1
|
Wdowczyk A, Koc-Jurczyk J, Jurczyk Ł, Szymańska-Pulikowska A, Gałka B. Removal of selected pollutants from landfill leachate in the vegetation-activated sludge process. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 195:209-219. [PMID: 39923658 DOI: 10.1016/j.wasman.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
The problem of leachate generated at municipal landfills, and the challenges of its logistics and disposal, are forcing the search for new, environmentally friendly methods of treatment, especially when it can be applied in situ. The method that combines constructed wetland system with conventional activated sludge process, hereinafter referred to as Vegetation-Activated Sludge Process (V-ASP), may be an interesting alternative, but still require research and comprehensive evaluation. Therefore, this study aimed to verify the effectiveness of V-ASP in the treatment of landfill leachate, the impact of two different fillings (biochar and zeolite) and hydraulic retention time (HRT) on the final removal of selected pollutants and the stability of the treatment process. The experiment was conducted for 138 days on a laboratory-scale V-ASP system layout as sequential batch reactors operating in a 24-hour cycle. The removal efficacy of N-NH4+, regardless of the substrate and the HRT that varied from 3 to 14 days, remained at around 99 %. Longer HRT favoured higher total nitrogen (TN) reduction in all examined variants, with the highest achieved at 14 days, and average TN removal ranging from 38 to 54 %. Also, the chemical oxygen demand removal efficacy increased along with HRT, while phosphorus removal efficacy remained low in all examined systems throughout the experiment. The proposed technological system fits into new trends in environmental engineering, combining technical, pro-environmental solutions and enabling potential reductions in material and energy costs.
Collapse
Affiliation(s)
- Aleksandra Wdowczyk
- Wrocław University of Environmental and Life Sciences, Department of Environmental Protection and Development, pl. Grunwaldzki 24 50-363 Wrocław, Poland.
| | - Justyna Koc-Jurczyk
- University of Rzeszow, College of Natural Sciences, Institute of Agricultural Sciences, Land Management and Environmental Protection, st. Cwiklinskiej 1a, 35-601 Rzeszow, Poland
| | - Łukasz Jurczyk
- University of Rzeszow, College of Natural Sciences, Institute of Agricultural Sciences, Land Management and Environmental Protection, st. Cwiklinskiej 1a, 35-601 Rzeszow, Poland
| | - Agata Szymańska-Pulikowska
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, pl. Grunwaldzki 24, 50-363 Wrocław, Poland
| | - Bernard Gałka
- Wrocław University of Environmental and Life Sciences, Institute of Soil Science, Plant Nutrition and Environmental Protection, ul. Grunwaldzka 53, 50-375 Wrocław, Poland.
| |
Collapse
|
2
|
Hernández-Castelán DA, Zurita F, Marín-Peña O, Betanzo-Torres EA, Sandoval-Herazo M, Castellanos-Rivera J, Sandoval Herazo LC. Effect of monocultures and polycultures of Typha latifolia and Heliconia psittacorum on the treatment of river waters contaminated with landfill leachate/domestic wastewater in partially saturated vertical constructed wetlands. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2163-2174. [PMID: 38992938 DOI: 10.1080/15226514.2024.2379007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Partially Saturated Vertical Constructed Wetlands (PSV-CWs) are novel wastewater treatment systems that work through aerobic and anaerobic conditions that favor the removal of pollutants found in high concentrations, such as rivers contaminated with domestic wastewater and landfill leachate. The objective of the study was to evaluate the efficiency of PSV-CWs using monocultures and polycultures of Typha latifolia and Heliconia psittacorum to treat river waters contaminated with leachates from open dumps and domestic wastewater. Six experimental units of PSV-CWs were used; two were planted with Typha latifolia monoculture, two with Heliconia psittacorum monoculture and two with polycultures of both plants. The results indicated better organic matter and nitrogen removal efficiencies (p < 0.05) in systems with polycultures (TSS:95%, BOD5:83%, COD:89%, TN:82% and NH4+:99%). In general, the whole system showed high average removal efficiencies (TSS:93%, BOD5:79%, COD:85%, TN:79%, NH4+:98% and TP:85%). Regarding vegetation, both species developed better in units with monocultures, being Typha latifolia the one that reached a more remarkable development. However, both species showed high resistance to the contaminated environment. These results showed higher removals than those reported in the literature with conventional Free Flow Vertical Constructed Wetlands (FFV-CWs), so PSV-CWs could be a suitable option to treat this type of effluent.
Collapse
Affiliation(s)
- Denisse Astrid Hernández-Castelán
- Wetlands and Environmental Sustainability Laboratory, Division of Graduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico Superior de Misantla, Misantla, , Mexico
| | - Florentina Zurita
- Environmental Quality Research Center. Centro Universitario de la Ciénega, University of Guadalajara, Jalisco, Mexico
| | - Oscar Marín-Peña
- Wetlands and Environmental Sustainability Laboratory, Division of Graduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico Superior de Misantla, Misantla, , Mexico
- Postdoctoral position by CONACYT (Consejo Nacional de Ciencia y Tecnología), Tecnológico Nacional de México/Instituto Tecnológico Superior de Misantla, Misantla, Mexico
| | - Erick Arturo Betanzo-Torres
- Wetlands and Environmental Sustainability Laboratory, Division of Graduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico Superior de Misantla, Misantla, , Mexico
| | - Mayerlin Sandoval-Herazo
- Wetlands and Environmental Sustainability Laboratory, Division of Graduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico Superior de Misantla, Misantla, , Mexico
| | - Jesús Castellanos-Rivera
- Wetlands and Environmental Sustainability Laboratory, Division of Graduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico Superior de Misantla, Misantla, , Mexico
| | - Luis Carlos Sandoval Herazo
- Wetlands and Environmental Sustainability Laboratory, Division of Graduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico Superior de Misantla, Misantla, , Mexico
| |
Collapse
|
3
|
Arliyani I, Noori MT, Ammarullah MI, Tangahu BV, Mangkoedihardjo S, Min B. Constructed wetlands combined with microbial fuel cells (CW-MFCs) as a sustainable technology for leachate treatment and power generation. RSC Adv 2024; 14:32073-32100. [PMID: 39399250 PMCID: PMC11467719 DOI: 10.1039/d4ra04658g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 10/15/2024] Open
Abstract
The physical and chemical treatment processes of leachate are not only costly but can also possibly produce harmful by products. Constructed wetlands (CW) has been considered a promising alternative technology for leachate treatment due to less demand for energy, economic, ecological benefits, and simplicity of operations. Various trends and approaches for the application of CW for leachate treatment have been discussed in this review along with offering an informatics peek of the recent innovative developments in CW technology and its perspectives. In addition, coupling CW with microbial fuel cells (MFCs) has proven to produce renewable energy (electricity) while treating contaminants in leachate wastewaters (CW-MFC). The combination of CW-MFC is a promising bio electrochemical that plays symbiotic among plant microorganisms in the rhizosphere of an aquatic plant that convert sun electricity is transformed into bioelectricity with the aid of using the formation of radical secretions, as endogenous substrates, and microbial activity. Several researchers study and try to find out the application of CW-MFC for leachate treatment, along with this system and performance. Several key elements for the advancement of CW-MFC technology such as bioelectricity, reactor configurations, plant species, and electrode materials, has been comprehensively discussed and future research directions were suggested for further improving the performance. Overall, CW-MFC may offer an eco-friendly approach to protecting the aquatic environment and come with built-in advantages for visual appeal and animal habitats using natural materials such as gravel, soil, electroactive bacteria, and plants under controlled condition.
Collapse
Affiliation(s)
- Isni Arliyani
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember Surabaya 60111 East Java Indonesia
- Bioinformatics Research Center, INBIO Indonesia Malang 65162 East Java Indonesia
| | - Md Tabish Noori
- Department of Environmental Science and Engineering, Kyung Hee University Yongin 17104 Gyeonggi Republic of Korea
| | - Muhammad Imam Ammarullah
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Diponegoro Semarang 50275 Central Java Indonesia
- Undip Biomechanics Engineering & Research Centre (UBM-ERC), Universitas Diponegoro Semarang 50275 Central Java Indonesia
- Bioengineering and Environmental Sustainability Research Centre, University of Liberia Monrovia 1000 Montserrado Liberia
| | - Bieby Voijant Tangahu
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember Surabaya 60111 East Java Indonesia
| | - Sarwoko Mangkoedihardjo
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember Surabaya 60111 East Java Indonesia
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University Yongin 17104 Gyeonggi Republic of Korea
| |
Collapse
|
4
|
Ishaq A, Said MIM, Azman SB, Dandajeh AA, Lemar GS, Jagun ZT. Utilization of microbial fuel cells as a dual approach for landfill leachate treatment and power production: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41683-41733. [PMID: 38012494 PMCID: PMC11219420 DOI: 10.1007/s11356-023-30841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/26/2023] [Indexed: 11/29/2023]
Abstract
Landfill leachate, which is a complicated organic sewage water, presents substantial dangers to human health and the environment if not properly handled. Electrochemical technology has arisen as a promising strategy for effectively mitigating contaminants in landfill leachate. In this comprehensive review, we explore various theoretical and practical aspects of methods for treating landfill leachate. This exploration includes examining their performance, mechanisms, applications, associated challenges, existing issues, and potential strategies for enhancement, particularly in terms of cost-effectiveness. In addition, this critique provides a comparative investigation between these treatment approaches and the utilization of diverse kinds of microbial fuel cells (MFCs) in terms of their effectiveness in treating landfill leachate and generating power. The examination of these technologies also extends to their use in diverse global contexts, providing insights into operational parameters and regional variations. This extensive assessment serves the primary goal of assisting researchers in understanding the optimal methods for treating landfill leachate and comparing them to different types of MFCs. It offers a valuable resource for the large-scale design and implementation of processes that ensure both the safe treatment of landfill leachate and the generation of electricity. The review not only provides an overview of the current state of landfill leachate treatment but also identifies key challenges and sets the stage for future research directions, ultimately contributing to more sustainable and effective solutions in the management of this critical environmental issue.
Collapse
Affiliation(s)
- Aliyu Ishaq
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Johor Bahru, Malaysia
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Mohd Ismid Mohd Said
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Johor Bahru, Malaysia
| | - Shamila Binti Azman
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Johor Bahru, Malaysia
| | - Aliyu Adamu Dandajeh
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Gul Sanga Lemar
- Department of Biology, Faculty of Science, Kabul University, Jamal Mina, Kabul, Afghanistan
- Faculty of Biology, Department of Botany, Kabul University, Kart-e-Char, Kabul, Afghanistan
| | - Zainab Toyin Jagun
- Department of Real Estate, School of Built Environment Engineering and Computing, Leeds Beckett University, City Campus, Leeds, UK.
| |
Collapse
|
5
|
Podlasek A, Vaverková MD, Jakimiuk A, Koda E. Potentially toxic elements (PTEs) and ecological risk at waste disposal sites: An analysis of sanitary landfills. PLoS One 2024; 19:e0303272. [PMID: 38758824 PMCID: PMC11101111 DOI: 10.1371/journal.pone.0303272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/22/2024] [Indexed: 05/19/2024] Open
Abstract
This study presents an analysis of soil contamination caused by Ni, Zn, Cd, Cu, and Pb at municipal solid waste (MSW) landfills, with a focus on ecological risk assessment. The approach aims to assess how different landfill practices and environmental conditions affect soil contamination with potentially toxic elements (PTEs) and associated environmental risks. Soil samples were collected from MSW landfills in Poland and the Czech Republic. The research included a comprehensive assessment of PTEs in soils in the context of global environmental regulations. The degree of soil contamination by PTEs was assessed using indices: Geoaccumulation Index (Igeo), Single Pollution Index (Pi), Nemerow Pollution Index (PN), and Load Capacity of a Pollutant (PLI). The ecological risk was determined using the Risk of PTEs (ERi) and Sum of Individual Potential Risk Factors (ERI). The maximum values of the indicators observed for the Radiowo landfill were as follows: Igeo = 4.04 for Cd, Pi = 24.80 for Cd, PN = 18.22 for Cd, PLI = 2.66, ERi = 744 for Cd, ERI = 771.80. The maximum values of the indicators observed for the Zdounky landfill were as follows: Igeo = 1.04 for Cu, Pi = 3.10 for Cu, PN = 2.52 for Cu, PLI = 0.27, ERi = 25 for Cd, ERI = 41.86. The soils of the tested landfills were considered to be non-saline, with electrical conductivity (EC) values less than 2,000 μS/cm. Varying levels of PTEs were observed, and geostatistical analysis highlighted hotspots indicating pollution sources. Elevated concentrations of Cd in the soil indicated potential ecological risks. Concentrations of Cu and lead Pb were well below the thresholds set by the environmental legislation in several countries. In addition, Ni concentrations in the soils of both landfills indicated that the average levels were within acceptable limits. Principal Component Analysis (PCA) revealed common sources of PTEs. The identification of specific risk points at the Radiowo and Zdounky sites contributes to a better understanding of potential hazards in landfill environments. By establishing buffer zones and implementing regular maintenance programs, emerging environmental problems can be addressed in a timely manner.
Collapse
Affiliation(s)
- Anna Podlasek
- Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences–SGGW, Warsaw, Poland
| | - Magdalena Daria Vaverková
- Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences–SGGW, Warsaw, Poland
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Aleksandra Jakimiuk
- Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences–SGGW, Warsaw, Poland
| | - Eugeniusz Koda
- Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences–SGGW, Warsaw, Poland
| |
Collapse
|
6
|
Gunarathne V, Phillips AJ, Zanoletti A, Rajapaksha AU, Vithanage M, Di Maria F, Pivato A, Korzeniewska E, Bontempi E. Environmental pitfalls and associated human health risks and ecological impacts from landfill leachate contaminants: Current evidence, recommended interventions and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169026. [PMID: 38056656 DOI: 10.1016/j.scitotenv.2023.169026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
The improper management of solid waste, particularly the dumping of untreated municipal solid waste, poses a growing global challenge in both developed and developing nations. The generation of leachate is one of the significant issues that arise from this practice, and it can have harmful impacts on both the environment and public health. This paper presents an overview of the primary waste types that generate landfill leachate and their characteristics. This includes examining the distribution of waste types in landfills globally and how they have changed over time, which can provide valuable insights into potential pollutants in a given area and their trends. With a lack of specific regulations and growing concerns regarding environmental and health impacts, the paper also focuses on emerging contaminants. Furthermore, the environmental and ecological impacts of leachate, along with associated health risks, are analyzed. The potential applications of landfill leachate, suggested interventions and future directions are also discussed in the manuscript. Finally, this work addresses future research directions in landfill leachate studies, with attention, for the first time to the potentialities that artificial intelligence can offer for landfill leachate management, studies, and applications.
Collapse
Affiliation(s)
- Viraj Gunarathne
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Ankur J Phillips
- Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Alessandra Zanoletti
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka
| | - Francesco Di Maria
- LAR5 Laboratory, Dipartimento di Ingegneria, University of Perugia, via G. Duranti 93, 06125 Perugia, Italy
| | - Alberto Pivato
- DICEA - Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy.
| |
Collapse
|
7
|
Zhang J, Shao Y, Li Z, Han G, Jing X, Wang N, Xu J, Chen G. Characteristics analysis of plastisphere biofilm and effect of aging products on nitrogen metabolizing flora in microcosm wetlands experiment. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131336. [PMID: 37027924 DOI: 10.1016/j.jhazmat.2023.131336] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
The marsh, a significant terrestrial ecosystem, has steadily developed the capacity to act as a microplastics collection place (MPs). Here, 180 days of exposure to three different polymer kinds of plastics: polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC), were conducted in miniature wetlands (CWs). Water contact angle (WCA), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and High-throughput sequencing were used to study the succession of microbial community structure and function on MPs after 0, 90, and 180 days of exposure. The results showed that different polymers were degrading and aging differing degrees; PVC contained new functional groups with the symbols -CC-, -CO-, and -OH, while PE had the biggest range of contact angles (74.0-45.5°). Bacteria colonization was discovered on plastic surfaces, and as time went on, it became increasingly evident that the surfaces' composition had altered, and their hydrophobicity had diminished. The plastisphere's microbial community structure as well as water nitrification and denitrification were altered by MPs. In general, our study created a vertical flow-built wetland environment, monitored the impacts of plastic aging and breakdown products on nitrogen metabolizing microorganisms in wetland water, and offered a reliable site for the screening of plastic-degrading bacteria.
Collapse
Affiliation(s)
- Jian Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Yuanyuan Shao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China.
| | - Zhao Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Guolan Han
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Xinxin Jing
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Ning Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Gao Chen
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
8
|
Long Y, Zhou Z, Wen X, Wang J, Xiao R, Wang W, Li X, Lai X, Zhang Y, Deng C, Cao J, Yin L. Microplastics removal and characteristics of a typical multi-combination and multi-stage constructed wetlands wastewater treatment plant in Changsha, China. CHEMOSPHERE 2023; 312:137199. [PMID: 36372338 DOI: 10.1016/j.chemosphere.2022.137199] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Wastewater treatment plants (WWTPs) are an important source of microplastics (MPs) entering the aquatic environment. As environmental awareness increases, WWTPs are gradually using constructed wetlands (CWs) in the depth treatment stage. There were few studies related to MPs removal efficiency of CWs, especially in multi-stage and multi-combinations CWs. Therefore, we studied MPs characteristics and removal in a typical CWs WWTP in Changsha, comparing the MPs removal efficiencies of different processes in a WWTP, focusing on the MPs abundance variation in different stages CWs. Result showed that the MPs removal efficiency of Phase Ⅰ was 87.72% and that of Phase II was 80.65%. Approximate estimates showed that the daily discharge of MPs reached 7.20 * 108 items. The MPs removal efficiency of vertical flow CWs was 25.71%. The MPs removal efficiencies of secondary and tertiary horizontal subsurface flow CWs (HSSFCWs) were 32.00% and 21.43%. The MPs removal efficiencies of secondary and tertiary surface flow CWs were 23.53% and 12.50%. The MPs removal efficiencies of three bio-ponds were -23.08%, -12.90%, and -27.27%. Combined system of bio-pond + CWs reduced the MPs removal efficiency. The most dominant shape of MPs in wastewater was fibers. The most common MPs were polyethylene and polystyrene. The primary treatment in the Changsha WWTP had the highest MPs removal efficiency. Results of this investigation showed the multi-combination and multi-stage CWs WWTP can remove most of MPs in influent, which greatly reduced the amount of MPs discharged into the aquatic environment through WWTP and provided data for analyzing the distribution of MPs in the aquatic environment.
Collapse
Affiliation(s)
- Yuannan Long
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Zhenyu Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Xiaofeng Wen
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China.
| | - Jianwu Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wenming Wang
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha, 410006, China
| | - Xiwei Li
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha, 410006, China
| | - Xu Lai
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha, 410006, China
| | - You Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Chaoping Deng
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Jinsong Cao
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Lingshi Yin
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China.
| |
Collapse
|
9
|
Charazińska S, Burszta-Adamiak E, Lochyński P. The efficiency of removing heavy metal ions from industrial electropolishing wastewater using natural materials. Sci Rep 2022; 12:17766. [PMID: 36273077 PMCID: PMC9588037 DOI: 10.1038/s41598-022-22466-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/13/2022] [Indexed: 01/19/2023] Open
Abstract
Heavy metals are present in wastewater generated by industrial sectors, posing a threat to the environment, including surface and groundwater resources. With this in mind, there is a growing interest in finding alternative yet effective methods of removing heavy metal ions from industrial wastewater. Sorption is one of the techniques being readily applied due to the simplicity, high efficiency, production of small amounts of sludge, low investment, and the feasibility of the process over a wide range of pH and temperature. This paper deals with the treatment of industrial wastewater from electropolishing of stainless steel containing high concentrations of metal ions Fe(III), Cr(III), Ni(II), and Cu(II). Taking into account the effectiveness, availability and applicability of biosorbents for acidic wastewater, orange peels, algae, Eclipta alba, and eggshells were selected for the study. Sorption tests were carried out for Eclipta alba and the results obtained showed a best fit for the second-order kinetic model (R2 > 0.99) and the Langmuir isotherm model (R2 > 0.99). Maximum adsorption capacity was 17.92 mg/g for mixture of metal ions. The potential use of dried and calcinated eggshells was established. Both materials achieved a high removal rate of over 95%. Iron and chromium are removed from the solution first (about 100% and 90%, respectively), followed by nickel and copper ions. FT-IR and SEM with EDS measurements used to characterize materials, together with laboratory tests using real industrial effluent, made it possible to determine their mechanism of action. Specific surface area was determined for all tested materials and the values were: 1.63, 0.15 and 5.15 m2/g for Eclipta alba, dried eggshells and calcinated eggshells, respectively. The results provide grounds for optimism in the application of selected materials for industrial wastewater treatment.
Collapse
Affiliation(s)
- S. Charazińska
- grid.411200.60000 0001 0694 6014Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 24, 50-365 Wrocław, Poland
| | - E. Burszta-Adamiak
- grid.411200.60000 0001 0694 6014Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 24, 50-365 Wrocław, Poland
| | - P. Lochyński
- grid.411200.60000 0001 0694 6014Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 24, 50-365 Wrocław, Poland
| |
Collapse
|
10
|
Experience of Application of Natural Treatment Systems for Wastewater (NTSW) in Livestock Farms in Canary Islands. WATER 2022. [DOI: 10.3390/w14142279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A real-scale application experience Natural Treatment Systems for Wastewater (NTSW) operating in continues with livestock farms for one year. These systems are based on digesters, subsurface vertical flow constructed wetlands (SVFCW) and facultative ponds. Chemical Oxygen Demand removal efficiency (CODRE) has obtained between 70 and 90%. Likewise, it have been possible to compare the operation of cascade flow digesters (CFD) (<76% CODRE) versus complete mixing digesters (CMD) (<50% CODRE). Facultative ponds (FP) when combined with (SSFCW), removed a higher percentage of CODRE compared with ponds (92%). Correlations of interest have been found between the variables evaluated in each plant. Finally, different elements are alternated in the same system, this system is capable of supporting variations in changes in flow rate and organic load coming from the farm, maintaining an adequate elimination of COD and other parameters of interest.
Collapse
|
11
|
Wdowczyk A, Szymańska-Pulikowska A. Micro- and Macroelements Content of Plants Used for Landfill Leachate Treatment Based on Phragmites australis and Ceratophyllum demersum. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106035. [PMID: 35627572 PMCID: PMC9141712 DOI: 10.3390/ijerph19106035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/04/2022]
Abstract
One of the key problems associated with the functioning of landfills is the generation of leachate. In order to reduce their negative impact on the environment, various treatment technologies are applied. Among them, solutions based on the use of phytotechnology deserve special attention. The aim of this study was to evaluate the impact of landfill leachate on the content of micro- and macroelements in plant material. The research was carried out in four municipal waste landfills located in Poland. Emergent macrophytes (P. australis) and submergent macrophytes (C. demersum) were used in this research. The migration and distribution of pollutants reaching the roots and shoots of P. australis from water solutions were also studied. The concentrations of heavy metals in the studied plants were low in all analysed cases. Higher metal contents could often be observed in roots rather than in shoots, but these differences were insignificant. The chemical composition of the studied plant samples was primarily related to the source of origin of the treated leachate (landfill), as clearly demonstrated by cluster analysis. In the conducted studies, no important differences were noted in the accumulation of the studied components between submergent plants (C. demersum) and emergent macrophytes (P. australis).
Collapse
|