1
|
Sun LL, Sun SN, Cao XF, Yao SQ. An integrated biorefinery strategy for Eucalyptus fractionation and co-producing glucose, furfural, and lignin based on deep eutectic solvent/cyclopentyl methyl ether system. Carbohydr Polym 2024; 343:122420. [PMID: 39174113 DOI: 10.1016/j.carbpol.2024.122420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 08/24/2024]
Abstract
A novel biphasic system containing water-soluble deep eutectic solvent (DES) and cyclopentyl methyl ether (CPME) was developed to treat Eucalyptus for furfural production, extracting lignin and enhancing cellulose enzymatic hydrolysis. Herein effect of DES type, water content in DES, temperature and time on furfural yield in water-soluble DES/CPME pretreatment process was firstly evaluated. A maximum furfural yield of 80.6 % was attained in 10 min at 150 °C with choline chloride (ChCl)/citric acid monohydrate (CAM)/CPME system containing 30 wt% water and 2.5 wt% SnCl4·5H2O, which was higher than that obtained from ChCl/CAM/CPME system without water (55.5 %) and H2O/CPME system (49.7 %). These results demonstrated that the water-soluble DES/CPME system was a powerful method enhancing the furfural production. Under the optimal pretreatment conditions, the delignification and glucose yield were reached to 72.7 % and 94.3 %, respectively. The extracted lignin showed low molecular weight and β-aryl-ether was obviously cleaved. Additionally, water-soluble DES/CPME pretreatment led to a significant removal of hemicelluloses (100.0 %) and lignin (72.7 %) and introduced morphological changes on cell walls, especially from the cell corner (CC) and secondary wall (SW) layers. Overall, this work proposed a practical one-step fractionation strategy for co-producing furfural, lignin and fermentable sugar, providing a way to biorefinery.
Collapse
Affiliation(s)
- Li-Li Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Xue-Fei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Shuang-Quan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
2
|
Tang Z, Yang D, Tang W, Ma C, He YC. Combined sulfuric acid and choline chloride/glycerol pretreatment for efficiently enhancing enzymatic saccharification of reed stalk. BIORESOURCE TECHNOLOGY 2023; 387:129554. [PMID: 37499922 DOI: 10.1016/j.biortech.2023.129554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
In this study, an efficient combination of pretreatment solvents involving Choline chloride/Glycerol (ChCl/Gly) and H2SO4 was firstly developed to assess the pretreatment performance and determine optimal pretreatment conditions. The results illustrated that the H2SO4-[ChCl/Gly] combination efficiently removed lignin (52.6%) and xylan (80.5%) from the pretreated reed stalk, and subsequent enzymatic hydrolysis yielded 91.1% of glucose. Furthermore, several characterizations were conducted to examine the structural and morphological changes of the reed stalk, revealing apparently enhanced accessibility (128.4 to 522.6 mg/g), reduced lignin surface area (357.9 to 229.5 m2/g), and substantial changes on biomass surface. Based on the aforementioned study, possible mechanisms for the H2SO4-[ChCl/Gly] pretreatment of reed stalks were proposed. The comprehensive understanding of combined H2SO4-[ChCl/Gly] pretreatment system for enhancing the saccharification of the reed stalk was interpreted in this work. Overall, this novel approach could be efficiently applied to pretreat and saccharify reed stalks, empowering the biomass refining industry.
Collapse
Affiliation(s)
- Zhengyu Tang
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Dong Yang
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Wei Tang
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, PR China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
3
|
Yang Q, Tang W, Ma C, He YC. Efficient co-production of xylooligosaccharides, furfural and reducing sugars from yellow bamboo via the pretreatment with biochar-based catalyst. BIORESOURCE TECHNOLOGY 2023; 387:129637. [PMID: 37549711 DOI: 10.1016/j.biortech.2023.129637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
The research on the efficient use of biomass to produce chemical products has received extensive attention. In this work, a novel heterogeneous biocarbon-based heterogeneous catalyst AT-Sn-YB was prepared using yellow bamboo (YB) as a carrier, and its physical properties were proved to be good by various characterization and stability experiments. In the γ-valerolactone/water (3:1, v/v) medium containing 100 mM CuCl2, the use of AT-Sn-YB (3.6 wt%) under 170 °C for 20 min was applied to catalyze YB into furfural (80.3% yield), accompanied with 2.8 g/L xylooligosaccharides. The YB solid residue obtained from treatment was efficiently saccharified to reducing sugars (17.2 g/L). Accordingly, comprehensive understanding of efficiently co-producing xylooligosaccharides, furfural and reducing sugars from YB was demonstrated via the pretreatment with biochar-based catalyst. This study innovatively used a new type of solid acid to complete the efficient co-production of chemical products, and realized the value-added utilization of yellow bamboo.
Collapse
Affiliation(s)
- Qizhen Yang
- School of Pharmacy & School of Biological and Food Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Wei Tang
- School of Pharmacy & School of Biological and Food Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
4
|
Chen Y, Ma C, Tang W, He YC. Comprehensive understanding of enzymatic saccharification of Betaine:Lactic acid-pretreated sugarcane bagasse. BIORESOURCE TECHNOLOGY 2023; 386:129485. [PMID: 37454960 DOI: 10.1016/j.biortech.2023.129485] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Green solvents, especially deep eutectic solvents (DESs), are widely applied to pretreat biomass for enhancing its enzymatic hydrolysis. In this work, lactic acid was selected as the hydrogen-bond-donor to prepare Betaine-base DES (Betaine:LA), The DES was utilized to pretreat sugarcane bagasse (SCB) at 160 ℃ for 80 min (severity factor LogR0 = 3.67). The influences of Betaine:LA treatment on the chemical composition, crystal and microstructure structure of cellulose, and cellulase digestion were investigated. The results showed that the lignin (47.1%) and xylan (44.6%) were removed, the cellulase digestibility of Betaine:LA-treated SCB was 4.2 times that of the raw material. This improved efficiency was attributed to the enhanced accessibility of cellulose, the weakened surface area of lignin, the declined hydrophobicity, and the decreased crystallinity of cellulose. Several compelling linear correlations were fitted between enzymatic hydrolysis and these alterations of physicochemical features, comprehensively understanding enzymatic saccharification of Betaine:LA-pretreated SCB.
Collapse
Affiliation(s)
- Ying Chen
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, PR China
| | - Wei Tang
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
5
|
Zhu L, Di J, Li Q, He YC, Ma C. Enhanced conversion of corncob into furfurylamine via chemoenzymatic cascade catalysis in a toluene–water medium. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
6
|
Li O, Liang J, Chen Y, Tang S, Li Z. Exploration of Converting Food Waste into Value-Added Products via Insect Pretreatment-Assisted Hydrothermal Catalysis. ACS OMEGA 2023; 8:18760-18772. [PMID: 37273594 PMCID: PMC10233670 DOI: 10.1021/acsomega.3c00762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
The environmental burden of food waste (FW) disposal coupled with natural resource scarcity has aroused interest in FW valorization; however, transforming FW into valuable products remains a challenge because of its heterogeneous nature. In this study, a two-stage method involving black soldier fly (BSF)-based insect pretreatment and subsequent hydrothermal catalysis over a single-atom cerium-incorporated hydroxyapatite (Ce-HAP) was explored to convert FW into high added-value furfurals (furfural and 5-hydroxymethylfurfural). FW consisting of cereal, vegetables, meat, eggs, oil, and salt was initially degraded by BSF larvae to generate homogeneous BSF biomass, and then, crucial parameters impacting the conversion of BSF biomass into furfurals were investigated. Under the optimized conditions, 9.3 wt % yield of furfurals was attained, and repeated trials confirmed the recyclability of Ce-HAP. It was proved that the revenue of furfural production from FW by this two-stage method ranged from 3.14 to 584.4 USD/tonne. This study provides a potential technical orientation for FW resource utilization.
Collapse
|
7
|
Tang W, Tang Z, Qian H, Huang C, He Y. Implementing dilute acid pretreatment coupled with solid acid catalysis and enzymatic hydrolysis to improve bioconversion of bamboo shoot shells. BIORESOURCE TECHNOLOGY 2023; 381:129167. [PMID: 37182678 DOI: 10.1016/j.biortech.2023.129167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Exploiting bamboo shoot shells (BSS) as feedstocks for biorefining is a crucial scheme to advance the bioavailability of bamboo shoots. This work applied traditional dilute sulfuric acid pretreatment (DAP) to treat BSS and simultaneously prepared the solid-acid-catalyst by using BSS as carbon-based carriers. The biocatalysis of the prehydrolysate from DAP and enzymatic hydrolysis of pretreated BSS was subsequently performed to achieve efficient bioconversion of its carbohydrates. The results displayed that 0.1 g/L H2SO4 employed in DAP was the optimal condition for furfural conversion of BSS during biocatalysis, reaching the maximum of 41%. Meanwhile, the enzymatic hydrolysis efficiency of the pretreated BSS also reached the maximum of 97%. This increment of efficiency was ascribed to the enhancement of accessibility and cellulosic crystal size, and also the reduction of surface area of lignin in BSS. Ultimately, the efficient bioutilization of BSS and bioconversion of its carbohydrates were realized by DAP technology.
Collapse
Affiliation(s)
- Wei Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhengyu Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Haojie Qian
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yucai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China.
| |
Collapse
|
8
|
He W, He YC, Ye J. Efficient synthesis of furfurylamine from biomass via a hybrid strategy in an EaCl:Gly-water medium. Front Bioeng Biotechnol 2023; 11:1144787. [PMID: 37008036 PMCID: PMC10060961 DOI: 10.3389/fbioe.2023.1144787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
The objective of this work was to develop an efficient approach for chemoenzymatically transforming biomass to furfurylamine by bridging chemocatalysis and biocatalysis in a deep eutectic solvent of EaCl:Gly-water. Using hydroxyapatite (HAP) as support, heterogeneous catalyst SO4 2-/SnO2-HAP was synthesized for transforming lignocellulosic biomass into furfural using organic acid as a co-catalyst. The turnover frequency (TOF) was correlated with the pKa value of the used organic acid. Corncob was transformed by oxalic acid (pKa = 1.25) (0.4 wt%) plus SO4 2-/SnO2-HAP (2.0 wt%) to produce furfural with a yield of 48.2% and a TOF of 6.33 h-1 in water. In deep eutectic solvent EaCl:Gly-water (1:2, v/v), co-catalysis with SO4 2-/SnO2-HAP and oxalic acid was utilized to transform corncob, rice straw, reed leaf, and sugarcane bagasse for the production of furfural with the yield of 42.4%-59.3% (based on the xylan content) at 180°C after 10 min. The formed furfural could be efficiently aminated to furfurylamine with E. coli CCZU-XLS160 cells in the presence of NH4Cl (as an amine donor). As a result of the biological amination of furfural derived from corncob, rice straw, reed leaf, and sugarcane bagasse for 24 h, the yields of furfurylamine reached >99%, with a productivity of 0.31-0.43 g furfurylamine per g xylan. In EaCl:Gly-water, an efficient chemoenzymatic catalysis strategy was employed to valorize lignocellulosic biomass into valuable furan chemicals.
Collapse
Affiliation(s)
- Wei He
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Yu-Cai He
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Jianren Ye
- College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
9
|
Hu SL, Cheng H, Xu RY, Huang JS, Zhang PJ, Qin JN. Conversion of xylose into furfural over Cr/Mg hydrotalcite catalysts. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
10
|
Ouyang D, Liu T, Astimar AA, Lau HLN, Teh SS, Nursyairah J, Liu D, Zhao X. Model-based process intensification of dilute acid pre-hydrolysis of oil palm empty fruit bunch biomass for pretreatment and furfural production. BIORESOURCE TECHNOLOGY 2023; 372:128626. [PMID: 36642202 DOI: 10.1016/j.biortech.2023.128626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
A novel process for simultaneous production of furfural and pretreatment of oil palm empty fruit bunch (EFB) by dilute acid pre-hydrolysis was developed based on non-isothermal kinetic modeling. Mass transfer analysis suggested that the internal diffusion could be neglected as diffusion time of sulfuric acid in EFB particles was significantly shorter than the pre-hydrolysis period, whereas the heating stage could not be neglected due to a significant part of xylan was solubilized at the stage. A strategy for increasing furfural yield was developed by intermittent discharging of steam, resulting in 71.4 % furfural yield. The pretreated solids showed good enzymatic digestibility. 136.3 g/L glucose corresponding to 81.6 % yield was obtained by high-solid loading hydrolysis. 95.4 g furfural and 212 g glucose could be obtained from 1 kg dry EFB. Therefore, non-isothermal effects on polysaccharide hydrolysis and pentose decomposition should be considered carefully for an efficient process design of EFB biorefining.
Collapse
Affiliation(s)
- Denghao Ouyang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China; Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Tongxin Liu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China; Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Abdul Aziz Astimar
- Engineering and Processing Division, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Harrison Lik Nang Lau
- Engineering and Processing Division, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Soek Sin Teh
- Engineering and Processing Division, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Jalil Nursyairah
- Engineering and Processing Division, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Dehua Liu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China; Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xuebing Zhao
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China; Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Tang Z, Li Q, Di J, Ma C, He YC. An efficient chemoenzymatic cascade strategy for transforming biomass into furfurylamine with lobster shell-based chemocatalyst and mutated ω-transaminase biocatalyst in methyl isobutyl ketone-water. BIORESOURCE TECHNOLOGY 2023; 369:128424. [PMID: 36464000 DOI: 10.1016/j.biortech.2022.128424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
To date, an efficient process for manufacturing valuable furan compounds from available renewable resources has gained great attention via a chemoenzymatic route. In this study, a sulfonated tin-loaded heterogeneous catalyst CLUST-Sn-LS using lobster shell as biobased carrier was prepared to convert corncob (75.0 g/L) into furfural (122.5 mM) at 170 °C for 30 min in methyl isobutyl ketone (MIBK)-H2O biphasic system (2:1, v/v). To improve furfurylamine yield, a novel recombinant E. coli TFTS harboring robust mutant Aspergillus terreus ω-transaminase [hydrophilic threonine (T) at position 130 was site-directed mutated to hydrophobic phenylalanine (F)] was constructed to transform 300-500 mM furfural into furfurylamine (90.1-93.6 % yield) at 30 °C and pH 7.5 in MIBK-H2O. Corncob was converted to furfurylamine in MIBK-H2O with a high productivity of 0.461 g furfurylamine/(g xylan). This constructed chemoenzymatic method coupling bio-based chemocatalyst CLUST-Sn-LS and mutant ω-transaminase biocatalyst in a biphasic system could efficiently convert lignocellulose into furfurylamine.
Collapse
Affiliation(s)
- Zhengyu Tang
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China
| | - Qing Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, PR China
| | - Junhua Di
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China
| | - Cuiluan Ma
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, PR China
| | - Yu-Cai He
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province, PR China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China.
| |
Collapse
|
12
|
Allegretti C, Bellinetto E, D’Arrigo P, Ferro M, Griffini G, Rossato LAM, Ruffini E, Schiavi L, Serra S, Strini A, Turri S. Fractionation of Raw and Parboiled Rice Husks with Deep Eutectic Solvents and Characterization of the Extracted Lignins towards a Circular Economy Perspective. Molecules 2022; 27:8879. [PMID: 36558011 PMCID: PMC9785053 DOI: 10.3390/molecules27248879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
In the present work, rice husks (RHs), which, worldwide, represent one of the most abundant agricultural wastes in terms of their quantity, have been treated and fractionated in order to allow for their complete valorization. RHs coming from the raw and parboiled rice production have been submitted at first to a hydrothermal pretreatment followed by a deep eutectic solvent fractionation, allowing for the separation of the different components by means of an environmentally friendly process. The lignins obtained from raw and parboiled RHs have been thoroughly characterized and showed similar physico-chemical characteristics, indicating that the parboiling process does not introduce obvious lignin alterations. In addition, a preliminary evaluation of the potentiality of such lignin fractions as precursors of cement water reducers has provided encouraging results. A fermentation-based optional preprocess has also been investigated. However, both raw and parboiled RHs demonstrated a poor performance as a microbiological growth substrate, even in submerged fermentation using cellulose-degrading fungi. The described methodology appears to be a promising strategy for the valorization of these important waste biomasses coming from the rice industry towards a circular economy perspective.
Collapse
Affiliation(s)
- Chiara Allegretti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| | - Emanuela Bellinetto
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| | - Paola D’Arrigo
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche (SCITEC-CNR), Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Monica Ferro
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| | - Gianmarco Griffini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| | - Letizia Anna Maria Rossato
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| | - Eleonora Ruffini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| | - Luca Schiavi
- Istituto per le Tecnologie della Costruzione, Consiglio Nazionale delle Ricerche (ITC-CNR), Via Lombardia 49, 20098 San Giuliano Milanese, Italy
| | - Stefano Serra
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche (SCITEC-CNR), Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Alberto Strini
- Istituto per le Tecnologie della Costruzione, Consiglio Nazionale delle Ricerche (ITC-CNR), Via Lombardia 49, 20098 San Giuliano Milanese, Italy
| | - Stefano Turri
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
13
|
Jia Z, Sun Y, Wang S, Fan X, Yu H, Wang H, Li L, Jiang E, Wu C, Xu X. Hydrothermal and photocatalytic synergistic pretreatment to improve the full utilization of corn stalk. BIORESOURCE TECHNOLOGY 2022; 363:127989. [PMID: 36126848 DOI: 10.1016/j.biortech.2022.127989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
In this study, the hydrothermal and photocatalytic synergistic pretreatment for improving the full component utilization of corn stalk based on lignin first biorefining was employed to generate carbohydrates and obtain modified lignin. The results showed that the highest lignin removal ratio (40.70 %) and cellulose retention ratio (92.64 %) were obtained due to the smallest energy gap (6.05 eV) and the largest penetration distance (1.73 Å) between GVL and the lignin. And the yield of carbohydrates increased from 1.95 % to 58.17 % after hydrothermal pretreatment at 180 ℃. Furthermore, the modified lignin enhanced the flocculation effect, resulting in the increase of the removal of safranine-T by 6 times. In addition, the chemical and physical properties of modified lignin were studied and the mechanism of photocatalysis modification was explored. The research provides a new pretreatment method for the utilization of biomass and simultaneously achieves carbohydrate enrichment in bio-oil and purification of dye wastewater.
Collapse
Affiliation(s)
- Zhiwen Jia
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Yan Sun
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Shiyang Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Xudong Fan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Haipeng Yu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Hong Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Linghao Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Enchen Jiang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Cuilian Wu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Xiwei Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China.
| |
Collapse
|
14
|
Tang W, Huang C, Ling Z, Lai C, Yong Q. Efficient utilization of waste wheat straw through humic acid and ferric chloride co-assisted hydrothermal pretreatment for fermentation to produce bioethanol. BIORESOURCE TECHNOLOGY 2022; 364:128059. [PMID: 36191752 DOI: 10.1016/j.biortech.2022.128059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The adsorbed ash and lignin contained in waste wheat straw (WWS) have been the essential factors restricting its high-value utilization in biorefinery. Hence, humic acid (HA) and FeCl3 as the additives of hydrothermal pretreatment were applied to simultaneously enhance the removal of lignin and eliminate the acid buffering of ash in WWS, respectively. The results showed that the xylan and lignin removal of WWS pretreated with 10 g/L HA and 20 mM FeCl3 could be efficiently increased from 61.4% to 72.9% and from 14.7% to 38.7%, respectively. The enzymatic hydrolysis efficiency and ethanol yield of WWS were increased this way from 44.4% to 82.7% and from 20.55% to 36.86%, respectively. According to the characterization of WWS, the synergistic interaction between HA and FeCl3 was beneficial to the cellulose accessibility and surface lignin area of WWS changed in positive directions, leading to the improvement of hydrolysis efficiency.
Collapse
Affiliation(s)
- Wei Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
15
|
Enhanced Enzymatic Saccharification of Tomato Stalk by Combination Pretreatment with NaOH and ChCl:Urea-Thioure in One-Pot Manner. Processes (Basel) 2022. [DOI: 10.3390/pr10101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, the mixture of NaOH and deep eutectic solvent (DES) ChCl:UA-TA was firstly used to pretreat waste tomato stalk (TS). The effects of pretreatment time, pretreatment temperature, NaOH dosage, and DES dose were investigated, and the synergistic effects of dilute NaOH and DES combination pretreatment were tested on the influence of enzymatic saccharification. It was found that the relationship between delignification and saccharification rate had a significant linear correction. When TS was pretreated with NaOH (7 wt%)–ChCl:UA-TA (8 wt%) in a solid-to-liquid ratio of 1:10 (wt:wt) at 75 °C for 60 min, the delignification reached 82.1%. The highest yield of reducing sugars from NaOH–ChCl:UA-TA-treated TS could reach 62.5% in an acetate buffer (50 mM, pH 4.8) system containing cellulase (10.0 FPU/g TS) and xylanase (30.0 CBU/g TS) at 50 °C. In summary, effective enzymatic saccharification of TS was developed by a combination pretreatment with dilute NaOH and ChCl:UA-TA, which has potential application in the future.
Collapse
|
16
|
Efficient Synthesis of Furfuryl Alcohol from Corncob in a Deep Eutectic Solvent System. Processes (Basel) 2022. [DOI: 10.3390/pr10091873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
As a versatile and valuable intermediate, furfuryl alcohol (FOL) has been widely used in manufacturing resins, vitamin C, perfumes, lubricants, plasticizers, fuel additives, biofuels, and other furan-based chemicals. This work developed an efficient hybrid strategy for the valorization of lignocellulosic biomass to FOL. Corncob (75 g/L) was catalyzed with heterogenous catalyst Sn-SSXR (2 wt%) to generate FAL (65.4% yield) in a deep eutectic solvent ChCl:LA–water system (30:70, v/v; 180 °C) after 15 min. Subsequently, the obtained FAL liquor containing FAL and formate could be biologically reduced to FOL by recombinant E. coli CF containing aldehyde reductase and formate dehydrogenase at pH 6.5 and 35 °C, achieving the FOL productivity of 0.66 g FOL/(g xylan in corncob). The formed formate could be used as a cosubstrate for the bioreduction of FAL into FOL. In addition, other biomasses (e.g., sugarcane bagasse and rice straw) could be converted into FOL at a high yield. Overall, this hybrid strategy that combines chemocatalysis and biocatalysis can be utilized to efficiently valorize lignocellulosic materials into valuable biofurans.
Collapse
|
17
|
Babu S, Singh Rathore S, Singh R, Kumar S, Singh VK, Yadav SK, Yadav V, Raj R, Yadav D, Shekhawat K, Ali Wani O. Exploring agricultural waste biomass for energy, food and feed production and pollution mitigation: A review. BIORESOURCE TECHNOLOGY 2022; 360:127566. [PMID: 35788385 DOI: 10.1016/j.biortech.2022.127566] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Globally agricultural production system generates a huge amount of solid waste. Improper agri-waste management causes environmental pollution which resulted in economic losses and human health-related problems. Hence, there is an urgent need to design and develop eco-friendly, cost-effective, and socially acceptable agri-waste management technologies. Agri-waste has high energy conversion efficiency as compared to fossil fuel-based energy generation materials. Agri-waste can potentially be exploited for the production of second-generation biofuels. However, composted agri-waste can be an alternative to energy-intensive chemical fertilizers in organic production systems. Furthermore, value-added agri-waste can be a potential feedstock for livestock and industrial products. But comprehensive information concerning agri-waste management is lacking in the literature. Therefore, the present study reviewed the latest advancements in efficient agri-waste management technologies. This latest review will help the researchers and policy planners to formulate environmentally robust residue management practices for achieving a green economy in the agricultural production sector.
Collapse
Affiliation(s)
- Subhash Babu
- Division of Agronomy, ICAR- Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Sanjay Singh Rathore
- Division of Agronomy, ICAR- Indian Agricultural Research Institute, New Delhi 110 012, India.
| | - Raghavendra Singh
- ICAR- Indian Institute of Pulses Research, Kanpur, Uttar Pradesh 208 024, India
| | - Sanjeev Kumar
- ICAR- Indian Institute of Farming Systems Research, Modipuram, Uttar Pradesh 250110, India
| | - Vinod K Singh
- ICAR- Central Research Institute on Dryland Agriculture, Hyderabad, Telangana 500 059, India
| | - S K Yadav
- ICAR-Indian Institute of Sugarcane Research, Lucknow, Uttar Pradesh 226 002, India
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Rishi Raj
- Division of Agronomy, ICAR- Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Devideen Yadav
- ICAR-Indian Institute of Soil & Water Conservation, Dehradun, Uttarakhand 248 195, India
| | - Kapila Shekhawat
- Division of Agronomy, ICAR- Indian Agricultural Research Institute, New Delhi 110 012, India
| | - Owais Ali Wani
- Division of Soil Science and Agricultural Chemistry, SKUAST- Kashmir, 193201, India
| |
Collapse
|
18
|
Efficient Synthesis of Biobased Furoic Acid from Corncob via Chemoenzymatic Approach. Processes (Basel) 2022. [DOI: 10.3390/pr10040677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Valorization of lignocellulosic materials into value-added biobased chemicals is attracting increasing attention in the sustainable chemical industry. As an important building block, furoic acid has been commonly utilized to manufacture polymers, flavors, perfumes, bactericides, fungicides, etc. It is generally produced through the selective oxidation of furfural. In this study, we provide the results of the conversion of biomass-based xylose to furoic acid in a chemoenzymatic cascade reaction with the use of a heterogeneous chemocatalyst and a dehydrogenase biocatalyst. For this purpose, NaOH-treated waste shrimp shell was used as a biobased carrier to prepare high activity and thermostability of biobased solid acid catalysts (Sn-DAT-SS) for the dehydration of corncob-valorized xylose into furfural at 170 °C in 30 min. Subsequently, xylose-derived furfural and its derivative furfuryl alcohol were wholly oxidized into furoic acid with whole cells of E. coli HMFOMUT at 30 °C and pH 7.0. The productivity of furoic acid was 0.35 g furoic acid/(g xylan in corncob). This established chemoenzymatic process could be utilized to efficiently valorize biomass into value-added furoic acid.
Collapse
|