1
|
Prado ERL, Rial RC. Biohydrogen production from residual biomass: The potential of wheat, corn, rice, and barley straw - recent advances. BIORESOURCE TECHNOLOGY 2025; 432:132638. [PMID: 40355006 DOI: 10.1016/j.biortech.2025.132638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/27/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
This work reviews the potential of wheat, corn, rice, and barley straw for biohydrogen production, highlighting it as a promising solution for sustainable energy. We analyze the physicochemical properties of these straws, which are rich in carbohydrates and lignin, essential components for bioenergy production. Advanced pretreatment approaches, such as ultrasound, torrefaction, and electrohydrolysis, have proven effective in increasing biohydrogen yields. Research and development of fermentation technologies, such as dark fermentation and photofermentation, are crucial to improving process efficiency. Despite environmental and economic advantages, biohydrogen production faces significant challenges, including biomass conversion efficiency and economic viability. The infrastructure for the collection, transportation, and storage of agricultural residues also presents a challenge. This review explores the potential of wheat, corn, rice, and barley straw for biohydrogen production, emphasizing its role in sustainable energy generation. Biohydrogen production from agricultural residues is a viable alternative for the circular economy and environmental sustainability, contributing to waste reduction and climate change mitigation.
Collapse
Affiliation(s)
| | - Rafael Cardoso Rial
- Federal Institute of Mato Grosso do Sul, 79750-000, Nova Andradina, MS, Brazil.
| |
Collapse
|
2
|
Serafini LF, Praça PJGM, González-Andrés F, Gonçalves A. Life cycle approach as a tool for assessing municipal biowaste treatment units: A systematic review. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2025:734242X251326866. [PMID: 40145369 DOI: 10.1177/0734242x251326866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Biowaste is an increasingly relevant environmental issue worldwide, causing significant environmental, economic and social impacts. Effective strategies are crucial to mitigate impacts, maximising biowaste's valorisation. This article presents a systematic literature review on using life cycle assessment (LCA) to evaluate municipal biowaste treatment facilities. The primary objective was to analyse how LCA is applied to assess the environmental efficiency of mechanical and biological treatment involving composting and anaerobic digestion (AD)-based systems. The article addressed the methodological heterogeneity across previous LCA studies, identifying critical gaps and challenges regarding standardisation and result comparability. It underscores the importance of accurately considering environmental indicators and emission factors, as these significantly affect overall LCA outcomes. Results show that most publications focus on Europe and Asia, highlighting a research gap in regions like Africa. The organic fraction municipal solid waste is the predominant feedstock, and 1 tonne of biowaste was the frequently used functional unit, reflecting the upstream impacts of waste. The most recurrent system boundary was the cradle-to-grave, offering a comprehensive analysis as it covers all stages of biowaste treatment from collection to disposal. The studies highlight the environmental benefits of AD-based systems through energy production compensations, particularly in reducing global warming potential, compared with other treatment operations such as landfills. While replacing mineral fertilisers with digestate and compost is very well discussed, it raises concerns about heavy metal content and nutrient availability. Therefore, selective collection of organic waste is crucial to improve compost quality and AD efficiency, though it increases transportation costs.
Collapse
Affiliation(s)
- Laís Fabiana Serafini
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | | | - Fernando González-Andrés
- Chemical, Environmental and Bioprocess Engineering Group, Institute of Research and Innovation in Engineering (I4), University of León, Av. Portugal, 41, 24009, León, Spain
| | - Artur Gonçalves
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
3
|
Fan Y, Zhang F, He K, Yu D, Chen H, Tian D, Shi Y, Li Z, Wang X. Functional microorganisms in hydrogen production: Mechanisms and applications. BIORESOURCE TECHNOLOGY 2025; 419:132007. [PMID: 39733810 DOI: 10.1016/j.biortech.2024.132007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024]
Abstract
The rapid growth of global energy demand accelerates the development of sustainable, clean, and renewable energy sources. Biohydrogen production, driven by functional microorganisms, offers a promising solution. Multiple species of bacteria, fungi, microalgae, and archaea were able to produce hydrogen. This study reviewed the typical strains, together with their hydrogen-production mechanisms, e.g., bio-photolysis, photo fermentation, and dark fermentation. Bacteria (e.g., purple non-sulfur bacteria) and microalgae (e.g., cyanobacteria) have been widely investigated, with respect to the limited fungi and archaea. It showed that temperature, pH, and substrate availability could all substantially influence the efficiency of biohydrogen production. Meanwhile, photo and dark fermentations are favored for future possible industrial applications. Furthermore, this review summarized practical applications of biohydrogen production, such as applications of bioreactors, waste treatments, and integrated systems for hydrogen production, highlighting the importance of functional microorganisms in advancing biohydrogen technology under global energy crisis.
Collapse
Affiliation(s)
- Yonghong Fan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Feiran Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kun He
- Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China.
| | - Dan Yu
- North China Power Engineering Co., Ltd of China Power Engineering Consulting Group, Beijing 100120, China
| | - Haoming Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Da Tian
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yixiao Shi
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Xiaomei Wang
- Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
| |
Collapse
|
4
|
Mohd Amin NH, Junaidi MUM, Amir Z, Hashim NA, Hizaddin HF, Ahmad AL, Zainal Abidin MII, Rabuni MF, Syed Nor SN. Diamine-Crosslinked and Blended Polyimide Membranes: An Emerging Strategy in Enhancing H 2/CO 2 Separation. Polymers (Basel) 2025; 17:615. [PMID: 40076108 PMCID: PMC11902560 DOI: 10.3390/polym17050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/11/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
The increasing demand for high-purity hydrogen (H2) as renewable energy sources is driving advancements in membrane technology, which is essential for achieving efficient gas separation. Polyimide (PI) membranes have become an emerging option for H2/CO2 separation due to its excellent thermal stability and stability under harsh conditions. However, the neat PI membrane suffers performance loss due to CO2 plasticization effect and an encountered trade-off limit between permeability and selectivity. Therefore, membrane modification by crosslinking and blending emerged as a recent strategy to enhance the membrane's performance and properties. This paper provides: (1) An overview of the possible method to do the modification in PI membranes, including the advantages and challenges of the membrane modification types; (2) As blending and crosslinking is the most popular modification for the PI membrane, their roles in enhancing membrane properties for improved H2/CO2 separation are discussed; (3) The critical parameters of the blending and crosslinking processes are also clarified for the optimal purification process; (4) The future outlook for H2/CO2 separation using membrane technology is discussed, aiming to provide commercialization strategy for optimal H2/CO2 separation. Thus, this review could provide guidelines for the readers to implement changes that significantly enhance the membrane's features for high-purity H2 production.
Collapse
Affiliation(s)
- Noor Hafizah Mohd Amin
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (N.H.M.A.); (N.A.H.); (H.F.H.); (M.I.I.Z.A.)
| | - Mohd Usman Mohd Junaidi
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (N.H.M.A.); (N.A.H.); (H.F.H.); (M.I.I.Z.A.)
- Sustainable Process Engineering Center (SPEC), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Zulhelmi Amir
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (N.H.M.A.); (N.A.H.); (H.F.H.); (M.I.I.Z.A.)
- Sustainable Process Engineering Center (SPEC), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nur Awanis Hashim
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (N.H.M.A.); (N.A.H.); (H.F.H.); (M.I.I.Z.A.)
- Sustainable Process Engineering Center (SPEC), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Hanee Farzana Hizaddin
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (N.H.M.A.); (N.A.H.); (H.F.H.); (M.I.I.Z.A.)
- Sustainable Process Engineering Center (SPEC), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Universiti Sains Malaysia Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia;
| | - Mohd Izzudin Izzat Zainal Abidin
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (N.H.M.A.); (N.A.H.); (H.F.H.); (M.I.I.Z.A.)
- Sustainable Process Engineering Center (SPEC), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Mohamad Fairus Rabuni
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (N.H.M.A.); (N.A.H.); (H.F.H.); (M.I.I.Z.A.)
- Sustainable Process Engineering Center (SPEC), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | |
Collapse
|
5
|
Faggian L, Agostini S, Müller B, Gupte AP, Favaro L. Efficient production of hydrogen through bioaugmentation of the organic fraction of municipal solid waste by the newly isolated Clostridium sartagoforme SA1. BIORESOURCE TECHNOLOGY 2025; 415:131658. [PMID: 39427849 DOI: 10.1016/j.biortech.2024.131658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Bio-hydrogen from organic waste holds promise as renewable energy. However, its large-scale production is limited by technical challenges, with low H2 yields and the absence of robust microbial strains being the major ones. To address these limitations, H2-producing microbes have been isolated from a full-scale anaerobic digestor treating complex organic waste. Clostridium sartagoforme SA1 was selected because of high H2 yields from glucose, soluble starch, and carboxymethylcellulose. The strain was then tested for H2 production from the Organic Fraction of Municipal Solid Waste (OFMSW), rich in starch and cellulose, with productions up to 55 mLH2 g/VS. Additionally, C. sartagoforme SA1 confirmed high H2 performances even in the presence of OFMSW's indigenous microflora, increasing the H2 yield by 38 % and highlighting its robustness in a highly competitive environment. This is the first report describing the efficient adoption of a C. sartagoforme strain for bioaugmentation of non-sterile OFMSW towards high H2 yields.
Collapse
Affiliation(s)
- L Faggian
- Waste to Bioproducts-Lab, Department of Agronomy Food Natural resources Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - S Agostini
- Waste to Bioproducts-Lab, Department of Agronomy Food Natural resources Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy; BTS Biogas s.r.l., Via Vento 9, I-37010 Affi, VR, Italy
| | - B Müller
- BTS Biogas s.r.l., Via Vento 9, I-37010 Affi, VR, Italy
| | - A P Gupte
- Waste to Bioproducts-Lab, Department of Agronomy Food Natural resources Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - L Favaro
- Waste to Bioproducts-Lab, Department of Agronomy Food Natural resources Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy; Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
6
|
Ai S, Wang X, Zhu J, Meng X, Liu Z, Yang F, Cheng K. Microbial community assemblage altered by coprecipitation of artificial humic substances and ferrihydrite: Implications for carbon fixation pathway transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:174838. [PMID: 39029757 DOI: 10.1016/j.scitotenv.2024.174838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
The suppression of soil carbon mineralization has been demonstrated to be effectively facilitated by carbon‑iron interactions, yet the specific mechanisms by which artificial humic substances (A-HS) coupled with ferrihydrite influence this process remain insufficiently explored. This study is to investigate how the A-HS, specifically artificial fulvic acid (A-FA) and artificial humic acid (A-HA), coupled with ferrihydrite, affect carbon mineralization under anaerobic system that simulates paddy flooding conditions. The object is to investigate trends in carbon emissions and to delineate microbial community structure and functional pathways. The findings indicate that A-HA and A-FA substantially reduce CO2 and CH4 emissions, with A-FA having a particularly pronounced effect on carbon fixation, halving CO2 concentrations. The low concentration of Fe(II) observed suggest that A-FA and A-HA impede the dissimilatory iron reduction (DIR) process. Detailed 16S rDNA sequencing and gene prediction analyses reveal changes in microbial community structures and functions, highlighting Methanobacterium as the dominant hydrogenotrophic methanogens. The reductive citric acid cycle, predominantly utilized by Clostridium carboxidivorans, was identified as the principal carbon fixation pathway. This work provides a novel insight into the microbial mechanisms of carbon sequestration and highlights the potential of A-HS in improving soil fertility and contributing to climate change mitigation through enhancing soil carbon storage.
Collapse
Affiliation(s)
- Shuang Ai
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Xiaobin Wang
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Jiayu Zhu
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Xianghui Meng
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Zhuqing Liu
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China.
| | - Fan Yang
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China.
| | - Kui Cheng
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China.
| |
Collapse
|
7
|
Padigala CT, Satpati GG, Singhvi M, Goswami L, Kushwaha A, Oraon S, Aleksanyan K, Smykovskaya RS, Rawindran H, Wei LJ, Rajak R, Pandit S, Dikshit PK. Nanotechnological advancement in green hydrogen production from organic waste: Recent developments, techno–economic, and life cycle analyses. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2024; 92:672-693. [DOI: 10.1016/j.ijhydene.2024.10.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
8
|
Zheng G, Tao D, Ren N. Hydrogen-producing conditions and mutation mechanisms of a highly efficient mutant strain Ethanoligenens harbinense YR-3. J Biosci Bioeng 2024; 138:399-405. [PMID: 39174378 DOI: 10.1016/j.jbiosc.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/03/2024] [Accepted: 05/26/2024] [Indexed: 08/24/2024]
Abstract
In this study, the optimal hydrogen (H2) production conditions of the high-efficiency H2-producing mutant strain Ethanoligenens harbinense YR-3 (carbon-nitrogen ratio 5.5, phosphate buffer 80 mM, initial pH 6.0, biotin 1.4 mg/L) are obtained by intermittent experiments. The maximum specific H2 production rate of YR-3 (2.85 mol H2/mol glucose) was 1.4 times that of the wild strain ZGX4 (2.04 mol H2/mol glucose). The liquid-phase products are mainly ethanol and acetic acid, indicating that the metabolic pathway has not changed. Two-dimensional electrophoresis and mass spectrometry were used to compare and analyze the protein map differences between YR-3 and ZGX4. The results show that 1,6-fructose diphosphate aldolase and the flavoprotein in hydrogenase are highly expressed. This study will provide a theoretical basis for the genetic modification of high-efficiency H2-producing strains and the improvement of H2 production capacity.
Collapse
Affiliation(s)
- Guoxiang Zheng
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; School of Environment, Harbin Institute of Technology, Harbin 150001, PR China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China
| | - Dongxu Tao
- College of Engineering, Northeast Agriculture University, Harbin 150030, PR China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China
| | - Nanqi Ren
- School of Environment, Harbin Institute of Technology, Harbin 150001, PR China.
| |
Collapse
|
9
|
Ihsanullah I, Bilal M, Tariq Khan M. Harnessing Nanomaterials for Enhanced Biohydrogen Generation from Wastewater. Chem Asian J 2024; 19:e202300618. [PMID: 37642141 DOI: 10.1002/asia.202300618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 08/31/2023]
Abstract
Biohydrogen is considered a green fuel due to its eco-friendly nature since it only produces water and energy on combustion. However, their lower yield and production rate is one of the foremost challenges that need an instant sustainable approach. The use of nanotechnology is a potential approach for the enhanced generation of biohydrogen, owing to the significant characteristics of the nanomaterials such as greater specificity, high surface-area-to-volume ratio, better reactivity and dispersibility, enhanced catalytic activity, superb selectivity, greater electron transfer, and better anaerobic microbiota activity. This article explores the recent trends and innovations in the production of biohydrogen from wastewater through the applications of different nanomaterials. The potential of various nanomaterials employed for biohydrogen production from wastewater is evaluated and the impacts of important parameters such as the concentration and size of the nanomaterials, temperature, and pH on the production and yield of biohydrogen are explained in detail. Several pathways involved in the mechanistic approach of biohydrogen generation from wastewater are critically assessed. Lastly, numerous technological challenges are highlighted and recommendations regarding future research are also provided.
Collapse
Affiliation(s)
- I Ihsanullah
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Muhammad Bilal
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Muhammad Tariq Khan
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai po New Territories, Hong Kong
| |
Collapse
|
10
|
Patel SKS, Gupta RK, Karuppanan KK, Padhi DK, Ranganathan S, Paramanantham P, Lee JK. Nonsterile Process for Biohydrogen Production: Recent Updates, Challenges, and Opportunities. Indian J Microbiol 2024; 64:445-456. [PMID: 39011010 PMCID: PMC11246391 DOI: 10.1007/s12088-024-01319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/20/2024] [Indexed: 07/17/2024] Open
Abstract
Hydrogen (H2), a clean and versatile energy carrier, has recently gained significant attention as a potential solution for reducing carbon emissions and promoting sustainable energy systems. The yield and efficiency of the biological H2 production process primarily depend on sterilization conditions. Various strategies, such as heat inactivation and membrane-based sterilization, have been used to achieve desirable yields via microbial fermentation. Almost every failed biotransformation process is linked to nonsterile conditions at any reaction stage. Therefore, the production of renewable biofuels as alternatives to fossil fuels is more attractive. Pure sugars have been widely documented as a costly feedstock for H2 production under sterile conditions. Biotransformation under nonsterile conditions is more desirable for stable and sustainable operation. Low-cost feeds, such as biowaste, are considered suitable alternatives, but they require appropriate sterilization to overcome the limitations of inherited or contaminating microbes during H2 production. This article describes the status of microbial fermentative processes for H2 production under nonsterile conditions and discusses strategies to improve such processes for sustainable, cleaner production.
Collapse
Affiliation(s)
- Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, Seoul, 05029 Republic of Korea
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, 246174 Uttarakhand India
| | - Rahul K Gupta
- Department of Chemical Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | | | - Deepak Kumar Padhi
- Department of Chemical Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | | | | | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
11
|
Jannat FT, Aftab K, Kalsoom U, Baig MA. A bibliometric analysis of the role of nanotechnology in dark fermentative biohydrogen production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24815-24835. [PMID: 38530525 DOI: 10.1007/s11356-024-33005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/16/2024] [Indexed: 03/28/2024]
Abstract
Recently, nanoparticles have drawn a lot of interest as catalysts to enhance the effectiveness and output of biohydrogen generation processes. This review article provides a comprehensive bibliometric analysis of the significance of nanotechnology in dark fermentative biohydrogen production. The study examines the scientific literature from the database of The Web of Science© while the bibliometric investigation utilized VOSviewer© and Bibliometrix software tools to conduct the analysis. The findings revealed that a total of 232 articles focused on studying dark fermentation for hydrogen production throughout the entire duration. The extracted data was used to analyze publication trends, authorship patterns, and geographic distribution along with types and effects of nanoparticles on the microbial community responsible for dark fermentative biohydrogen production. The findings of this bibliometric analysis provide valuable insights into the advancements and achievements in the utilization of nanoparticles in the dark fermentation process used to produce biohydrogen.
Collapse
Affiliation(s)
- Fakiha Tul Jannat
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Kiran Aftab
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan.
| | - Umme Kalsoom
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ali Baig
- Department of Statistics, The Sahara College Narowal, Narowal, Pakistan
| |
Collapse
|
12
|
Khan U, Bilal M, Adil HM, Darlington N, Khan A, Khan N, Ihsanullah I. Hydrogen from sewage sludge: Production methods, influencing factors, challenges, and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170696. [PMID: 38340850 DOI: 10.1016/j.scitotenv.2024.170696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/20/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The rising global population and rapid industrialization have frequently resulted in a significant escalation in energy requirements. Hydrogen, renowned for its eco-friendly and renewable characteristics, has garnered substantial interest as a fuel alternative to address the energy needs currently fulfilled by fossil fuels. Embracing such energy substitutes holds pivotal importance in advancing environmental sustainability, aiding in the reduction of greenhouse gas emissions - the primary catalysts of global warming and climate fluctuations. This study elucidates recent trends in sewage sludge (SS)-derived hydrogen through diverse production pathways and critically evaluates the impact of varying parameters on hydrogen yield. Furthermore, a detailed analysis of the breakdown of the hydrogen generation process from SS is provided, along with an assessment of its economic dimensions. The review culminates by illuminating key obstacles in the adoption of this innovative technology, accompanied by practical recommendations to surmount these challenges. This comprehensive analysis is expected to attract considerable interest from stakeholders within the hydrogen production domain, fostering substantial engagement.
Collapse
Affiliation(s)
- Usman Khan
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, Krakow 31-155, Poland
| | - Muhammad Bilal
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Hossain Md Adil
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, Krakow 31-155, Poland
| | - Nnabodo Darlington
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, Krakow 31-155, Poland
| | - Ahsan Khan
- Center of Excellence in Particle Technology and Material Processing, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Nouman Khan
- Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, KPK, Pakistan
| | - I Ihsanullah
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
13
|
Ayub HMU, Nizami M, Qyyum MA, Iqbal N, Al-Muhtaseb AH, Hasan M. Sustainable hydrogen production via microalgae: Technological advancements, economic indicators, environmental aspects, challenges, and policy implications. ENVIRONMENTAL RESEARCH 2024; 244:117815. [PMID: 38048865 DOI: 10.1016/j.envres.2023.117815] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
Hydrogen has emerged as an alternative energy source to meet the increasing global energy demand, depleting fossil fuels and environmental issues resulting from fossil fuel consumption. Microalgae-based biomass is gaining attention as a potential source of hydrogen production due to its green energy carrier properties, high energy content, and carbon-free combustion. This review examines the hydrogen production process from microalgae, including the microalgae cultivation technological process for biomass production, and the three main routes of biomass-to-hydrogen production: thermochemical conversion, photo biological conversion, and electrochemical conversion. The current progress of technological options in the three main routes is presented, with the various strains of microalgae and operating conditions of the processes. Furthermore, the economic and environmental perspectives of biomass-to-hydrogen from microalgae are evaluated, and critical operational parameters are used to assess the feasibility of scaling up biohydrogen production for commercial industrial-scale applications. The key finding is the thermochemical conversion process is the most feasible process for biohydrogen production, compared to the pyrolysis process. In the photobiological and electrochemical process, pure hydrogen can be achieved, but further process development is required to enhance the production yield. In addition, the high production cost is the main challenge in biohydrogen production. The cost of biohydrogen production for direct bio photolysis it cost around $7.24 kg-1; for indirect bio photolysis it costs around $7.54 kg-1 and for fermentation, it costs around $7.61 kg-1. Therefore, comprehensive studies and efforts are required to make biohydrogen production from microalgae applications more economical in the future.
Collapse
Affiliation(s)
| | - Muhammad Nizami
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, 16424, Indonesia
| | - Muhammad Abdul Qyyum
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman.
| | - Noman Iqbal
- Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Ala'a H Al-Muhtaseb
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - Mudassir Hasan
- Department of Chemical Engineering, King Khalid University, Abha, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Zheng X, Wang J, Huang J, Xu X, Tang J, Hou P, Han W, Li H. Environmental impact assessment of a combined bioprocess for hydrogen production from food waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 173:152-159. [PMID: 37989014 DOI: 10.1016/j.wasman.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
With the growth of population and the development of economy, the food waste (FW) and energy shortage issues are getting great attentions. In this study, the environmental performance of a biorefinery of enzymatic hydrolysis and fermentation for hydrogen production from FW (FW-H2) was investigated by life cycle assessment (LCA) in terms of greenhouse gas (GHG) emissions and non-renewable energy use (NREU). It was found that the gas compression, electricity and FW transport were the major environmental hotspots in the FW-H2 process. The GHG emissions of 10.1 kg CO2 eq and NREU of 104 MJ were obtained from per kg hydrogen production through the whole process. The environmental impacts of the FW-H2 process were lower than the conventional processes for hydrogen production, such as steam methane reforming and electrolysis with grid. Sensitivity analysis demonstrated that the efforts in environmental hotspots, especially in gas compression, could result in the improvement of environmental impacts of the FW-H2 process. The GHG emissions and NREU could reduce to 89.2 % and 89.4 % with a 20 % reduction of energy consumption for gas compression. Different allocation methods (economic allocation, mass allocation, no allocation and system expansion method) applied for LCA analysis could provide a significant influence of environmental impacts in the FW-H2 process. The results obtained from this study could lead to further research into resource recycling from waste and would ultimately contribute to the development of circular economy.
Collapse
Affiliation(s)
- Xietian Zheng
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jiucai Wang
- School of Mechanical Engineering, Jiamusi University, Jiamusi 154007, China
| | - Jingang Huang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; School of Automation, The Belt and Road Information Research Institute, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xiaobin Xu
- School of Automation, The Belt and Road Information Research Institute, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Junhong Tang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Pingzhi Hou
- School of Automation, The Belt and Road Information Research Institute, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Wei Han
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; School of Automation, The Belt and Road Information Research Institute, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Hongwei Li
- School of Humanities, Jiamusi University, Jiamusi 154007, China.
| |
Collapse
|
15
|
Zhang L, Tsui TH, Wah Tong Y, Sharon S, Shoseyov O, Liu R. Biochar applications in microbial fermentation processes for producing non-methane products: Current status and future prospects. BIORESOURCE TECHNOLOGY 2023; 386:129478. [PMID: 37460021 DOI: 10.1016/j.biortech.2023.129478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
The objective of this review is to encourage the technical development of biochar-assisted microbial fermentation. To this end, recent advances in biochar applications for microbial fermentation processes (i.e., non-methane products of hydrogen, acids, alcohols, and biofertilizer) have been critically reviewed, including process performance, enhanced mechanisms, and current research gaps. Key findings of enhanced mechanisms by biochar applications in biochemical conversion platforms are summarized, including supportive microbial habitats due to the immobilization effect, pH buffering due to alkalinity, nutrition supply due to being rich in nutrient elements, promoting electron transfer by acting as electron carriers, and detoxification of inhibitors due to high adsorption capacity. The current technical limitations and biochar's industrial applications in microbial fermentation processes are also discussed. Finally, suggestions like exploring functionalized biochar materials, biochar's automatic addition and pilot-scale demonstration are proposed. This review would further promote biochar applications in microbial fermentation processes for the production of non-methane products.
Collapse
Affiliation(s)
- Le Zhang
- Biomass Energy Engineering Research Centre/Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - To-Hung Tsui
- Department of Engineering Science, University of Oxford, OX1 3PJ, Oxford, UK
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Sigal Sharon
- Plant Molecular Biology and Nano Biotechnology, The Robert H Smith Institute of Plant Science and Genetics, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Herzl 229, Rehovot 7610001, Israel
| | - Oded Shoseyov
- Plant Molecular Biology and Nano Biotechnology, The Robert H Smith Institute of Plant Science and Genetics, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Herzl 229, Rehovot 7610001, Israel
| | - Ronghou Liu
- Biomass Energy Engineering Research Centre/Department of Resources and Environment, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
16
|
Ramzan H, Usman M, Nadeem F, Shahzaib M, Ur Rahman M, Singhania RR, Jabeen F, Patel AK, Qing C, Liu S, Piechota G, Tahir N. Depolymerization of lignin: Recent progress towards value-added chemicals and biohydrogen production. BIORESOURCE TECHNOLOGY 2023; 386:129492. [PMID: 37463615 DOI: 10.1016/j.biortech.2023.129492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
The need for alternative sources of energy became increasingly urgent as demand for energy and the use of fossil fuels both soared. When processed into aromatic compounds, lignin can be utilized as an alternative to fossil fuels, however, lignin's complex structure and recalcitrance make depolymerization impractical. This article presented an overview of the most recent advances in lignin conversion, including process technology, catalyst advancement, and case study-based end products. In addition to the three established methods (thermochemical, biochemical, and catalytic depolymerization), a lignin-first strategy was presented. Depolymerizing different forms of lignin into smaller phenolic molecules has been suggested using homogeneous and heterogeneous catalysts for oxidation or reduction. Limitations and future prospects of lignin depolymerization have been discussed which suggests that solar-driven catalytic depolymerization through photocatalysts including quantum dots offers a unique pathway to obtain the highly catalytic conversion of lignin.
Collapse
Affiliation(s)
- Hina Ramzan
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Muhammad Usman
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Faiqa Nadeem
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Muhammad Shahzaib
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Muneeb Ur Rahman
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Farzana Jabeen
- Department of Computing, SEECS, National University of Sciences and Technology (NUST), Campus, Sector H-12, Islamabad, Pakistan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chunyao Qing
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Shengyong Liu
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | | | - Nadeem Tahir
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
17
|
Li Y, Meenatchisundaram K, Rajendran K, Gohil N, Kumar V, Singh V, Solanki MK, Harirchi S, Zhang Z, Sindhu R, Taherzadeh MJ, Awasthi MK. Sustainable Conversion of Biowaste to Energy to Tackle the Emerging Pollutants: A Review. CURRENT POLLUTION REPORTS 2023; 9:660-679. [DOI: 10.1007/s40726-023-00281-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 01/11/2025]
|
18
|
Kim D, Joung YS. Sodium alginate based artificial biofilms polymerized by electrophoretic deposition for microbial hydrogen generation. Int J Biol Macromol 2023; 248:125887. [PMID: 37473879 DOI: 10.1016/j.ijbiomac.2023.125887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
This study developed an artificial biofilm of Rhodospirillum rubrum bacteria immobilized within an alginate matrix using electrophoretic deposition (EPD) on an electrode. The resulting biofilm immobilized bacteria effectively and maintained a high survival rate, facilitating stable and high-efficiency hydrogen generation for longer periods compared to biofilms produced using free bacteria. Hydrogen production efficiency remained constant when the substrate was periodically replaced, indicating that the bacteria could survive within the biofilm for long-term hydrogen production. EPD produced mechanically stable large-scale biofilms economically and rapidly, which effectively overcame operational limitations such as culture medium temperature, pH, and flow rate. Therefore, this proposed method has the potential to accelerate the commercialization of biohydrogen production systems through large-scale biofilm production to facilitate continuous hydrogen generation. The technique can be utilized in various hydrogel-based applications, providing a cost-effective and efficient manufacturing process with customized biological and mechanical properties. The developed biofilms have implications beyond biohydrogen production and could be applied to hydrogel-based medical, cosmetic, and food applications. This study highlights the importance of immobilizing bacteria for stable and efficient hydrogen generation and demonstrates the potential of EPD in fabricating mechanically stable biofilms for large-scale production.
Collapse
Affiliation(s)
- Dogyeong Kim
- Department of Mechanical Systems Engineering, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, Republic of Korea
| | - Young Soo Joung
- Department of Mechanical Systems Engineering, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Regueira-Marcos L, Muñoz R, García-Depraect O. Continuous lactate-driven dark fermentation of restaurant food waste: Process characterization and new insights on transient feast/famine perturbations. BIORESOURCE TECHNOLOGY 2023:129385. [PMID: 37364653 DOI: 10.1016/j.biortech.2023.129385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
The effect of hydraulic retention time (HRT) on the continuous lactate-driven dark fermentation (LD-DF) of food waste (FW) was investigated. The robustness of the bioprocess against feast/famine perturbations was also explored. The stepwise HRT decrease from 24 to 16 and 12 h in a continuously stirred tank fermenter fed with simulated restaurant FW impacted on hydrogen production rate (HPR). The optimal HRT of 16 h supported a HPR of 4.2 L H2/L-d. Feast/famine perturbations caused by 12-h feeding interruptions led to a remarkable peak in HPR up to 19.2 L H2/L-d, albeit the process became stable at 4.3 L H2/L-d following perturbation. The occurrence of LD-DF throughout the operation was endorsed by metabolites analysis. Particularly, hydrogen production positively correlated with lactate consumption and butyrate production. Overall, the FW LD-DF process was highly sensitive but resilient against transient feast/famine perturbations, supporting high-rate HPRs under optimal HRTs.
Collapse
Affiliation(s)
- Lois Regueira-Marcos
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
20
|
Nadeem F, Zhang H, Tahir N, Zhang Z, Rani Singhania R, Shahzaib M, Ramazan H, Usman M, Ur Rahman M, Zhang Q. Advances in the catalyzed photo-fermentative biohydrogen production through photo nanocatalysts with the potential of selectivity, and customization. BIORESOURCE TECHNOLOGY 2023; 382:129221. [PMID: 37217146 DOI: 10.1016/j.biortech.2023.129221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Photo nanocatalyst have shownpromise in a variety of fields, including biohydrogen production where their catalytic efficiency is related to size, surface-to-volume ratio, and increasing the number of atoms on the surface. They can harvest solar light to create electron-hole pairs which is the key mechanism to define its catalytic efficiency, thus requiring suitable excitation wavelength, band energy, and crystal imperfections. In this review, a discussion on the role of photo nanocatalysts to catalyze biohydrogen production has been carried out. Photo nanocatalysts feature a large bandgap, andhigh defect concentration, thus having the ability to be tuned for their characteristics. Customization of the photo nanocatalyst has been addressed. Mechanism of the photo nanocatalysts in catalyzing biohydrogen has been discussed. Limiting factors of photo nanocatalysts were highlighted and several recommendations have been made to enhance the effective utilization of these photo nanocatalysts to enhance photo-fermentative biohydrogen production from biomass wastes.
Collapse
Affiliation(s)
- Faiqa Nadeem
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002
| | - Huan Zhang
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002
| | - Nadeem Tahir
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002
| | - Zhiping Zhang
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Muhammad Shahzaib
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002
| | - Hina Ramazan
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002
| | - Muhammad Usman
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002
| | - Muneeb Ur Rahman
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002
| | - Quanguo Zhang
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002.
| |
Collapse
|
21
|
Cao J, Duan G, Lin A, Zhou Y, You S, Wong JWC, Yang G. Metagenomic insights into the inhibitory mechanisms of Cu on fermentative hydrogen production. BIORESOURCE TECHNOLOGY 2023; 380:129080. [PMID: 37094620 DOI: 10.1016/j.biortech.2023.129080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Cu is widely present in the feedstocks of dark fermentation, which can inhibit H2 production efficiency of the process. However, current understanding on the inhibitory mechanisms of Cu, especially the microbiological mechanism, is still lacking. This study investigated the inhibitory mechanisms of Cu2+ on fermentative hydrogen production by metagenomics sequencing. Results showed that the exposure to Cu2+ reduced the abundances of high-yielding hydrogen-producing genera (e.g. Clostridium sensu stricto), and remarkably down-regulated the genes involved in substrate membrane transport (e.g., gtsA, gtsB and gtsC), glycolysis (e.g. PK, ppgK and pgi-pmi), and hydrogen formation (e.g. pflA, fdoG, por and E1.12.7.2), leading to significant inhibition on the process performances. The H2 yield was reduced from 1.49 mol H2/mol-glucose to 0.59 and 0.05 mol H2/mol-glucose upon exposure to 500 and 1000 mg/L of Cu2+, respectively. High concentrations of Cu2+ also reduced the rate of H2 production and prolonged the H2-producing lag phase.
Collapse
Affiliation(s)
- Jinman Cao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guilan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow G128QQ, UK
| | - Jonathan W C Wong
- Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, China
| | - Guang Yang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
22
|
Andrade LRS, Felisardo RJA, Cruz IA, Bilal M, Iqbal HMN, Mulla SI, Bharagava RN, de Souza RL, Azevedo LCB, Ferreira LFR. Integrated Biorefinery and Life Cycle Assessment of Cassava Processing Residue-From Production to Sustainable Evaluation. PLANTS (BASEL, SWITZERLAND) 2022; 11:3577. [PMID: 36559689 PMCID: PMC9785145 DOI: 10.3390/plants11243577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Commonly known as a subsistence culture, cassava came to be considered a commodity and key to adding value. However, this tuber's processing for starch and flour production is responsible for generating a large amount of waste that causes serious environmental problems. This biomass of varied biochemical composition has excellent potential for producing fuels (biogas, bioethanol, butanol, biohydrogen) and non-energetic products (succinic acid, glucose syrup, lactic acid) via biorefinery. However, there are environmental challenges, leading to uncertainties related to the sustainability of biorefineries. Thus, the provision of information generated in life cycle assessment (LCA) can help reduce bottlenecks found in the productive stages, making production more competitive. Within that, this review concentrates information on the production of value-added products, the environmental impact generated, and the sustainability of biorefineries.
Collapse
Affiliation(s)
- Larissa Renata Santos Andrade
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, Aracaju 49032-490, SE, Brazil
- Biomass Technology Laboratory, Université de Sherbrooke, 2500 Boul, de L’Université, Sherbrooke, QC J1K 2R1, Canada
| | - Raul José Alves Felisardo
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, Aracaju 49032-490, SE, Brazil
| | - Ianny Andrade Cruz
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, Aracaju 49032-490, SE, Brazil
- Biomass Technology Laboratory, Université de Sherbrooke, 2500 Boul, de L’Université, Sherbrooke, QC J1K 2R1, Canada
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Sikandar I. Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore 560064, India
| | - Ram Naresh Bharagava
- Laboratory for Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Ranyere Lucena de Souza
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, Aracaju 49032-490, SE, Brazil
- Institute of Technology and Research, Av. Murilo Dantas, 300, Farolândia, Aracaju 49032-490, SE, Brazil
| | | | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, Aracaju 49032-490, SE, Brazil
- Institute of Technology and Research, Av. Murilo Dantas, 300, Farolândia, Aracaju 49032-490, SE, Brazil
| |
Collapse
|
23
|
Biosynthesis of alkanes/alkenes from fatty acids or derivatives (triacylglycerols or fatty aldehydes). Biotechnol Adv 2022; 61:108045. [DOI: 10.1016/j.biotechadv.2022.108045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/27/2022]
|
24
|
Zhu S, Zhang Y, Zhang Z, Li Y, Ai F, Zhang Q. Effect of Fe 0 particle size on buffering characteristics and biohydrogen production in high-load photo fermentation system of corn stover. BIORESOURCE TECHNOLOGY 2022; 364:128086. [PMID: 36216289 DOI: 10.1016/j.biortech.2022.128086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The aim of this work was to study the effects of Fe0 particle sizes (700 nm, 100 nm and 50 nm) addition on biohydrogen production, liquid culture characteristics and photosynthetic bacterial respond in the high-load photo fermentation system of corn stover within the concentration range of 200-1500 mg/L. Results showed that Fe0 with particle size of 700 nm had a better promotion effect on hydrogen production than 100 nm and 50 nm. The highest hydrogen yield of 74.32 ± 3.48 mL/g TS and hydrogen production rate of 3.31 ± 0.11 mL/g·h TS corn stover were obtained at 1000 and 1500 mg/L Fe0-700 nm, which were significantly increased by 92.88 % and 133.88 % compared with the control group. Further analysis indicated that Fe0 addition effectively alleviated pH drop, enhanced nitrogenase activity, promoted cell growth, and accelerated the consumption of acetic acid and butyric acid.
Collapse
Affiliation(s)
- Shengnan Zhu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Yang Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Yameng Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Fuke Ai
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (MOA of China), Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
25
|
Loh CY, Ye W, Fang S, Lin J, Gu A, Zhang X, Burrows AD, Xie M. Advances in two-dimensional materials for energy-efficient and molecular precise membranes for biohydrogen production. BIORESOURCE TECHNOLOGY 2022; 364:128065. [PMID: 36202283 DOI: 10.1016/j.biortech.2022.128065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Waste management has become an ever-increasing global issue due to population growth and rapid globalisation. For similar reasons, the greenhouse effect caused by fossil fuel combustion, is leading to chronic climate change issues. A novel approach, the waste-to-hydrogen process, is introduced to address the concern of waste generation and climate change with an additional merit of production of a renewable, higher energy density than fossil fuels and sustainable transportation fuel, hydrogen (H2) gas. In the downstream H2 purifying process, membrane separation is one of the appealing options for the waste-to-hydrogen process given its low energy consumption and low operational cost. However, commercial polymeric membranes have hindered membrane separation process due to their low separation performance. By introducing novel two-dimensional materials as substitutes, the limitation of purifying using conventional membranes can potentially be solved. Herein, this article provides a comprehensive review of two-dimensional materials as alternatives to membrane technology for the gas separation of H2 in waste-to-hydrogen downstream process. Moreover, this review article elaborates and provides some perspectives on the challenges and future potential of the waste-to-hydrogen process and the use of two-dimensional materials in membrane technology.
Collapse
Affiliation(s)
- Ching Yoong Loh
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom
| | - Wenyuan Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shengqiong Fang
- School of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Jiuyang Lin
- School of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Ailiang Gu
- Jiangsu DDBS Environmental Remediation Co., Ltd., 210012 Nanjing, China
| | - Xinyu Zhang
- School of Civil and Environmental Engineering, Shandong Jianzhu University, 250101, China
| | - Andrew D Burrows
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Ming Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom.
| |
Collapse
|
26
|
Li C, Liu X, Du M, Yang J, Lu Q, Fu Q, He D, Zhao J, Wang D. Peracetic acid promotes biohydrogen production from anaerobic dark fermentation of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156991. [PMID: 35772535 DOI: 10.1016/j.scitotenv.2022.156991] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Peracetic acid (PAA), a widely used organic peroxide with strong disinfection and oxidizing effect, has recently attracted research interest in waste activated sludge (WAS) treatment to achieve sludge reduction and resource utilization. However, its impact on hydrogen accumulation from WAS dark fermentation has not been documented. This study therefore is intended to fill in this knowledge gap and clarify the underlying mechanism of PAA-promoted hydrogen generation. Batch experiments revealed that when raised PAA dosage from 0 to 8 mg/g TSS (total suspended solids), cumulative hydrogen production within 168 h fermentation increased from 1.3 to 14.2 mL/g VSS (volatile suspended solids), however, further increase PAA dosage to 10 mg/g TSS resulted in a slight decrease in hydrogen yield. Mechanism studies revealed that PAA was beneficial to sludge disintegration (10 mg/g TSS PAA increased SCOD (soluble chemical oxygen demand) by 254 %). Although PAA inhibited the activity of all microorganism involved in dark fermentation, the inhibitory effect on hydrogen consumers were much more serious than that on hydrogen producers (-45.8 % versus -5.1 % and - 7.3 %). The fermentation was found to shift from propionate type to acetate and butyrate type, favoring hydrogen production. Moreover, the methane production process was effectively inhibited by PAA, which meant less hydrogen consumption. Microbial community analysis results unveiled that PAA increased the abundances of hydrolytic bacteria (e.g., norank_f__Saprospiraceae) and hydrogen producers (e.g., Clostridium_sensu_stricto_10). These findings obtained in this work provide new insights into oxidants-involved sludge treatment process and might have important implication for WAS treatment and bioenergy production in the future.
Collapse
Affiliation(s)
- Chenxi Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
| | - Xuran Liu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Mingting Du
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Jingnan Yang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Qi Lu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Qizi Fu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Dandan He
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
| |
Collapse
|