1
|
Gao H, Chen N, An N, Zhan Y, Feng C, Hu W. Enhanced heterotrophic denitrification in groundwater using pretreated Ginkgo biloba leaves: Optimized carbon utilization and metabolic function diversity. ENVIRONMENTAL RESEARCH 2025; 271:121044. [PMID: 39914709 DOI: 10.1016/j.envres.2025.121044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Ginkgo biloba leaves (Gbl), as abundant agricultural and forestry residues which contains the quercetin that plays an important role in mediating electron transfer, represent a promising heterotrophic denitrification carbon source. Nonetheless, challenges persist due to concerns over nitrate leaching. This study pioneers the application of pretreated Gbl as external carbon sources for heterotrophic denitrification, with a focus on enhancing carbon bioavailability and mitigating nitrate leaching risks. Among the pretreatment strategies employed, the extraction process effectively eliminated NO3--N leaching, while the fermentation process reduced it by 52.8%. The saturated total organic carbon (TOC) concentration per unit mass of fermented Gbl was marginally lower compared to untreated leaves, yet the secondary kinetic reaction constant increased from 10.94 to 12.91 mg/(g·h·L), indicating an accelerated organic carbon release rate. Fermentation with Eurotium cristatum disrupted the rigid lignocellulose structure, thereby enhancing carbon source bioavailability. This resulted in a significant increase in alcohols in the leaching solution, from 27.0% to 68.6%, and a substantial reduction in aromatic compounds, from 20.2% to 0.2%, which alleviated microbial toxicity. In terms of denitrification performance, fermented Ginkgo biloba leaves (Fl) outperformed Ginkgo biloba extract residue leaves (Erl), which in turn surpassed untreated Gbl. Both Fl and Erl demonstrated robust adaptability across a broad pH range of 5.0-11.0. Under neutral conditions, the Fl system exhibited the highest primary kinetic constant for nitrate removal, reaching 0.0494 h⁻1. Microbial community revealed that all three carbon sources harbored denitrification and lignocellulose degradation capabilities. Notably, the Fl and Erl systems exhibited enhanced carbohydrate transport (G), amino acid transport (E), and inorganic ion transport (P), underscoring the potential pretreatments to optimize carbon source utilization. Collectively, these findings affirm the viability of Gbl as a carbon source for heterotrophic denitrification, providing valuable insights for its application in addressing nitrate pollution in aquatic environments.
Collapse
Affiliation(s)
- Hang Gao
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Ning An
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yongheng Zhan
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Weiwu Hu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
2
|
Lu J, Yu P, Zhang J, Guo Z, Li Y, Wang S, Hu Z. Biotic/abiotic transformation mechanisms of phenanthrene in iron-rich constructed wetland under redox fluctuation. WATER RESEARCH 2024; 261:122033. [PMID: 38996732 DOI: 10.1016/j.watres.2024.122033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/16/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Iron-rich constructed wetlands (CWs) could promote phenanthrene bioremediation efficiently through biotic and abiotic pathways, which have gained increasing attention. However, the biotic/abiotic transformation mechanisms of trace organic contaminants in iron-rich CW are still ambiguous. Herein, three CWs (i.e., CW-A: Control; CW-B: Iron-rich CW, CW-C: Iron-rich CW + tidal flow) were constructed to investigate the transformation mechanisms of phenanthrene through Mössbauer spectroscopy and metagenomics. Results demonstrated CW-C achieved the highest phenanthrene removal (94.0 %) and bacterial toxicity reduction (92.1 %) due to the optimized degradation pathway, and subsequently achieved the safe transformation of phenanthrene. Surface-bound/low-crystalline iron regulated hydroxyl radical (·OH) production predominantly, and its utilization was promoted in CW-C, which also improved electron transfer capacity. The enhanced electron transfer capacity led to the enrichment of PAH-degrading microorganisms (e.g., Thauera) and keystone species (Sphingobacteriales bacterium 46-32) in CW-C. Additionally, the abundances of phenanthrene transformation (e.g., EC:1.14.12.-) and tricarboxylic-acid-cycle (e.g., EC:2.3.3.1) enzyme were up-regulated in CW-C. Further analysis indicated that the safe transformation of phenanthrene was mainly attributed to the combined effect of abiotic (·OH and surface-bound/low-crystalline iron) and biotic (microbial community and diversity) mechanisms in CW-C, which contributed similarly. Our study revealed the essential role of active iron in the safe transformation of phenanthrene, and was beneficial for enhanced performance of iron-rich CW.
Collapse
Affiliation(s)
- Jiaxing Lu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Peihan Yu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Zizhang Guo
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Shuo Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Hu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
3
|
Deng Y, Liu W, Thi NT, Di HJ, Lian Y, Yang J, A D, Qiu R. Exploring the efficiency of tide flow constructed wetlands for treating mariculture wastewater: A comprehensive study on antibiotic removal mechanism under salinity stress. WATER RESEARCH 2024; 258:121738. [PMID: 38749184 DOI: 10.1016/j.watres.2024.121738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/16/2024]
Abstract
Antibiotic residues in aquaculture environment pose persistent threats to ecology and human health, exacerbated by salt-alkali mariculture wastewater. Yet, little is known about antibiotic removal in tidal flow constructed wetlands (TFCWs) under salinity stress, especially considering TFCW constitution, configuration, and influent water characteristics. Here, the removal performance and mechanism of different TFCWs for sulfonamide antibiotics (SAs: sulfadiazine, sulfamethazine, sulfamonomethoxine, and sulfamethoxazole) and trimethoprim (TMP) from mariculture wastewater (with low, medium, and high salinity) were evaluated alongside comparisons of environmental factors and microbial responses. Results showed substantial reduction in alkalinity (from 8.25-8.26 to 7.65-8.18), salinity (from 3.67-11.30 ppt to 3.20-10.79 ppt), and SAs concentrations (from 7.79-15.46 mg/L to 0.25-10.00 mg/L) for mariculture wastewater using TFCWs. Zeolite and yellow flag configurations exhibited superior performance in SAs removal from mariculture wastewater. Furthermore, the salt-alkali neutralization and oxygen transport capabilities of zeolite, along with the salt-alkali tolerance and biofilm formation characteristics of yellow flag, promoted the development of a biofilm in the rhizosphere dominated by oxidative stress tolerance and facultative anaerobic traits, thereby improving the TFCW microenvironment. Consequently, aerobic (Sulfuritalea and Enterobacter) and salt-tolerant (Pseudomonas) functional bacteria involved in antibiotic degradation were selectively enriched in the zeolite- and yellow flag-TFCWs, contributing to the effective biodegradation of SAs (achieving removal efficiency of 92-97 %). Besides, the high salt-alkali levels of mariculture wastewater and the strong oxygen-enriched capacity of the TFCWs not only enhanced the aerobic oxidation reaction of SAs, but also bidirectionally inhibited the substrate adsorption and anaerobic reduction process of TMP. These findings address a critical gap by investigating the efficacy of TFCWs in removing antibiotics from mariculture wastewater under various salinity conditions, providing essential insights for optimizing wetland design and improving wastewater management in mariculture environments.
Collapse
Affiliation(s)
- Yangyang Deng
- Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Wen Liu
- Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Nguyen Thuong Thi
- Asia-Japan Research Institute, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Hong J Di
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, 7647 Christchurch, New Zealand
| | - Yingli Lian
- Key Laboratory of Microecological Resources and Utilization in Breeding Industry, Ministry of Agriculture and Rural Affairs, Guangdong Haid Group CO., Ltd, Guangzhou, 511450, China
| | - Jiewen Yang
- Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Dan A
- Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Centre for Soil and Environmental Research, Lincoln University, Lincoln, 7647 Christchurch, New Zealand.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Meng S, Peng T, Liu Y, Zhang S, Qian Z, Huang T, Xie Q, Gu JD, Hu Z. Novel insights into the synergetic degradation of pyrene by microbial communities from mangroves in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133907. [PMID: 38471380 DOI: 10.1016/j.jhazmat.2024.133907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024]
Abstract
Pyrene is a high molecular weight polycyclic aromatic hydrocarbon (HMW-PAHs). It is a ubiquitous, persistent, and carcinogenic environmental contaminant that has raised concern worldwide. This research explored synergistic bacterial communities for efficient pyrene degradation in seven typical Southern China mangroves. The bacterial communities of seven typical mangroves were enriched by pyrene, and enriched bacterial communities showed an excellent pyrene degradation capacity of > 95% (except for HK mangrove and ZJ mangrove). Devosia, Hyphomicrobium, Flavobacterium, Marinobacter, Algoriphahus, and Youhaiella all have significant positive correlations with pyrene (R>0, p < 0.05) by 16SrRNA gene sequencing and metagenomics analysis, indicated that these genera play a vital role in pyrene metabolism. Meanwhile, the functional genes were involved in pyrene degradation that was enriched in the bacterial communities, including the genes of nagAa, ndoR, pcaG, etc. Furthermore, the analyses of functional genes and binning genomes demonstrated that some bacterial communities as a unique teamwork to cooperatively participate in pyrene degradation. Interestingly, the genes related to biogeochemical cycles were enriched, such as narG , soxA, and cyxJ, suggested that bacterial communities were also helpful in maintaining the stability of the ecological environment. In addition, some novel species with pyrene-degradation potential were identified in the pyrene-degrading bacterial communities, which can enrich the resource pool of pyrene-degrading strains. Overall, this study will help develop further research strategies for pollutant removal.
Collapse
Affiliation(s)
- Shanshan Meng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yongjin Liu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Shan Zhang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Zhihui Qian
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China
| | - Qingyi Xie
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, PR China
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China; Offshore Environmental Pollution Control Engineering Research, Shantou University, Shantou, Guangdong 515063, PR China.
| |
Collapse
|
5
|
Sun P, Bai J, Lian J, Tan Y, Chen X. Single and Combined Effects of Phenanthrene and Silver Nanoparticles on Denitrification Processes in Coastal Marine Sediments. Microorganisms 2024; 12:745. [PMID: 38674689 PMCID: PMC11051833 DOI: 10.3390/microorganisms12040745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The increasing production and utilization of polycyclic aromatic hydrocarbons (PAHs) and commercial silver nanoparticles (AgNPs) have raised concerns about their potential environmental release, with coastal sediments as a substantial sink. To better understanding the effects of these contaminants on denitrification processes in coastal marine sediments, a short-term exposure simulation experiment was conducted. We investigated the effects of single and combined contamination of phenanthrene (Phe) and AgNPs on denitrification processes in a coastal marine sediment. Results showed that all contaminated treatment groups had different degrees of inhibitory effect on denitrification activity, denitrifying enzyme activity, total bacteria count and denitrifying genes. The inhibitory effect sequence of each treatment group was combined treatment > AgNPs treatment > Phe treatment. Moreover, the inhibitory effects of denitrifying genes were much larger than that of total bacteria count, indicating that the pollutants had specific toxic effects on denitrifying bacteria. The sequence of sensitivity of three reduction process to pollutants was N2O > NO2- > NO3-. All contaminated treatment groups could increase NO3-, NO2- and N2O accumulation. Furthermore, according to the linear relationship between functional gene or reductase and denitrification process, we also found that the abundance of denitrifying genes could better predict the influence of Phe and AgNPs on sediment denitrification than the denitrifying bacterial diversity. In addition, at the genus level, the community structure of nirS- and nosZ-type denitrifying bacteria changed dramatically, while changes at the phylum level were comparatively less pronounced. Single and combined contamination of Phe and AgNPs could reduce the dominance of Pseudomonas, which may lead to a potential slow-down in the degradation of Phe and inhibition of denitrification, especially the combined contamination. Overall, our study revealed that combined contamination of Phe and AgNPs could lead to an increase in NO3-, NO2- and N2O accumulation in coastal sediment, which poses a risk of eutrophication in coastal areas, exacerbates the greenhouse effect and has adverse effects on global climate change.
Collapse
Affiliation(s)
- Pengfei Sun
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China; (P.S.); (J.L.); (Y.T.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China;
| | - Jie Lian
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China; (P.S.); (J.L.); (Y.T.)
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Yongyu Tan
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China; (P.S.); (J.L.); (Y.T.)
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Xi Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
6
|
Liu C, Ma X, Xie J, Wang J, Wang H, Wang Y. Impact of waste separation on the biological nitrogen removal in a MSW incineration leachate treatment plant: Performance and microbial community shift. ENVIRONMENTAL RESEARCH 2024; 244:117876. [PMID: 38072101 DOI: 10.1016/j.envres.2023.117876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
After waste separation program was launched in China in 2019, incineration leachate treatment plants are facing a challenge of effective removal of nitrogen from leachate due to lack of sufficient carbon source. In this study, the performance of a biological incineration leachate treatment process (anaerobic digestion (AD) - two-stage anoxic/aerobic (A/O) process) was evaluated after adopting the waste separation program, and the changes in the microbial community and function was analyzed using 16S rRNA amplicon sequencing technology. Results showed that after the waste separation, the influent chemical oxygen demand (COD) concentration reduced by 90% (from 19,300 to 1780 mg L-1) with the COD/N ratio decreased from 12.3 to 1.4, which led to a decreased nitrogen removal efficiency (NRE) of <65% and a high effluent NO3- accumulation (445.8-986.5 mg N·L-1). By bypassing approximately 60% of the influent to the two-stage A/O process and adding external carbon source (glucose), the mean NRE increased to 86.3 ± 7.4%. Spearman's analysis revealed that refractory compounds in the bypassed leachate were closely related to the variations in bacterial community composition and nitrogen removal function in the two-stage A/O, leading to a weakened correlation of microbial network. KEGG functional pathway predictions based on Tax4Fun also confirmed that the bypassed leachate induced xenobiotic compounds to the two-stage A/O process, the relative abundance of nitrogen metabolism was reduced by 32%, and more external carbon source was required to ensure the satisfactory nitrogen removal of >80%. The findings provide a good guide for regulation of incineration leachate treatment processes after the waste separation.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China; Shanghai Youlin Zhuyuan Sewage Investment and Development Co. Ltd., Shanghai, 200125, PR China
| | - Xiaoqian Ma
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China; Xiamen Tungsten Co., Ltd, Xiamen, 361009, PR China.
| | - Junxiang Xie
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Jialin Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China.
| |
Collapse
|
7
|
Gjini L, Kuznetsova A, Okpala G, Foght JM, Ulrich A, Siddique T. Aerobic biodegradation of cycloalkanes in non-aqueous extracted oil sands tailings. CHEMOSPHERE 2024; 349:140900. [PMID: 38065261 DOI: 10.1016/j.chemosphere.2023.140900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/22/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Management of growing volumes of fluid fine tailings (FFT) is a significant challenge for oil sands industry. A potential alternative non-aqueous solvent extraction (NAE) process uses cycloalkane solvent such as cyclohexane or cyclopentane with very little water and generates smaller volumes of 'dry' solids (NAES) with residual solvent. Here we investigate remediation of NAES in a simulated bench-scale upland reclamation scenario. In the first study, microcosms with nutrient medium plus FFT as inoculum were amended with cyclohexane and incubated for ∼1 year, monitoring for cyclohexane biodegradation under aerobic conditions. Biodegradation of cyclohexane occurred under aerobic conditions with no metabolic intermediates detected. A second study using NAES mixed with FFT spiked with cyclohexane and cyclopentane, with or without additional nutrients (nitrogen and phosphorus), showed complete and rapid aerobic biodegradation of both cycloalkanes in NAES inoculated with FFT and supplemented with nutrients. 16S rRNA gene sequencing revealed dominance of Rhodoferax and members of Burkholderiaceae during aerobic cyclohexane biodegradation in FFT, and Hydrogenophaga, Acidovorax, Defluviimonas and members of Porticoccaceae during aerobic biodegradation of cyclohexane and cyclopentane in NAES inoculated with FFT and supplemented with nutrients. The findings indicate that biodegradation of cycloalkanes from NAES is possible under aerobic condition, which will contribute to the successful reclamation of oil sands tailings for land closure.
Collapse
Affiliation(s)
- Luke Gjini
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Alsu Kuznetsova
- Department of Renewable Resources, University of Alberta, Edmonton, Canada
| | - Gloria Okpala
- Department of Renewable Resources, University of Alberta, Edmonton, Canada
| | - Julia M Foght
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Ania Ulrich
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Tariq Siddique
- Department of Renewable Resources, University of Alberta, Edmonton, Canada.
| |
Collapse
|
8
|
Wang J, Chi Q, Pan L, Zhang R, Mu Y, Shen J. New insights into enhanced biodegradation of 4-bromphenol in a nitrate-reducing system: Process performance and mechanism. WATER RESEARCH 2023; 242:120200. [PMID: 37336182 DOI: 10.1016/j.watres.2023.120200] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Due to the recalcitrant nature of halogenated phenol, conventional anaerobic bioprocess is often limited by low removal efficiency and poor process stability. At the presence of electron acceptors such as nitrate, 4-bromophenol (4-BP) removal efficiency is significantly higher than that in the anaerobic control system, but the mechanism involved is still unclear. Therefore, an up-flow nitrate-reducing bioreactor (NRBR) was designed and consecutively performed for 215 days to explore the synergistic mechanism for BPs biodegradation and nitrate reduction. Complete 4-BP biodegradation could be obtained in NRBR at HRT and 4-BP loading rate of 24 h and 0.29 mol m - 3d - 1, while the TOC removal and nitrate reduction efficiencies were as high as 91.33±2.11% and 98.31±1.33%, respectively. Population evolution analyses revealed that the microorganisms involved in 4-BP debromination and biodegradation (Candidatus Peregrinibacteria, Denitratisoma, Anaerolineaceae and Ignavibacterium) as well as nitrate reduction (Denitratisoma, Anaerolineaceae, Limnobacter and Ignavibacterium) were significantly enriched in NRBR. Major intermediates during 4-BP biodegradation, including 4-bromocatechol, 4‑bromo-6-oxo-hexanoic acid and succinic acid were identified, while a distinct 4-BP biodegradation pathway via hydration, aromatic-ring cleavage, hydrolysis debromination and oxidation was expounded. Metagenomic analysis indicated that oxidation (had, pht4, boh, butA), hydrolysis debromination ((S)-2-haloacid dehalogenase) and bio-mineralization (gabD, sdhA) of 4-BP were largely enhanced in NRBR. Moreover, carbon, nitrogen, energy and amino acid metabolisms were significantly facilitated with the injection of nitrate in order to provide energy and electron, thus enhanced microbial activities and enzymatic reactions in NRBR. The proposed mechanism provides new insights into our mechanistic understanding of halogenated phenol biodegradation and the development of sustainable bioremediation strategies.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qiang Chi
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ling Pan
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ranran Zhang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jinyou Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
9
|
Chen L, Guo Y, Zhang S, Ma W. Simultaneous denitrification and electricity generation in a methane-powered bioelectrochemical system. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10910. [PMID: 37461353 DOI: 10.1002/wer.10910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/29/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
Bioelectrochemical system is a novel method for controlling down nitrate pollution, yet the feasibility of using methane as the electron donors for denitrification in this system remains unknown. In this study, using the effluent from mother BESs as inocula, a denitrifying anaerobic methane oxidation bioelectrochemical system was successfully started up in 92 days. When operated with 50 mmol/L phosphate buffer solution at pH 7 and 30°C, the maximum methane consumption, nitrate, and total nitrogen removal load reached 0.23 ± 0.01 mmol/d, 551.0 ± 22.1 mg N/m3 /d, and 64.0 ± 18.8 mg N/m3 /d, respectively. Meanwhile, the peak voltage of 93 ± 4 mV, the anodic coulombic efficiency of 6.99 ± 0.20%, and the maximum power density of 219.86 mW/m3 were obtained. The metagenomics profiles revealed that the dominant denitrifying bacteria in the cathodic chamber reduced most nitrate to nitrite through denitrification and assimilatory reduction. In the anodic chamber, various archaea including methanotrophs and methanogens converted methane via reverse methanogenesis to form formate (or H2 ), acetate, and methyl compounds, which were than utilized by electroactive bacteria to generate electricity. PRACTITIONER POINTS: A denitrifying anaerobic methane oxidation BES was successfully started up in 92 d. Simultaneous removal of methane and nitrate was achieved in the DAMO-BES. Functional genes related to AMO and denitrification were detected in the DAMO-BES. Methylocystis can mediate AMO in the anode and denitrification in the cathode.
Collapse
Affiliation(s)
- Long Chen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Yanli Guo
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Shaohui Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
- Hubei Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan, China
| | - Wenqing Ma
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
10
|
Shi Y, Xue H, Li J, Yao Y, Liu R, Niu Q. Response of methanogenic system to long-term polycyclic aromatic hydrocarbon exposure: Adsorption and biodegradation, performance variation, and microbial function assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117010. [PMID: 36603323 DOI: 10.1016/j.jenvman.2022.117010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Phenanthrene (PHE) as a typical polycyclic aromatic hydrocarbon (PAH) is prevalent and harmful to organisms in petroleum-polluted sites. The effects of PHE concentration levels on performance, microbial community and functions in methanogenic system were comprehensively investigated by an operation of UASB reactor (198 days) and a series of batch tests. The results found that PHE was prone to accumulate in reactor by sludge adsorption (Final concentration = 12.53 mg/g TS Sludge), which posed significant influences on methanogenic system. The removal of chemical oxygen demand (COD), NH4+-N and volatile fatty acids (VFAs) in reactor were reduced with PHE accumulation. Meanwhile, microbes with higher ATPase secrete more EPS activity to self-protect against PHE toxicity. Sequencing analysis showed that PHE interfered significantly diversity and structure of microbial community. For bacteria, PHE was toxic to Bacteroidetes and Latescibacteria, while syntrophs (f_Syntrophaceae, Syntrophorhabdus, etc.) involved in VFAs oxidation and aromatic organics degradation were tolerant of PHE stress. For archaea, acetoclastic methanogens (Methanosaeta) abundance was continuously diminished by 45.1% under long-term PHE exposure. Further functions analysis suggested that microbial community accelerated amino acid metabolism, energy metabolism and xenobiotics biodegradation & metabolism to satisfy physiological demanding under PHE stress. Combining batch tests of methanogenic metabolism proved that acetoclastic methanogenesis was negatively affected by PHE due to inhibition of functional enzymes (acetate kinase, phosphate acetyltransferase, etc.) expression. These findings may provide the basis for enhancing bioremediation of PAH pollution in anaerobic environment.
Collapse
Affiliation(s)
- Yongsen Shi
- School of Environmental Science and Engineering, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China; China-America CRC for Environment & Health, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China
| | - Hanhan Xue
- School of Environmental Science and Engineering, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China; China-America CRC for Environment & Health, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China
| | - Jingyi Li
- School of Environmental Science and Engineering, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China; China-America CRC for Environment & Health, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China
| | - Yilin Yao
- School of Environmental Science and Engineering, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China; China-America CRC for Environment & Health, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China; China-America CRC for Environment & Health, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China
| | - Qigui Niu
- School of Environmental Science and Engineering, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China; China-America CRC for Environment & Health, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China.
| |
Collapse
|
11
|
Han W, Zhou J, Sheng D, Wu D, Zhou H, Yang Z, Yin J, Xia C, Kan Y, He J. Integration of a pure moving bed biofilm reactor process into a large micro-polluted water treatment plant. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:3051-3066. [PMID: 36579869 DOI: 10.2166/wst.2022.380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The pure-MBBR process was applied to remove ammonia in a full-scale micro-polluted-water treatment plant with a daily treatment capacity of 260 × 104 m3/d, Guangdong, China. The relationship between treatment efficiency, physical and chemical properties and microbial diversity in the process of biofilm growth was explored, and the oxygen transfer model of biofilm was established. The results show that the effluent of two-stage pure MBBR process is stable and up to standard after 10 days' incubation. The nitrification loads of two-stage biofilm was stable on the 14th day. The biomass and biofilm thickness lagged behind the nitrification load, and reached a relatively stable level on the 28th day. The species richness of biofilm basically reached a stable level on the 21st day, and the microbial diversity of primary biofilm was higher. In the primary and secondary stage at different periods, the relative abundance of dominant nitrifying bacteria Nitrospira reaches 8.48-13.60%, 6.48-9.27%, and Nitrosomonas reaches 2.89-5.64%, 0.00-3.48%. The pure MBBR system mainly adopts perforated aeration. Through the cutting and blocking of bubbles by suspended carriers, the oxygen transfer rate of the system was greatly improved.
Collapse
Affiliation(s)
- Wenjie Han
- Biofilm Research Institute, Qingdao Spring Water Treatment Co. Ltd, Qingdao 266555, P. R. China E-mail:
| | - Jiazhong Zhou
- Biofilm Research Institute, Qingdao Spring Water Treatment Co. Ltd, Qingdao 266555, P. R. China E-mail:
| | - Deyang Sheng
- Dongguan Water Group Co., Ltd, Dongguan 523109, P. R. China
| | - Di Wu
- Biofilm Research Institute, Qingdao Spring Water Treatment Co. Ltd, Qingdao 266555, P. R. China E-mail:
| | - Haoran Zhou
- Biofilm Research Institute, Qingdao Spring Water Treatment Co. Ltd, Qingdao 266555, P. R. China E-mail:
| | - Zhongqi Yang
- Biofilm Research Institute, Qingdao Spring Water Treatment Co. Ltd, Qingdao 266555, P. R. China E-mail:
| | - Jianwen Yin
- Biofilm Research Institute, Qingdao Spring Water Treatment Co. Ltd, Qingdao 266555, P. R. China E-mail:
| | - Chao Xia
- Biofilm Research Institute, Qingdao Spring Water Treatment Co. Ltd, Qingdao 266555, P. R. China E-mail:
| | - Yujiao Kan
- School of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
12
|
Hung CM, Chen CW, Huang CP, Sheu DS, Dong CD. Metal-free catalysis for organic micropollutant degradation in waste activated sludge via poly(3-hydroxybutyrate) biopolymers using Cupriavidus sp. L7L coupled with peroxymonosulfate. BIORESOURCE TECHNOLOGY 2022; 361:127680. [PMID: 35878764 DOI: 10.1016/j.biortech.2022.127680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
This study employed a novel and environment-friendly biopolymer/oxidant catalytic system, viz., poly(3-hydroxybutyrate)/peroxymonosulfate (PHB/PMS), for pretreating wastewater sludge for the first time. Under optimal conditions, i.e., 3.1 × 10-4 M of PMS and 3.3 g/L of PHB at pH = 6.0, the PAHs in the sludge matrix was decreased by 79 % in 12 h. Increase in salinity (75 % synthetic seawater) achieved 83 % of PAHs degradation. Functional groups (CO) of the biopolymer matrix were active centers for biopolymer-mediated electron transfer that produced reactive oxygen species (SO4-, HO, and 1O2) for adsorption and catalytic oxidation of PAHs in the sludge. Functional metagenomic analysis revealed the main genus, Conexibacter (phylum, Actinobacteria) exhibited PAH-degrading function with high efficiency in the biodegradation of PAHs from sludge pretreated with PHB/PMS. Coupling chemical oxidation and biostimulation using bacterial polymer-based biomaterials is effective and beneficial for pretreating wastewater sludge toward circular bioeconomy.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Der-Shyan Sheu
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
13
|
Li X, Lu C, Dai Y, Yu Z, Gu W, Li T, Li X, Li X, Wang X, Su Z, Xu M, Zhang H. Characterizing the Microbial Consortium L1 Capable of Efficiently Degrading Chlorimuron-Ethyl via Metagenome Combining 16S rDNA Sequencing. Front Microbiol 2022; 13:912312. [PMID: 35814706 PMCID: PMC9260513 DOI: 10.3389/fmicb.2022.912312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive application of the herbicide chlorimuron-ethyl (CE) severely harms subsequent crops and poses severe risks to environmental health. Therefore, methods for efficiently decreasing and eliminating CE residues are urgently needed. Microbial consortia show potential for bioremediation due to their strong metabolic complementarity and synthesis. In this study, a microbial consortium entitled L1 was enriched from soil contaminated with CE by a “top-down” synthetic biology strategy. The consortium could degrade 98.04% of 100 mg L−1 CE within 6 days. We characterized it from the samples at four time points during the degradation process and a sample without degradation activity via metagenome and 16S rDNA sequencing. The results revealed 39 genera in consortium L1, among which Methyloversatilis (34.31%), Starkeya (28.60%), and Pseudoxanthomonas (7.01%) showed relatively high abundances. Temporal succession and the loss of degradability did not alter the diversity and community composition of L1 but changed the community structure. Taxon-functional contribution analysis predicted that glutathione transferase [EC 2.5.1.18], urease [EC 3.5.1.5], and allophanate hydrolase [EC 3.5.1.54] are relevant for the degradation of CE and that Methyloversatilis, Pseudoxanthomonas, Methylopila, Hyphomicrobium, Stenotrophomonas, and Sphingomonas were the main degrading genera. The degradation pathway of CE by L1 may involve cleavage of the CE carbamide bridge to produce 2-amino-4-chloro-6-methoxypyrimidine and ethyl o-sulfonamide benzoate. The results of network analysis indicated close interactions, cross-feeding, and co-metabolic relationships between strains in the consortium, and most of the above six degrading genera were keystone taxa in the network. Additionally, the degradation of CE by L1 required not only “functional bacteria” with degradation capacity but also “auxiliary bacteria” without degradation capacity but that indirectly facilitate/inhibit the degradation process; however, the abundance of “auxiliary bacteria” should be controlled in an appropriate range. These findings improve the understanding of the synergistic effects of degrading bacterial consortia, which will provide insight for isolating degrading bacterial resources and constructing artificial efficient bacterial consortia. Furthermore, our results provide a new route for pollution control and biodegradation of sulfonylurea herbicides.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changming Lu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yumeng Dai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhixiong Yu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wu Gu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Li
- Shenyang Research Institute of Chemical Industry, Shenyang, China
| | - Xinyu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xiujuan Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Zhencheng Su
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Mingkai Xu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Mingkai Xu
| | - Huiwen Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- *Correspondence: Huiwen Zhang
| |
Collapse
|
14
|
Hou B, Peng S, Deng R, Ren B, Song Y. Biological nutrients removal performance under starvation stress: Efficacy deterioration and recovery. BIORESOURCE TECHNOLOGY 2022; 351:126977. [PMID: 35276376 DOI: 10.1016/j.biortech.2022.126977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Biological nutrients removal performance affected by starvation stress was investigated via the addition of pre-anoxic stage to SBR. COD removal efficiency maintained at around 90% regardless of the starvation stress. Starvation stress presented significant impact on nitrogen and phosphorus removal, with noticeable reduction of TN removal and remarkable deterioration of TP removal as prolonging the pre-anoxic time, which was mainly attributed to the integrative effect of carbon source competition, depression of denitrification and invalid P release as well as the variation of microbial community. It was notable that starvation stress exerted distinct evolution on microbial community. The improvement in relative abundance of the certain genera relating to denitrification was the main reason for the partial recovery of nitrogen removal after eliminating stress starvation. The promotion of P uptake capacity accompanied with the relief of invalid P release and the enriched DPAOs accounted for the complete recovery of phosphorus removal.
Collapse
Affiliation(s)
- Baolin Hou
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Sining Peng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Renjian Deng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Bozhi Ren
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Yujia Song
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| |
Collapse
|