacillus, Brevibacterium, Erythrobacter, and Enterobacteriaceae as keystone species. Despite their low abundance in the BSFL intestine, these species were potentially crucial for KW bioconversion. Our findings underscore the potential of BSFL for sustainable KW conversion, providing strong support for effective waste management strategies.
Collapse
Affiliation(s)
- Le Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Kunming, 650201, China
| | - Qiuye Lin
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Shengwen Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Shiyu Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Rencan Yang
- Yunnan Animal Science and Veterinary Institute, Kunming, 650224, China
| | - Chen Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Qingquan Hu
- Yunnan Animal Science and Veterinary Institute, Kunming, 650224, China
| | - Zhiyong Zhao
- Yunnan Animal Science and Veterinary Institute, Kunming, 650224, China.
| | - Zhenhui Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China; Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Kunming, 650201, China.
| |
Collapse
|
4
|
Mussa S, Farhan M, Ahmad S, Zahra K, Kanwal A, Khan QF, Afzaal M, Wahid A, Sarker PK, El-Sheikh MA, Ali S. Exploring the utility of different bulking agents for speeding up the composting process of household kitchen waste. Sci Rep 2025; 15:2488. [PMID: 39833327 PMCID: PMC11747255 DOI: 10.1038/s41598-025-85433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
Household kitchen waste (HKW) is produced in large quantity and its management is difficult due to high moisture content and complex organic matter. Aerobic composting of HKW is an easy, efficient, cost-effective and eco-friendly method. This study is designed to achieve a zero-waste concept and to convert HKW. We optimized the type and size of three different bulking agents to speed up the composting process. The tested bulking agents were fallen leaves, sawdust and fly ash. The results showed a higher and longer thermophilic phase (55oC) for 11 days in C2. Higher moisture content (69%) and higher organic matter degradation (38.4%) were also observed in C2. The pH range in all compost treatments was 7-8.5, Electrical conductivity range was 1.8-3.55 mS/cm, C/N ratio range was 15.4-18.1, water holding capacity range was 3.25-4.3 g water/g dry sample, total potassium range was 1.52-1.61%, total phosphorous range was 0.83-1.14%. The highest germination index (119.1%) was also obtained in C2. The highest chili height (16.7 cm), greater number of leaves (20), greater shoot fresh weight (4.75 g) and root fresh weight (1.2 g) was obtained in the presence of C2. Similarly, greater water WHC (2.8 g water/g DW), higher porosity (55.49%) and higher aggregate stability (54.14%) of soil was also obtained by C2. This research effectively reduced the maturation time to 32 days and converted kitchen waste into compost (resource). This is a very practical idea for home composting and kitchen gardening to combat food security issues in developing countries.
Collapse
Affiliation(s)
- Sania Mussa
- Sustainable Development Study Center, Government College University Lahore, Lahore, Pakistan
| | - Muhammad Farhan
- Sustainable Development Study Center, Government College University Lahore, Lahore, Pakistan.
| | - Shoaib Ahmad
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Khadija Zahra
- Sustainable Development Study Center, Government College University Lahore, Lahore, Pakistan
| | - Amina Kanwal
- Department of Botany, Government College Women University Sialkot, Punjab, Pakistan
| | - Qaiser Farid Khan
- Department of Microbiology, Ikam ul Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Muhammad Afzaal
- Sustainable Development Study Center, Government College University Lahore, Lahore, Pakistan
| | - Abdul Wahid
- Department of Environmental Science, Bahu din Zakaria University, Multan, Pakistan
| | - Pallab K Sarker
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA, USA.
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
5
|
Liu C, Li H, Ni JQ, Zhuo G, Zhang Q, Zheng Y, Zhen G. Synergistic effects of heterogeneous mature compost and aeration rate on humification and nitrogen fixing during kitchen waste composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123743. [PMID: 39693993 DOI: 10.1016/j.jenvman.2024.123743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024]
Abstract
Sludge mature compost (SMC) is notable for its high production, easy accessibility, and stable supply. This study investigated the impact of the SMC addition and different aeration rates on the humification and nitrogen fixing process during kitchen waste composting. The results demonstrated that addition of SMC prolonged the thermophilic phase, as a comparison, increased aeration shortened this phase. The addition of SMC and increased aeration enhanced humus formation and nitrogen retention. SMC introduced more amide and polysaccharide compounds into the compost, promoting the Maillard humification pathway. Additionally, both SMC and high aeration inhibited denitrification: the SMC reduced the abundance of the nirK gene, while high aeration decreased the abundance of nosZ gene. Network analysis revealed that higher aeration enhanced fungal interactions but diminished bacterial interactions. Conversely, SMC addition bolstered both bacterial and fungal interactions. The final compost product with SMC addition showed a 11.56%-44.19% reduction in antibiotic resistance gene content compared with the control group, and heavy metal contents remained within safe application limits. The combination of high SMC addition and high aeration achieved optimal humification and nitrogen retention, underscoring its potential as a promising solution for kitchen waste composting.
Collapse
Affiliation(s)
- Changqing Liu
- College of Geographical Sciences, College of Carbon Neutral Future Technology, Fujian Normal University, Fuzhou, 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou, 350007, Fujian, China
| | - Haimin Li
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University, Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou, 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou, 350007, Fujian, China
| | - Ji-Qin Ni
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Guihua Zhuo
- Fujian Provincial Academy of Environmental Science, Fuzhou, 350013, China
| | - Qingyi Zhang
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University, Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou, 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou, 350007, Fujian, China
| | - Yuyi Zheng
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University, Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou, 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou, 350007, Fujian, China.
| | - Guangyin Zhen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
6
|
Li H, Liu C, Ni JQ, Zhuo G, Li Y, Zheng Y, Zhen G. Impact of cellulolytic nitrogen-fixing composite inoculants on humification pathways and nitrogen cycling in kitchen waste composting. BIORESOURCE TECHNOLOGY 2025; 416:131819. [PMID: 39547296 DOI: 10.1016/j.biortech.2024.131819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/27/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Low humification and nitrogen loss pose substantial challenges to the resource utilization in kitchen waste composting. This study investigated the effects of brown-rot fungi (BRF), cellulolytic nitrogen fixing bacteria (CNFB), and their composite microbial inoculants (CMI) during composting. Results indicated that microbial inoculants extended the thermophilic phase and enhanced cellulose degradation. Compared with the control, the degree of polymerization (HA/FA) in BRF, CNFB, and CMI was 2.28, 1.85, and 2.68 times higher, respectively, while increasing total nitrogen by 11.15%, 15.50%, and 19.73%. BRF and CMI primarily enhanced the Maillard humification pathway, while CNFB promoted the polyphenol humification pathway. Additionally, BRF enhanced nitrification and reduced denitrification, whereas CNFB and CMI improved nitrification, nitrogen fixation, and ammonification while reducing denitrification. Overall, BRF primarily promoted humification, while CNFB excelled in nitrogen retention. The CMI achieved optimal humification and nitrogen retention, indicating a potential sustainable solution for kitchen waste composting.
Collapse
Affiliation(s)
- Haimin Li
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University; Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resourceization and Management, Fuzhou 350007, Fujian, China
| | - Changqing Liu
- College of Geographical Sciences, College of Carbon Neutral Future Technology, Fujian Normal University, Fuzhou 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resourceization and Management, Fuzhou 350007, Fujian, China.
| | - Ji-Qin Ni
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Guihua Zhuo
- Fujian Provincial Academy of Environmental Science, Fuzhou 350013, China
| | - Yuhui Li
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University; Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resourceization and Management, Fuzhou 350007, Fujian, China
| | - Yuyi Zheng
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University; Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China; Fujian College and University Engineering Research Center for Municipal Solid Waste Resourceization and Management, Fuzhou 350007, Fujian, China
| | - Guangyin Zhen
- Fujian College and University Engineering Research Center for Municipal Solid Waste Resourceization and Management, Fuzhou 350007, Fujian, China; School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
7
|
Ding G, Qin G, Ying W, Wang P, Yang Y, Tang C, Liu Q, Li M, Huang K, Chen S. Nano-Silver-Loaded Activated Carbon Material Derived from Waste Rice Noodles: Adsorption and Antibacterial Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1857. [PMID: 39591097 PMCID: PMC11597512 DOI: 10.3390/nano14221857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
This study demonstrates, for the first time, the conversion of waste rice noodles (WRN) into a cost-effective, nano-silver-loaded activated carbon (Ag/AC) material capable of efficient adsorption and antibacterial activity. The fabrication process began with the conversion of WRN into hydrothermal carbon (HTC) via a hydrothermal method. Subsequently, the HTC was combined with silver nitrate (AgNO3) and sodium hydroxide (NaOH), followed by activation through high-temperature calcination, during which AgNO3 was reduced to nano-Ag and loaded onto the HTC-derived AC, resulting in a composite material with both excellent adsorption properties and antibacterial activity. The experimental results indicated that the incorporation of nano-Ag significantly enhanced the specific surface area of the Ag/AC composite and altered its pore size distribution characteristics. Under optimized preparation conditions, the obtained Ag/AC material exhibited a specific surface area of 2025.96 m2/g and an average pore size of 2.14 nm, demonstrating effective adsorption capabilities for the heavy metal Cr(VI). Under conditions of pH 2 and room temperature (293 K), the maximum equilibrium adsorption capacity for Cr(VI) reached 97.07 mg/g. The adsorption behavior of the resulting Ag/AC fitted the Freundlich adsorption isotherm and followed a pseudo-second-order kinetic model. Furthermore, the Ag/AC composite exhibited remarkable inhibitory effects against common pathogenic bacteria such as E. coli and S. aureus, achieving antibacterial rates of 100% and 81%, respectively, after a contact time of 4 h. These findings confirm the feasibility of utilizing the HTC method to process WRN and produce novel AC-based functional materials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shuoping Chen
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China; (G.D.); (G.Q.); (W.Y.); (P.W.); (Y.Y.); (C.T.); (Q.L.); (M.L.); (K.H.)
| |
Collapse
|
8
|
Parab C, Yadav KD. A review on green waste composting, role of additives and composting methods for process acceleration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63473-63500. [PMID: 39495446 DOI: 10.1007/s11356-024-35429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Effective disposal of green waste has been a challenging task faced by urban bodies for a long time. Composting can be an effective method to manage green waste by recovering nutrients that can be used as organic manure. However, there are some limitations to green waste composting, such as a low degradation rate and the requirement for high manpower and space. Many researchers have studied ways to minimize the limitations of green waste composting through different approaches. These include the use of co-composting materials, inoculating agents, and process modifications such as multi-stage composting. In this review, we systematically summarized the physicochemical characteristics of green waste and green waste compost, optimum ratios of additives, and process modifications during the composting of green waste reported in various articles. This review is helpful for early-career researchers and individuals new to the field of green waste composting by providing them with key concepts and recent developments in the field. The study suggests that the sustainable selection of additives or methods for composting green waste should depend on resource availability, climatic conditions, and the characterization of the feedstock.
Collapse
Affiliation(s)
- Chandrashekhar Parab
- Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India.
| | - Kunwar D Yadav
- Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India
| |
Collapse
|
9
|
Yu C, Guan Y, Wang Q, Li Y, Wang L, Yu W, Wu J. Effects of calcium phosphate and phosphorus-dissolving bacteria on microbial structure and function during Torreya Grandis branch waste composting. BMC Microbiol 2024; 24:385. [PMID: 39358715 PMCID: PMC11445941 DOI: 10.1186/s12866-024-03535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND BURKHOLDERIA: is a phosphorus solubilizing microorganism discovered in recent years, which can dissolve insoluble phosphorus compounds into soluble phosphorus. To investigate the effects of Burkholderia and calcium phosphate on the composting of Torreya grandis branches and leaves, as well as to explain the nutritional and metabolic markers related to the composting process. METHODS In this study, we employed amplicon sequencing and untargeted metabolomics analysis to examine the interplay among phosphorus (P) components, microbial communities, and metabolites during T. grandis branch and leaf waste composting that underwent treatment with calcium phosphate and phosphate-solubilizing bacteria (Burkholderia). There were four composting treatments, 10% calcium phosphate (CaP) or 5 ml/kg (1 × 108/ml Burkholderia) microbial inoculum (WJP) or both (CaP + WJP), and the control group (CK). RESULTS The results indicated that Burkholderia inoculation and calcium phosphate treatment affected the phosphorus composition, pH, EC, and nitrogen content. Furthermore, these treatments significantly affected the diversity and structure of bacterial and fungal communities, altering microbial and metabolite interactions. The differential metabolites associated with lipids and organic acids and derivatives treated with calcium phosphate treatment are twice as high as those treated with Burkholderia in both 21d and 42d. The results suggest that calcium phosphate treatment alters the formation of some biological macromolecules. CONCLUSION Both Burkholderia inoculation and calcium phosphate treatment affected the phosphorus composition, nitrogen content and metabolites of T. grandis branch and leaf waste compost.These results extend our comprehension of the coupling of matter transformation and community succession in composting with the addition of calcium phosphate and phosphate-solubilizing bacteria.
Collapse
Affiliation(s)
- Chenliang Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Yuanyuan Guan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Qi Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Yi Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Lei Wang
- Department of Landscape Architecture, Jiyang College, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China.
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
- NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou, China.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China.
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
- NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
10
|
Li F, Yuan Q, Li M, Zhou J, Gao H, Hu N. Nitrogen retention and emissions during membrane-covered aerobic composting for kitchen waste disposal. ENVIRONMENTAL TECHNOLOGY 2024; 45:4397-4407. [PMID: 37615415 DOI: 10.1080/09593330.2023.2252162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
The composting performance and nitrogen transformation during membrane-covered aerobic composting of kitchen waste were investigated. The aerobic composting products of the kitchen waste had a high seed germination index of ∼180%. The application of the membrane increased the mean temperature in the early cooling stage of composting by 4.5℃, resulted in a lower moisture content, and reduced the emissions of NH3 and N2O by 48.5% and 44.1%, respectively, thereby retaining 7.9% more nitrogen in the compost. The adsorption of the condensed water layer under inner-membrane was the reason for reducing NH3 emissions, and finite element modeling revealed that the condensed water layer was present throughout the composting process with a maximum thickness of ∼2 mm in the thermophilic stage. The reduction of N2O emissions was related to the micro-positive pressure in the reactor, which promoted the distribution of oxygen, thus weakening denitrification. In addition, the membrane cover decreased the diversity of the bacterial community and increased the diversity of ammonia-oxidizing strains. This study confirmed that membrane-covered composting was suitable for kitchen waste management and could be used as a strategy to mitigate NH3 and N2O emissions.
Collapse
Affiliation(s)
- Fei Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Qingbin Yuan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Meng Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Haofeng Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Nan Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
11
|
Zhu J, Zhang Z, Wen Y, Song X, Tan WK, Ong CN, Li J. Recent Advances in Superabsorbent Hydrogels Derived from Agro Waste Materials for Sustainable Agriculture: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72. [PMID: 39215710 PMCID: PMC11487571 DOI: 10.1021/acs.jafc.4c04970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Superabsorbent hydrogels made from agro waste materials have the potential to promote sustainable agriculture and environmental sustainability. These hydrogels not only help reduce water consumption and increase crop yields but also contribute to minimizing waste and lowering greenhouse gas emissions. Recent research on superabsorbent hydrogels derived from agro wastes has focused on the preparation of hydrogels based on natural polymers isolated from agro wastes, such as cellulose, hemicellulose, and lignin. This review provides an in-depth examination of hydrogels developed from raw agro waste materials and natural polymers extracted from agro wastes, highlighting that these studies start with raw wastes as the main materials. The utilization strategies for specific types of agro wastes are comprehensively described. This review outlines different methods utilized in the production of these hydrogels, including physical cross-linking techniques such as dissolution-regeneration and freeze-thawing, as well as chemical cross-linking methods involving various cross-linking agents and graft polymerization techniques such as free radical polymerization, microwave-assisted polymerization, and γ radiation graft polymerization. Specifically, this review explores the applications of agro waste-based superabsorbent hydrogels in enhancing soil properties such as water retention and slow-release of fertilizers for sustainable agriculture.
Collapse
Affiliation(s)
- Jingling Zhu
- Department
of Biomedical Engineering, National University
of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental
Research Institute (NERI), National University
of Singapore, 5A Engineering
Drive 1, Singapore117411, Singapore
| | - Zhongxing Zhang
- Department
of Biomedical Engineering, National University
of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Yuting Wen
- Department
of Biomedical Engineering, National University
of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- National
University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215000, China
- National
University of Singapore (Chongqing) Research Institute, Yubei District, Chongqing 401120, China
| | - Xia Song
- Department
of Biomedical Engineering, National University
of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Wee Kee Tan
- NUS Environmental
Research Institute (NERI), National University
of Singapore, 5A Engineering
Drive 1, Singapore117411, Singapore
| | - Choon Nam Ong
- NUS Environmental
Research Institute (NERI), National University
of Singapore, 5A Engineering
Drive 1, Singapore117411, Singapore
- Saw Swee
Hock School of Public Health, National University
of Singapore, 12 Science
Drive 2, Singapore 117549, Singapore
| | - Jun Li
- Department
of Biomedical Engineering, National University
of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
- NUS Environmental
Research Institute (NERI), National University
of Singapore, 5A Engineering
Drive 1, Singapore117411, Singapore
- National
University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215000, China
- National
University of Singapore (Chongqing) Research Institute, Yubei District, Chongqing 401120, China
| |
Collapse
|
12
|
Hu T, Lin Y, Liu Y, Zhao Q, Yu H, Yang Z, Meng F. Microbial electrochemical enhanced composting of sludge and kitchen waste: Electricity generation, composting efficiency and health risk assessment for land use. Heliyon 2024; 10:e35678. [PMID: 39170487 PMCID: PMC11336836 DOI: 10.1016/j.heliyon.2024.e35678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
To realize the energy and resource utilization from organic solid waste, a two-phase microbial desalination cell (TPMDC) was constructed using dewatered sludge and kitchen waste as the anode substrate. The performance of electricity generation and composting efficacy was investigated, along with a comprehensive assessment of the potential health risks associated with the land use of the resulting mixed compost products. Experimental outcomes revealed a maximum open-circuit voltage of 0.893 ± 0.005 V and a maximum volumetric power density of 0.797 ± 0.009 W/m³. After 90 days of composting enhanced by microbial electrochemistry, a significant organic matter removal rate of 31.13 ± 0.44 % was obtained, and the anode substrate electric conductivity was reduced by 30.02 ± 0.04 % based on the anode desalination. Simultaneously, there was an increase in the content of available nitrogen, phosphorus, and potassium, as well as an improvement in the seed germination index. The forms of heavy metals shifted from bioavailable to stable residual states. The non-carcinogenic hazard index (HI) values for heavy metals and polycyclic aromatic hydrocarbons (PAHs) during the land use of compost products were less than 1, and the total carcinogenic risk (TCR) values for heavy metals and PAHs were below the acceptable threshold of 10-4. The occupational population risk of infection from five pathogens was higher than that of the general public, with all risk values ranging from 8.67 × 10-8 to 1, where the highest risk was attributed to occupational exposure to Legionella. These outcomes demonstrated that the mixture of dewatered sludge and kitchen waste was an appropriate anode substrate to enhance TPMDC stability for electricity generation, and its compost products have promising land use suitability and acceptable land use risk, which will provide important guidance for the safe treatment and disposal of organic solid waste.
Collapse
Affiliation(s)
- Tengteng Hu
- Department of Environmental Hygiene, School of Public Health, Harbin Medical University, Harbin, 150081, China
| | - Yunhan Lin
- Department of Environmental Hygiene, School of Public Health, Harbin Medical University, Harbin, 150081, China
| | - Yingyu Liu
- Department of Environmental Hygiene, School of Public Health, Harbin Medical University, Harbin, 150081, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environments (SKLUWRE), Harbin Institute of Technology, Harbin, 150090, China
| | - Hang Yu
- Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University, Dalian, 116026, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| | - Fanyu Meng
- Department of Environmental Hygiene, School of Public Health, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
13
|
Zhu X, Yuan J, Qu H, Hou F, Mao C, Lei J, Cao X, Li L. Effects of different proportions of fruit tree branches on nicotine content and microbial diversity during composting of tobacco waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121568. [PMID: 38936024 DOI: 10.1016/j.jenvman.2024.121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Adding fruit tree branches to the compost pile in appropriate proportions is one of the methods used to address the challenge of tobacco waste recycling. However, the effects of different proportions of fruit tree branches on nicotine concentration and microbial diversity during tobacco waste composting have not been reported. In this study, a composting system with tobacco waste, cow dung, and fruit tree branches was established in a laboratory fermenter to assess the impact of adding 10%, 20%, and 30% fruit tree branches on quantity changes. In addition, the relationships between nicotine degradation, compost properties, enzyme activities, and microbial diversities were determined using biochemical assay methods and high-throughput sequencing. The results showed that adding appropriate proportions of fruit branch segments affected changes in physical and chemical properties during composting and promoted tobacco waste compost maturity. Aerobic composting effectively degraded nicotine in tobacco waste. Increased proportions of fruit branch segments led to elevations in nicotine degradation rates and enzyme activities related to lignocellulose degradation. The addition of fruit branches influenced the relative abundance and species of dominant bacteria and fungi at the phylum and genus levels. However, it did not significantly affect the relative abundance of the main bacterial genera involved in nicotine degradation. Nevertheless, it reduced the sensitivity of enzyme activity to nicotine content within heaps, increasing reliance on total nitrogen changes. The results of this study provide a theoretical basis for the utilization of tobacco waste in composting systems and indicate that fruit tree branches can enhance nicotine degradation efficiency during tobacco waste composting.
Collapse
Affiliation(s)
- Xiaoping Zhu
- Shanxi Agricultural University, Taiyuan, Shanxi, 030031, PR China
| | - Jiali Yuan
- Shanxi Agricultural University, Taiyuan, Shanxi, 030031, PR China
| | - Haoli Qu
- Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, 210014, PR China
| | - Fuen Hou
- Shanxi Agricultural University, Taiyuan, Shanxi, 030031, PR China
| | | | - Jun Lei
- Shanxi Kunming Tobacco Co., Ltd, PR China
| | - Xiuli Cao
- Shanxi Kunming Tobacco Co., Ltd, PR China.
| | - Lei Li
- Shanxi Agricultural University, Taiyuan, Shanxi, 030031, PR China.
| |
Collapse
|
14
|
Wang F, Wang J, He Y, Yan Y, Fu D, Rene ER, Singh RP. Effect of different bulking agents on fed-batch composting and microbial community profile. ENVIRONMENTAL RESEARCH 2024; 249:118449. [PMID: 38354880 DOI: 10.1016/j.envres.2024.118449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
The current study focused on analyzing the effect of different types of bulking agents and other factors on fed-batch composting and the structure of microbial communities. The results indicated that the introduction of bulking agents to fed-batch composting significantly improved composting efficiency as well as compost product quality. In particular, using green waste as a bulking agent, the compost products would achieve good performance in the following indicators: moisture (3.16%), weight loss rate (85.26%), and C/N ratio (13.98). The significant difference in moisture of compost products (p < 0.05) was observed in different sizes of bulking agent (green waste), which was because the voids in green waste significantly affected the capacity of the water to permeate. Meanwhile, controlling the size of green waste at 3-6 mm, the following indicators would show great performance from the compost products: moisture (3.12%), organic matter content (63.93%), and electrical conductivity (EC) (5.37 mS/cm). According to 16S rRNA sequencing, the relative abundance (RA) of thermophilic microbes increased as reactor temperature rose in fed-batch composting, among which Firmicutes, Proteobacteria, Basidiomycota, and Rasamsonia were involved in cellulose and lignocellulose degradation.
Collapse
Affiliation(s)
- Fei Wang
- School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Jingyao Wang
- School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Yuheng He
- School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Yixin Yan
- School of Civil Engineering, Southeast University, Nanjing, 211189, China
| | - Dafang Fu
- School of Civil Engineering, Southeast University, Nanjing, 211189, China.
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | | |
Collapse
|
15
|
Zhang H, Ma L, Li Y, Yan S, Tong Z, Qiu Y, Zhang X, Yong X, Luo L, Wong JWC, Zhou J. Control of nitrogen and odor emissions during chicken manure composting with a carbon-based microbial inoculant and a biotrickling filter. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120636. [PMID: 38552514 DOI: 10.1016/j.jenvman.2024.120636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/01/2024] [Accepted: 03/10/2024] [Indexed: 04/14/2024]
Abstract
Although aerobic composting is usually utilized in livestock manure disposal, the emission of odorous gases from compost not only induces harm to the human body and the environment, but also causes loss of nitrogen, sulfur, and other essential elements, resulting in a decline in product quality. The impact of biotrickling filter (BTF) and insertion of carbon-based microbial agent (CBMA) on compost maturation, odor emissions, and microbial population during the chicken manure composting were assessed in the current experiment. Compared with the CK group, CBMA addition accelerated the increase in pile temperature (EG group reached maximum temperature 10 days earlier than CK group), increased compost maturation (GI showed the highest increase of 41.3% on day 14 in EG group), resulted in 36.59% and 14.60% increase in NO3--N content and the total nitrogen retention preservation rate after composting. The deodorization effect of biotrickling filter was stable, and the removal rates of NH3, H2S, and TVOCs reached more than 90%, 96%, and 56%, respectively. Furthermore, microbial sequencing showed that CBMA effectively changed the microbial community in compost, protected the ammonia-oxidizing microorganisms, and strengthened the nitrification of the compost. In addition, the nitrifying and denitrifying bacteria were more active in the cooling period than they were in the thermophilic period. Moreover, the abundance of denitrification genes containing nirS, nirK, and nosZ in EG group was lower than that in CK group. Thus, a large amount of nitrogen was retained under the combined drive of BTF and CBMA during composting. This study made significant contributions to our understanding of how to compost livestock manure while reducing releases of odors and raising compost quality.
Collapse
Affiliation(s)
- Haorong Zhang
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Liqian Ma
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yinchao Li
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Su Yan
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Zhenye Tong
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Yue Qiu
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xueying Zhang
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xiaoyu Yong
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Liwen Luo
- Institute of Bioresource and Agriculture, And Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, And Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Jun Zhou
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| |
Collapse
|
16
|
Qiu Y, Wang P, Guo Y, Zhang L, Lu J, Ren L. Enhancing food waste reduction efficiency and high-value biomass production in Hermetia illucens rearing through bioaugmentation with gut bacterial agent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166488. [PMID: 37611705 DOI: 10.1016/j.scitotenv.2023.166488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/22/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
The black soldier fly (BSF) rearing technology has been a promising bioconversion method for food waste (FW) disposal. However, when used independently, it currently only achieves low efficiency and biomass transformation rates (BTR). This study screened and identified two strains of gut beneficial bacteria, Bacillus cereus and Bacterium YC-LK-LKJ45. The efficiency of a complex culture formulated by these strains was investigated, focusing on enhancing FW reduction and high-value biomass production during the rearing of BSF larvae. The coculture agent group (G1-10%, with two strains in 1:1 volume ratio at a 10 % dosage) exhibited higher larval yield (627.67 g·kg-1), BTR (47.90 %), FW reduction efficiency (80.67 %), and total protein and fat yield (261.99 g·kg-1and 46.24 g·kg-1) compared to the control and the monoculture agent group (which added a single gut beneficial bacteria agent, either Bacillus cereus or Bacterium YC-LK-LKJ45). The bacterial agent altered the richness and diversity of the gut microbial community of BSF, increasing the relative abundance of beneficial bacteria such as Bacillus, Oceano bacillus, and Akkermansia, while decreasing pathogenic bacteria, such as Acinetobacter and Escherichia-Shigella. Structural equation model quantification revealed that α-diversity (λ = 0.897, p < 0.001) and BTR (λ = 0.747, p < 0.001) are crucial drivers for enhancing high-value biomass during bioaugmentation rearing. This investigation provides a theoretical framework for the effective management of food waste using BSF, enhancing its decomposition and transformation into higher-value biomass.
Collapse
Affiliation(s)
- Yizhan Qiu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Pan Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yuwen Guo
- AnronX Technology (Beijing) Joint Stock Co., Ltd., Beijing 100086, China
| | - Luxi Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Jiaxin Lu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Lianhai Ren
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
17
|
Rao JN, Parsai T. A comprehensive review on the decentralized composting systems for household biodegradable waste management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118824. [PMID: 37696186 DOI: 10.1016/j.jenvman.2023.118824] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 09/13/2023]
Abstract
Municipal solid waste primarily consists of household biodegradable waste (HBW). HBW treatment is a crucial step in many countries due to rapid urbanization. Composting is an effective technique to treat HBW. However, conventional composting systems are unable to produce matured compost (MC), as well as releasing huge amounts of greenhouse and odorous gases. Therefore, this review attempts to suggest suitable composting system to manage HBW, role of additives and bulking agents in composting process, identify knowledge gaps and recommend future research directions. Centralized composting systems are unable to produce MC due to improper sorting and inadequate aeration for composting substrate. Recently, decentralized compost systems (DCS) are becoming more popular due to effective solid waste reduction at the household and/or community level itself, thereby reducing the burden on municipalities. Solid waste sorting and aeration for the composting substrate is easy at DCS, thereby producing MC. However, Mono-composting of HBW in DCS leads to production of immature compost and release greenhouse and odorous gases due to lower free air space and carbon-to-nitrogen ratios, and higher moisture content. Mixing HBW with additives and bulking agents in DCS resulted in a proper initial substrate for composting, allowing rapid degradation of substrate due to longer duration of thermophilic phase and produce MC within a shorter duration. However, people have lack of awareness about solid waste management is the biggest challenge. More studies are needed to eliminate greenhouse and odorous gases emissions by mixing different combinations of bulking agents and additives (mainly microbial additives) to HBW in DCS.
Collapse
Affiliation(s)
- Jakki Narasimha Rao
- Research scholar, School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India.
| | - Tanushree Parsai
- Assistant professor, Department of Civil Engineering, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
18
|
Li H, Li X, Zhang D, Xu Y. Addition of exogenous microbial agents increases hydrogen sulfide emissions during aerobic composting of kitchen waste by improving bio-synergistic effects. BIORESOURCE TECHNOLOGY 2023:129334. [PMID: 37328014 DOI: 10.1016/j.biortech.2023.129334] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
The effect of microbial agents (MA) on hydrogen sulfide (H2S) emissions in the compost is still a controversial issue. This study examined the effects and microbial mechanisms of MA on H2S emissions during the composting of kitchen waste. The results showed that MA addition can promote sulfur conversion to elevate H2S emissions by approximately 1.6 ∼ 2.8 times. Structural equations demonstrated that microbial community structure was the dominant driver on H2S emissions. Agents reshaped the compost microbiome, showing more microorganisms participated in sulfur conversion, and enhanced the connection between microorganisms and functional genes. The relative abundance of keystone species associated with H2S emissions increased after adding MA. Particularly, the sulfite and sulfate reduction processes were intensified, as evidenced by an increasing in the abundance and pathways cooperation of sat and asrA after MA addition. The outcome provides deeper insights into MA on regulating the mitigation of H2S emissions in compost.
Collapse
Affiliation(s)
- Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Dandan Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
19
|
Zhu L, Zhao Y, Yao X, Zhou M, Li W, Liu Z, Hu B. Inoculation enhances directional humification by increasing microbial interaction intensity in food waste composting. CHEMOSPHERE 2023; 322:138191. [PMID: 36812995 DOI: 10.1016/j.chemosphere.2023.138191] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/04/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Inoculation can effectively improve the recycling level of organic waste in composting process. However, the role of inocula in the humification process has been rarely studied. Therefore, we constructed a simulated food waste composting system by adding commercial microbial agents to explore the function of inocula. The results showed that adding microbial agents extended the high temperature maintenance time by 33% and increased the humic acid content by 42%. Inoculation significantly improved the degree of directional humification (HA/TOC = 0.46, p < 0.001). The proportion of positive cohesion in the microbial community underwent an overall increase. The strength of bacterial/fungal community interaction increased by 1.27-fold after inoculation. Furthermore, the inoculum stimulated the potential functional microbes (Thermobifida and Acremonium) which were highly related to the formation of humic acid and the degradation of organic matter. This study showed that additional microbial agents could strengthen microbial interaction to raise the humic acid content, thus opening the door for the development of targeted biotransformation inocula in the future.
Collapse
Affiliation(s)
- Lin Zhu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuxiang Zhao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangwu Yao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meng Zhou
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenji Li
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zishu Liu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Baolan Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang, 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
20
|
Czekała W, Nowak M, Piechota G. Sustainable management and recycling of anaerobic digestate solid fraction by composting: A review. BIORESOURCE TECHNOLOGY 2023; 375:128813. [PMID: 36870545 DOI: 10.1016/j.biortech.2023.128813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
The aim of the study was to review and discuss the management and recycling of anaerobic digestate solid fraction by composting process in the context of circular bioeconomy and sustainable development. The conversion of the solid fraction into compost can be recognized as novel process-enhancing supplements for land reclamation. Moreover, the solid fraction of the digestate is a valuable substrate for compost production, both as a monosubstrate and as a valuable additive for other raw materials to enrich in organic matter. These results should serve as reference point to target adjusting screws for anaerobic digestate solid fraction by composting process improvement, its implementation in modern bioeconomy perspective as well as provide a guideline for effective waste management.
Collapse
Affiliation(s)
- Wojciech Czekała
- Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland
| | - Mateusz Nowak
- Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland
| | - Grzegorz Piechota
- GPCHEM. Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, 87-100 Toruń, Poland.
| |
Collapse
|
21
|
Huo XJ, Chen MJ, Zhou JL, Zheng CL. Potassium-rich mining waste addition can shorten the composting period by increasing the abundance of thermophilic bacteria during high-temperature periods. Sci Rep 2023; 13:6027. [PMID: 37055422 PMCID: PMC10101976 DOI: 10.1038/s41598-023-31689-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/15/2023] [Indexed: 04/15/2023] Open
Abstract
Conventional compost sludge has a long fermentation period and is not nutrient rich. Potassium-rich mining waste was used as an additive for aerobic composting of activated sludge to make a new sludge product. The effects of different feeding ratios of potassium-rich mining waste and activated sludge on the physicochemical properties and thermophilic bacterial community structure during aerobic composting were investigated. The results showed that potassium-rich waste minerals contribute to the increase in mineral element contents; although the addition of potassium-rich waste minerals affected the peak temperature and duration of composting, the more sufficient oxygen content promoted the growth of thermophilic bacteria and thus shortened the overall composting period. Considering the requirements of composting temperature, it is recommended that the addition of potassium-rich waste minerals is less than or equal to 20%.
Collapse
Affiliation(s)
- Xiao-Jun Huo
- Inner Mongolia Research Academy of Eco-Environmental Sciences, Hohhot, 010000, Inner Mongolia, China
| | - Min-Jie Chen
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, Inner Mongolia, China
- Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environments, Inner Mongolia University of Science and& Technology, Baotou, 014010, Inner Mongolia, China
| | - Jian-Lin Zhou
- Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environments, Inner Mongolia University of Science and& Technology, Baotou, 014010, Inner Mongolia, China
| | - Chun-Li Zheng
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, Shang Hai, China.
- Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environments, Inner Mongolia University of Science and& Technology, Baotou, 014010, Inner Mongolia, China.
| |
Collapse
|
22
|
Cheng Y, Wan W. Strong linkage between nutrient-cycling functional gene diversity and ecosystem multifunctionality during winter composting with pig manure and fallen leaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161529. [PMID: 36634774 DOI: 10.1016/j.scitotenv.2023.161529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Microorganisms play important roles in element transformation and display distinct compositional changes during composting. However, little is known about the linkage between nutrient-cycling functional gene diversity and compost ecosystem multifunctionality (EMF). This study performed winter composting with pig manure and fallen leaves and evaluated the distribution patterns and ecological roles of multiple functional genes involved in nutrient cycles. Physicochemical properties and enzyme activities presented large fluctuations during composting. Absolute abundance, composition, and diversity of functional genes participating in carbon, nitrogen, phosphorus, and sulfur cycles presented distinct dynamic changes. Stronger linkage was found between enzyme activities and temperature than other physicochemical factors, whereas total nitrogen rather than other physicochemical factors displayed closer linkage with functional gene composition and diversity. EMF targeting key nutrient (i.e., carbon, nitrogen, phosphorus, and sulfur) cycles was significantly positively correlated with temperature and notably negatively correlated with functional gene diversity. Enzyme activities rather than functional gene diversity showed a greater potential effect on phosphorus availability. Consequently, the available phosphorus (AP) content increased from initial 0.50 g/kg to final 1.43 g/kg. To our knowledge, this is the first study that deciphered ecological roles of nutrient-cycling functional gene diversity during composting, and the final compost can serve as a potential phosphorus fertilizer.
Collapse
Affiliation(s)
- Yarui Cheng
- College of Chemistry and Environmental Engineering, Hanjiang Normal University, Shiyan 442000, PR China
| | - Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, PR China.
| |
Collapse
|
23
|
The Preparation Processes and Influencing Factors of Biofuel Production from Kitchen Waste. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Kitchen waste is an important component of domestic waste, and it is both harmful and rich in resources. Approximately 1.3 billion tons of kitchen waste are produced every year worldwide. Kitchen waste is high in moisture, is readily decayed, and has an unpleasant smell. Environmental pollution can be caused if this waste is treated improperly. Conventional treatments of kitchen waste (e.g., landfilling, incineration and pulverization discharge) cause environmental, economic, and social problems. Therefore, the development of a harmless and resource-based treatment technology is urgently needed. Profits can be generated from kitchen waste by converting it into biofuels. This review intends to highlight the latest technological progress in the preparation of gaseous fuels, such as biogas, biohythane and biohydrogen, and liquid fuels, such as biodiesel, bioethanol, biobutanol and bio-oil, from kitchen waste. Additionally, the pretreatment methods, preparation processes, influencing factors and improvement strategies of biofuel production from kitchen waste are summarized. Problems that are encountered in the preparation of biofuels from kitchen waste are discussed to provide a reference for its use in energy utilization. Optimizing the preparation process of biofuels, increasing the efficiency and service life of catalysts for reaction, reasonably treating and utilizing the by-products and reaction residues to eliminate secondary pollution, improving the yield of biofuels, and reducing the cost of biofuels, are the future directions in the biofuel conversion of kitchen waste.
Collapse
|
24
|
Yan Y, Wu W, Huang C, Li W, Li Y. Coupling network of hydrogen sulfide precursors and bacteria in kitchen waste composting. BIORESOURCE TECHNOLOGY 2023; 372:128655. [PMID: 36693506 DOI: 10.1016/j.biortech.2023.128655] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
This study was focused on the changes of hydrogen sulfide (H2S), its precursors, and microorganisms associated with its transformation during the composting process of kitchen waste. The results showed that the content of cysteine (Cys) and methionine (Met) decreased by 32.3 % and 57.5 % respectively, while the content of sulfate (SO42-) changed little during composting. The main release period of H2S was during the high-temperature period of composting, Cys was its main precursor. Based on network analysis, a total of 15 core genera associated with the conversion of H2S precursors were identified, and the transformation of the H2S precursor was mainly influenced by Filomicrobium. Temperature, pH, and TN levels had a positive effect on Filomicrobium. It could find a balance point by controlling these three factors to reduce the production of H2S.
Collapse
Affiliation(s)
- Yimeng Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Weixia Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Wei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanhong Li
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| |
Collapse
|
25
|
Chen L, Li W, Zhao Y, Zhang S, Meng L. Mechanism of sulfur-oxidizing inoculants and nitrate on regulating sulfur functional genes and bacterial community at the thermophilic compost stage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116733. [PMID: 36372033 DOI: 10.1016/j.jenvman.2022.116733] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The emission of H2S odors predominantly occurred at the thermophilic phase of composting, which could cause odorous gas pollution and reduce the fertilizer value of composting products. And sulfur-oxidizing bacteria (SOB) possess oxidative capacities for inorganic sulfur compounds with nitrate applied as electron acceptors. Therefore, this study aimed to assess the effectiveness of combined additives (SOB inoculants and nitrate) on the bacterial community diversity, sulfur-oxidizing gene abundances, and metabolic function prediction at the thermophilic stage of sewage sludge composting. The highest sulfate contents were increased by 1.02-1.34 folds, and the abundances of the sulfur-oxidizing genes (sqr, pdo, sox, and sor) were also enhanced by adding the combined additives. Network patterns revealed a strengthened interaction of inoculants and sulfur functional genes. Microbial functional pathways predicted higher metabolic levels of carbohydrate and amino acid metabolisms with the addition of combined additives, and the predicted relative abundances of sulfur metabolism and nitrogen metabolism were increased by 19.3 ± 2.5% and 24.7 ± 4.1%, respectively. Heatmap analysis showed that the SOB might have a competitive advantage over the indigenous denitrifying bacteria in using nitrate for biochemical reactions. Correlation analyses suggested that sulfur-oxidizing efficacy could be indirectly affected by the environmental parameters through changing the structure of bacterial community. These findings provide new insights toward an optimized inoculation strategy of using SOB and nitrate to enhance sulfur preservation and modulate the bacterial communities at the thermophilic phase of sewage sludge composting.
Collapse
Affiliation(s)
- Li Chen
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weiguang Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Yi Zhao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shumei Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, China
| | - Liqiang Meng
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, China
| |
Collapse
|
26
|
Wang SP, Gao Y, Sun ZY, Peng XY, Xie CY, Tang YQ. Thermophilic semi-continuous composting of kitchen waste: Performance evaluation and microbial community characteristics. BIORESOURCE TECHNOLOGY 2022; 363:127952. [PMID: 36108941 DOI: 10.1016/j.biortech.2022.127952] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated the feasibility, system stability, and microbial community succession of thermophilic semi-continuous composting of kitchen waste (KW). The results revealed that treatment performance was stable at a 10 % feeding ratio, with an organic matter (OM) degradation efficiency of 81.5 % and seed germination index (GI) of 50.0 %. Moreover, the OM degradation efficiency and GI were improved to 83.4 % and 70.0 %, respectively, by maintaining an optimal compost moisture content (50-60 %). However, feeding ratios of ≥ 20 % caused deterioration of the composter system owing to OM overloading. Microbial community analysis revealed that Firmicutes, Actinobacteria, Chloroflexi, Proteobacteria, and Gemmatimonadetes were dominant. Additionally, moisture regulation significantly increased the Proteobacteria abundance by 57.1 % and reduced the Actinobacteria abundance by 57.8 %. Moreover, network analysis indicated that the bacterial community stability and positive interactions between genera were enhanced by moisture regulation. This information provides a useful reference for practical KW composting treatment in the semi-continuous mode.
Collapse
Affiliation(s)
- Shi-Peng Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yang Gao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Xiang-Yu Peng
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Cai-Yun Xie
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
27
|
Chen L, Li W, Zhao Y, Zhang S, Meng L. Evaluation of bacterial agent/nitrate coupling on enhancing sulfur conversion and bacterial community succession during aerobic composting. BIORESOURCE TECHNOLOGY 2022; 362:127848. [PMID: 36031129 DOI: 10.1016/j.biortech.2022.127848] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated the coupling effects of sodium nitrate (SN) and sulfur-oxidizing bacterial agent (BA) on oxidizing reduced-state sulfur and altering the bacteria community in SN, BA, and SN + BA treatments, respectively. Results revealed that bacterial inoculation prolonged the thermophilic period, facilitated organics degradation and compost humification. Compared to the control group, SN + BA treatment reduced the cumulative H2S emissions and sulfur loss rate by 55.1 % and 15.7 %, respectively, and the nitrate reduction (used as electron donors) efficiency was enhanced by 7.8 % during the first week of composting. Bacterial inoculation altered the diversities and structure of the bacterial community by increasing the relative abundances of thermotolerant bacteria. Correlation analyses showed that the dominant phyla involved in nitrate-based sulfur-oxidizing reactions could be Firmicutes and Synergistota. These findings suggested the application viability of SN and BA to regulate the sulfur biotransformation and bacterial community in composting.
Collapse
Affiliation(s)
- Li Chen
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weiguang Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yi Zhao
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shumei Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Liqiang Meng
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| |
Collapse
|
28
|
He Y, Zhang Y, Huang X, Xu J, Zhang H, Dai X, Xie L. Deciphering the internal driving mechanism of microbial community for carbon conversion and nitrogen fixation during food waste composting with multifunctional microbial inoculation. BIORESOURCE TECHNOLOGY 2022; 360:127623. [PMID: 35850391 DOI: 10.1016/j.biortech.2022.127623] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
In this study, the effects of multifunctional microbial inoculation on food waste composting based on the synergistic property between organic matter degradation and nitrogen fixation were investigated. The results showed that inoculation simultaneously strengthened organic matter degradation by 9.9% and improved the nitrogen content by 20.6% compared with that of the control group. Additionally, spectral analysis demonstrated that inoculation was conducive to the enhanced humification, which was supported by the improvement in polyphenol oxidase activity. Microbial analysis showed that most of the introduced microorganisms (Bacillus, Streptomyces, Saccharomonospora) successfully colonized, and stimulated the growth of other indigenous microorganisms (Enterobacter, Paenibacillus). Meanwhile, the change in microbial community structure was accompanied by the enhanced tricarboxylic acid cycle and amino acid metabolism. Furthermore, network analysis and structural equation model revealed that the enhanced cooperation of microorganisms, in which more carbon sources could be provided by cellulose decomposition for nitrogen fixation.
Collapse
Affiliation(s)
- Yingying He
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yidie Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xia Huang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jun Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Hongning Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xiaohu Dai
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
29
|
Effects of Municipal Solid Waste on Planting Properties and Scouring Resistance of Vegetation Concrete (Wuhan, China). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138143. [PMID: 35805803 PMCID: PMC9265631 DOI: 10.3390/ijerph19138143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 01/05/2023]
Abstract
Vegetation concrete (VC) laid as a reinforcement base and covered by a soil layer with vegetation has been increasingly used to beautify the landscape, reduce environmental pollution and control stormwater runoff. In this study, the effects of municipal solid waste (MSW) on vegetation characteristics of modified VC were tested under different mix compositions. We first explored the effects of the mixed concrete environment on Festuca elata and perennial Ryegrass for 60 days. Then, the influence of various MSW contents added to different percentages of cement on scouring resistance of VC was examined. The experimental results revealed that the germination rates and plant heights of both species decreased with the increase in concrete content. Considering the scouring resistances, the optimal mix proportion of MSW-modified VC was recommended as No. 25, with 5% KW fertilizer, 8% cement and 0.5% wheat straw in this study. Furthermore, adding a small amount of fallen leaves or silica fume to VC can promote the growth of both species to some extent, although these additions had an inverse effect on the scouring resistances. The results contribute to beneficial knowledge for future research on the feasibility of the use these species with VC technology for slope ecological restoration.
Collapse
|