1
|
Da Silva C, Serra-Toro A, Pelizzaro V, Valentino F, Astals S, Mas F, Dosta J. Modeling nitrogen recovery and water transport in gas-permeable membranes. WATER RESEARCH 2025; 269:122771. [PMID: 39579554 DOI: 10.1016/j.watres.2024.122771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/18/2024] [Accepted: 11/07/2024] [Indexed: 11/25/2024]
Abstract
This study presents a new modeling approach for nitrogen recovery in gas-permeable membrane (GPM) contactors, including both ammonia and water transport dynamics. A distinct feature of the model is its capacity to model water transport across the membrane, which has been overlooked in most publications. Osmotic pressure differences are used to predict the behavior of ammonia and water transport in the GPM contactor. Experiments carried out to develop, test and calibrate the model examined the dynamics of ammonia and water transport through the GPM contactor at various nitrogen concentrations. Specifically, the GPM contactor was tested for nitrogen recovery from high-strength synthetic wastewaters (2.4-10.6 g N/L) at 35 °C and at pH 9. The initial volume of the trapping solution (diluted H2SO4) was 10 times lower than that of the synthetic wastewater, aiming to concentrate the recovered nitrogen. The estimated ammonia transport constant (Km) ranged between (1.2 - 2.1)·10-6 m/s and water transport constant Kw between (2.8 - 8.2)·10-10 m/(s bar). Numerical determination of the model parameters revealed high R² values, demonstrating strong agreement with experimental data.
Collapse
Affiliation(s)
- C Da Silva
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona 08028, Spain.
| | - A Serra-Toro
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona 08028, Spain
| | - V Pelizzaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Mestre, Venice 30170, Italy
| | - F Valentino
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Mestre, Venice 30170, Italy
| | - S Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona 08028, Spain
| | - F Mas
- Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Barcelona 08028, Spain
| | - J Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona 08028, Spain; Water Research Institute, University of Barcelona, Barcelona 08001, Spain
| |
Collapse
|
2
|
Zhou T, Wang M, Zeng H, Min R, Wang J, Zhang G. Application of physicochemical techniques to the removal of ammonia nitrogen from water: a systematic review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:344. [PMID: 39073643 DOI: 10.1007/s10653-024-02129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Ammonia nitrogen is a common pollutant in water and soil, known for its biological toxicity and complex removal process. Traditional biological methods for removing ammonia nitrogen are often inefficient, especially under varying temperature conditions. This study reviews physicochemical techniques for the treatment and recovery of ammonia nitrogen from water. Key methods analyzed include ion exchange, adsorption, membrane separation, struvite precipitation, and advanced oxidation processes (AOPs). Findings indicate that these methods not only remove ammonia nitrogen but also allow for nitrogen recovery. Ion exchange, adsorption, and membrane separation are effective in separating ammonia nitrogen, while AOPs generate reactive species for efficient degradation. Struvite precipitation offers dual benefits of removal and resource recovery. Despite their advantages, these methods face challenges such as secondary pollution and high energy consumption. This paper highlights the development principles, current challenges, and future prospects of physicochemical techniques, emphasizing the need for integrated approaches to enhance ammonia nitrogen removal efficiency.
Collapse
Affiliation(s)
- Tianhong Zhou
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Miao Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Honglin Zeng
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Rui Min
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Jinyi Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Guozhen Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| |
Collapse
|
3
|
Shahgodari S, Llorens J, Labanda J. Viability of Total Ammoniacal Nitrogen Recovery Using a Polymeric Thin-Film Composite Forward Osmosis Membrane: Determination of Ammonia Permeability Coefficient. Polymers (Basel) 2024; 16:1834. [PMID: 39000689 PMCID: PMC11244275 DOI: 10.3390/polym16131834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/17/2024] Open
Abstract
Total ammoniacal nitrogen (TAN) occurs in various wastewaters and its recovery is vital for environmental reasons. Forward osmosis (FO), an energy-efficient technology, extracts water from a feed solution (FS) and into a draw solution (DS). Asymmetric FO membranes consist of an active layer and a support layer, leading to internal concentration polarization (ICP). In this study, we assessed TAN recovery using a polymeric thin-film composite FO membrane by determining the permeability coefficients of NH4+ and NH3. Calculations employed the solution-diffusion model, Nernst-Planck equation, and film theory, applying the acid-base equilibrium for bulk concentration corrections. Initially, model parameters were estimated using sodium salt solutions as the DS and deionized water as the FS. The NH4+ permeability coefficient was 0.45 µm/s for NH4Cl and 0.013 µm/s for (NH4)2SO4 at pH < 7. Meanwhile, the NH3 permeability coefficient was 6.18 µm/s at pH > 9 for both ammonium salts. Polymeric FO membranes can simultaneously recover ammonia and water, achieving 15% and 35% recovery at pH 11.5, respectively.
Collapse
Affiliation(s)
- Shirin Shahgodari
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Joan Llorens
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Jordi Labanda
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
4
|
Serra-Toro A, Abboud YBH, Cardete-Garcia MA, Astals S, Valentino F, Mas F, Dosta J. Ammoniacal nitrogen recovery from swine slurry using a gas-permeable membrane: pH control strategies and feed-to-trapping volume ratio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32193-5. [PMID: 38376782 DOI: 10.1007/s11356-024-32193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/21/2024] [Indexed: 02/21/2024]
Abstract
Gas-permeable membrane (GPM) technology is gaining interest to recover nitrogen from residual effluents due to its effectiveness, simple operation and capacity of producing a nutrient rich product with fertilising value. In this study, a GPM contactor was used at 25 °C to recover total ammoniacal nitrogen (TAN) from swine slurry as a concentrated (NH4)2SO4 solution. Firstly, a synthetic solution was tested on a wide pH range (6-12). Results showed that the ammonia mass transfer constants (Km) increased from 7.9·10-9 to 1.2·10-6 m/s as the pH increased. The reagent consumption to control the pH per mole nitrogen recovered had a minimum at pH 9, which showed a Km value of 3.0·10-7 m/s. Secondly, various pH control strategies were tested using swine slurry, including (i) no pH control, (ii) pH control at 8.5, 9.0 and 10.0, and (iii) an initial spike of the NaOH equivalent to the required to control the pH at 9. The test without pH control reached a TAN recovery of around 60%, which could be an interesting strategy when high nitrogen recoveries or short operating times are not required. The pH control at 9 stood out as the most favourable operating condition due to its high Km and lower reagent consumption. Thirdly, several feed-to-trapping volume ratios ranging from 1:1 to 15:1 were tested using swine slurry at pH 9. These assays revealed that a GPM process with a high feed-to-trapping volume ratio fastens the recovery of 99% of TAN as a high purity (NH4)2SO4 solution containing 40 g N/L.
Collapse
Affiliation(s)
- Andreu Serra-Toro
- Chemical Engineering and Analytical Chemistry Department, University of Barcelona, Barcelona, Catalonia, Spain
- Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Barcelona, Catalonia, Spain
| | - Yasmina Ben Hammou Abboud
- Chemical Engineering and Analytical Chemistry Department, University of Barcelona, Barcelona, Catalonia, Spain
| | - Maria Alicia Cardete-Garcia
- Chemical Engineering and Analytical Chemistry Department, University of Barcelona, Barcelona, Catalonia, Spain
| | - Sergi Astals
- Chemical Engineering and Analytical Chemistry Department, University of Barcelona, Barcelona, Catalonia, Spain
| | - Francesco Valentino
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Mestre-Venice, Italy
| | - Francesc Mas
- Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Barcelona, Catalonia, Spain
| | - Joan Dosta
- Chemical Engineering and Analytical Chemistry Department, University of Barcelona, Barcelona, Catalonia, Spain.
- Water Research Institute, University of Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
5
|
Sheikh M, Harami HR, Rezakazemi M, Cortina JL, Aminabhavi TM, Valderrama C. Towards a sustainable transformation of municipal wastewater treatment plants into biofactories using advanced NH 3-N recovery technologies: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166077. [PMID: 37544447 DOI: 10.1016/j.scitotenv.2023.166077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Ammonia (NH3), as a prevalent pollutant in municipal wastewater discharges, can impair aquatic life and have a negatively impact on the environment. Proper wastewater treatment and management practices are essential to protect ecosystems and keep human populations healthy. Therefore, using highly effective NH3-N recovery technologies at wastewater treatment plants (WWTPs) is widely acknowledged as a necessity. In order to improve the overall efficiency of NH3 removal/recovery processes, innovative technologies have been generally applied to reduce its concentration when discharged into natural water bodies. This study reviews the current status of the main issues affecting NH3 recovery from municipal/domestic wastewater discharges. The current study investigated the ability to recover valuable resources, e.g., nutrients, regenerated water, and energy in the form of biogas through advanced and innovative methods in tertiary treatment to achieve higher efficiency towards sustainable wastewater and resource recovery facilities (W&RRFs). In addition, the concept of paradigm shifts from WWTP to a large/full scale W&RRF has been studied with several examples of conversion to innovative bio-factories producing materials. On the other hand, the carbon footprint and the high-energy consumption of the WWTPs were also considered to assess the sustainability of these facilities.
Collapse
Affiliation(s)
- Mahdi Sheikh
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Hossein Riasat Harami
- Department of Chemical and Biological Engineering, The University of Alabama, AL, USA
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Jose Luis Cortina
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Water Technology Center (CETaqua), Carretera d'Esplugues, 75, 08940 Cornellà de Llobregat, Spain
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580 031, India; School of Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248 007, India
| | - Cesar Valderrama
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain.
| |
Collapse
|
6
|
Vinardell S, Luis Cortina J, Valderrama C. Environmental and economic evaluation of implementing membrane technologies and struvite crystallisation to recover nutrients from anaerobic digestion supernatant. BIORESOURCE TECHNOLOGY 2023:129326. [PMID: 37315623 DOI: 10.1016/j.biortech.2023.129326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
The present study investigates the environmental and economic feasibility of implementing membrane technologies and struvite crystallisation (SC) for nutrient recovery from the anaerobic digestion supernatant. To this end, one scenario combining partial-nitritation/Anammox and SC was compared with three scenarios combining membrane technologies and SC. The combination of ultrafiltration, SC and liquid-liquid membrane contactor (LLMC) was the less environmentally impactful scenario. SC and LLMC were the most important environmental and economic contributors in those scenarios using membrane technologies. The economic evaluation illustrated that combining ultrafiltration, SC and LLMC (with or without reverse osmosis pre-concentration) featured the lowest net cost. The sensitivity analysis highlighted that the consumption of chemicals for nutrient recovery and the ammonium sulphate recovered had a large impact on environmental and economic balances. Overall, these results demonstrate that implementing membrane technologies and SC for nutrient recovery can improve the economic and environmental implications of future municipal wastewater treatment plants.
Collapse
Affiliation(s)
- Sergi Vinardell
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain.
| | - Jose Luis Cortina
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain; CETaqua, Carretera d'Esplugues, 75, 08940 Cornellà de Llobregat, Spain
| | - César Valderrama
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| |
Collapse
|
7
|
Barros KS, Carvalheira M, Marreiros BC, Reis MAM, Crespo JG, Pérez-Herranz V, Velizarov S. Donnan Dialysis for Recovering Ammonium from Fermentation Solutions Rich in Volatile Fatty Acids. MEMBRANES 2023; 13:347. [PMID: 36984733 PMCID: PMC10054700 DOI: 10.3390/membranes13030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
For the production of polyhydroxyalkanoates (PHA) using nitrogen-rich feedstocks (e.g., protein-rich resources), the typical strategy of restricting cell growth as a means to enhance overall PHA productivity by nitrogen limitation is not applicable. In this case, a possible alternative to remove the nitrogen excess (NH4+/NH3) is by applying membrane separation processes. In the present study, the use of Donnan dialysis to separate ammonium ions from volatile fatty acids present in the media for the production of PHA was evaluated. Synthetic and real feed solutions were used, applying NaCl and HCl receiver solutions separated by commercial cation-exchange membranes. For this specific purpose, Fumasep and Ralex membranes showed better performance than Ionsep. Sorption of ammonium ions occurred in the Ralex membrane, thus intensifying the ammonium extraction. The separation performances with NaCl and HCl as receiver solutions were similar, despite sorption occurring in the Ralex membrane more intensely in the presence of NaCl. Higher volumetric flow rates, NaCl receiver concentrations, and volume ratios of feed:receiver solutions enhanced the degree of ammonium recovery. The application of an external electric potential difference to the two-compartment system did not significantly enhance the rate of ammonium appearance in the receiver solution. The results obtained using a real ammonium-containing solution after fermentation of cheese whey showed that Donnan dialysis can be successfully applied for ammonium recovery from such solutions.
Collapse
Affiliation(s)
- Kayo Santana Barros
- LAQV/REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- IEC Group, ISIRYM, Universitat Politècnica de València, Camí de Vera s/n, 46022, P.O. Box 22012, E-46071 València, Spain
| | - Mónica Carvalheira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Bruno Costa Marreiros
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Maria Ascensão M. Reis
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - João Goulão Crespo
- LAQV/REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Valentín Pérez-Herranz
- IEC Group, ISIRYM, Universitat Politècnica de València, Camí de Vera s/n, 46022, P.O. Box 22012, E-46071 València, Spain
| | - Svetlozar Velizarov
- LAQV/REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
8
|
Aguilar-Moreno M, Vinardell S, Reig M, Vecino X, Valderrama C, Cortina JL. Impact of Sidestream Pre-Treatment on Ammonia Recovery by Membrane Contactors: Experimental and Economic Evaluation. MEMBRANES 2022; 12:membranes12121251. [PMID: 36557158 PMCID: PMC9787290 DOI: 10.3390/membranes12121251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 05/19/2023]
Abstract
Membrane contactor is a promising technology for ammonia recovery from the anaerobic digestion centrate. However, high suspended solids and dissolved organic matter concentrations can reduce the effectiveness of the technology. In this study, coagulation-flocculation (C/F) and aeration pre-treatments were evaluated to reduce chemical oxygen demand (COD), turbidity, suspended solids and alkalinity before the ammonia recovery stage using a membrane contactor. The mass transfer coefficient (Km) and total ammonia (TAN) recovery efficiency of the membrane contactor increased from 7.80 × 10-7 to 1.04 × 10-5 m/s and from 8 to 67%, respectively, after pre-treating the real sidestream centrate. The pre-treatment results showed that dosing aluminium sulphate (Al2(SO4)3) at 30 mg Al/L was the best strategy for the C/F process, providing COD, turbidity and TSS removal efficiencies of 50 ± 5, 95 ± 3 and 90 ± 4%, respectively. The aeration step reduced 51 ± 6% the HCO3- content and allowed reducing alkaline consumption by increasing the pH before the membrane contactor. The techno-economic evaluation showed that the combination of C/F, aeration and membrane contactor can be economically feasible for ammonia recovery. Overall, the results of this study demonstrate that C/F and aeration are simple and effective techniques to improve membrane contactor performance for nitrogen recovery from the anaerobic digestion centrate.
Collapse
Affiliation(s)
- Miguel Aguilar-Moreno
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-4016997
| | - Sergi Vinardell
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Mònica Reig
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Xanel Vecino
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - César Valderrama
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - José Luis Cortina
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- CETaqua, Carretera d’Esplugues, 75, 08940 Cornellà de Llobregat, Spain
| |
Collapse
|
9
|
Zou S, Ruan Y, Liu H, Wong J, Xu S. pH regulated potassium ferrate oxidation promotes acetic acid yield and phosphorous recovery rate from waste activated sludge. BIORESOURCE TECHNOLOGY 2022; 362:127816. [PMID: 36028050 DOI: 10.1016/j.biortech.2022.127816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
To improve the dose efficiency of K2FeO4 in waste activated sludge (WAS) treatment, pH regulation on K2FeO4 pretreatment and acidogenic fermentation was investigated. Four pretreatments were compared, i.e. pH3 + 50 g/kg-TS, pH10 + 50 g/kg-TS, neutral pH + 50 g/kg-TS and neutral pH + 100 g/kg-TS (without pH adjustment). The higher short chain fatty acids (SCFAs) yield and phosphorous dissolution rate was found under the condition of pH 10.0. In pH10 + 50 g/kg-TS, the maximum concentration of SCFAs was 5591 mg-COD/L, which yield was 22.6 times higher than that of the neutral pH + 50 g/kg-TS (237 mg COD/L). The acidogenic fermentation period could be shortened to 5 days and acetic acid accounted for 70 % of SCFAs. Furthermore, PO43--P in the hydrolysate (346.5 mg/L) accounted for 47.59 % of TP, which is easier to be recovered by chemical precipitation. Therefore, a more economical and feasible utilization mode of potassium ferrate was proposed.
Collapse
Affiliation(s)
- Simin Zou
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yannan Ruan
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jonathan Wong
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Suyun Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
10
|
Li X, Du R, Zhang J, Wang S, Peng Y. Deciphering the spatial distribution along the upflow anammox reactor: Sludge characteristics and interspecies interactions. BIORESOURCE TECHNOLOGY 2022; 361:127748. [PMID: 35944865 DOI: 10.1016/j.biortech.2022.127748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Here, nitrogen conversion, granular characteristics and microbial dynamics were combined to reveal the longitudinal heterogeneity along anammox-UASB with nitrogen removal efficiency of 92.6%. The reactor was divided into Bottom-zone, Middle-zone, Upper-zone, and Top-zone with height increasing. Results indicated that particle size decreased from Bottom-zone to Upper-zone, while granular floatation caused an increase in Top-zone. Protein secondary structure in EPS was loose and hzsA transcription ratio was only 4.45% due to the limited mass-transfer and serious mineralization of ultra-large granules in Bottom-zone. Smaller granules in Middle-zone were more robust and active, with compact tryptophan- and aromatic-like protein in EPS and 23.71% hzsA transcription. Intriguingly, coexisting denitrification survived on EPS and/or microbial metabolites was observed. Transcription of narG was stimulated with height increasing, resulted in performance improvement through combining partial denitrification and anammox in Upper-zone. The findings deciphered stratification characteristics along the height-partitioned anammox-UASB, and reveal cross-feedings between denitrification and anammox bacteria.
Collapse
Affiliation(s)
- Xiangchen Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jingwen Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
11
|
Palakodeti A, Rupani PF, Azman S, Dewil R, Appels L. Novel approach to ammonia recovery from anaerobic digestion via side-stream stripping at multiple pH levels. BIORESOURCE TECHNOLOGY 2022; 361:127685. [PMID: 35878773 DOI: 10.1016/j.biortech.2022.127685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Ammonia recovery from anaerobic digesters via side-stream stripping is a technique to recover nitrogen from manure wastes. This study demonstrated a novel approach to determining ammonia recovery to maintain total ammonia concentrations in the digester in the range of 1.7-2.1 gN/L. Increasing the pH during stripping from 8, 8.5 to 9.5 did not affect the stability of the digester. Methane yields of 60-80 mL/(gVS.d) and volatile fatty acid concentrations of 0-500 mg/L were reported throughout its operation. The low solubilisation increase upon recirculation of the digestate explained the lack of change in methane yields due to side-stream stripping. Increasing the pH during stripping also did not affect the digester's operating pH, which was attributed to the neutralising effect of biogas as stripping gas. Therefore, total ammonia concentrations in the digester can be controlled by determining the extent of ammonia recovery, and the pH during stripping can be increased without compromising the digester's stability.
Collapse
Affiliation(s)
- Advait Palakodeti
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium.
| | - Parveen Fatemeh Rupani
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium.
| | - Samet Azman
- Avans University of Applied Sciences, Academy of Life Sciences and Technology, Lovensdijkstraat 61, 4818 AJ, Breda, Netherlands
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium; University of Oxford, Department of Engineering Science, Parks Road, Oxford OX1 3PJ, United Kingdom.
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium.
| |
Collapse
|