1
|
Wang X, Hong Y, Zhang Y, Sun D. Carbon distribution and metabolism mechanism of a novel mixotrophic Chlorella in municipal wastewater. BIORESOURCE TECHNOLOGY 2025; 430:132562. [PMID: 40258497 DOI: 10.1016/j.biortech.2025.132562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 04/23/2025]
Abstract
Conventional wastewater treatment technologies primarily convert complex organic matter into dissolved inorganic carbon (DIC) and a more difficult gaseous state CO2. Most microalgae species can photosynthetically assimilate above inorganic carbon, but their heterotrophic metabolic processes often dominate in glucose-mediated mixotrophy. Herein, we investigated the carbon-fixing metabolic pathways of Chlorella sp. MIHQ61 in municipal wastewater containing complex carbon sources. The total carbon removal (73.0 %) peaked on the 6th day, and DIC removal exceeded 50.0 % as the carbon migrating amount from municipal wastewater into the microalgal cells peaked. The glucose and NaHCO3 combination promoted both autotrophic and heterotrophic metabolism. Headspace CO2 emission, enzyme activity and central carbon metabolism results implied heterotrophic metabolism occurred more actively in the early stage and autotrophic metabolism dominated late stage. Redefined mixotrophic carbon allocation by revealing time-dependent autotrophic/heterotrophic interplay. Carbon distribution and mixotrophic mechanism provided new thinking on how to utilize microalgae and wastewater resource.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Hebei Key Laboratory for Emerging Contaminants Control and Risk Management, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Hebei Key Laboratory for Emerging Contaminants Control and Risk Management, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Yuewen Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Hebei Key Laboratory for Emerging Contaminants Control and Risk Management, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Dezhi Sun
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Hebei Key Laboratory for Emerging Contaminants Control and Risk Management, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Qv M, Wu Q, Wang W, Wang H, Zhu L. Metagenomic insights into the response of microbial metabolic function and extracellular polymeric substances from microalgae-bacteria consortia to fluoroquinolone antibiotics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125283. [PMID: 40203710 DOI: 10.1016/j.jenvman.2025.125283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/19/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Microalgae-bacteria consortia (MBC) are considered a promising bioremediation technology for removing pollutants from swine wastewater. However, the overuse of antibiotics poses challenges to the effective functioning of MBC. In this study, the removal efficiency of nutrients in wastewater by MBC under different antibiotic concentrations (0, 1, 5, 10 and 50 mg/L) was evaluated. The changes of functional microbial abundance were elucidated and the response mechanism of MBC against antibiotics was investigated. Antibiotics inhibited the accumulation of MBC biomass and reduced the removal efficiency of ammonia nitrogen and total phosphorus in wastewater by 8.39 % and 8.74 % respectively. In addition, antibiotics affected the relative abundance of microorganisms (Raineyella, from 30.72 % to 15.96 %) and functional genes (glnA, gudB, NirK, NirBD, NarB, NapAB, NorBC and NosZEPS) involved in N metabolism. MBC could defend against the adverse effects of antibiotics by regulating the content of proteins in the extracellular polymeric substances.
Collapse
Affiliation(s)
- Mingxiang Qv
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Qirui Wu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Wei Wang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Hanzhi Wang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China; State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
3
|
Yuan H, Huang P, Yu J, Wang P, Jiang HB, Jiang Y, Deng S, Huang Z, Yu J, Zhu W. Efficient wastewater treatment and biomass co-production using energy microalgae to fix C, N, and P. RSC Adv 2025; 15:14030-14041. [PMID: 40309126 PMCID: PMC12042080 DOI: 10.1039/d5ra00281h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
Distillery wastewater (DWW), characterized by high organic and nutrient loads, represents a significant environmental challenge, requiring effective and sustainable treatment solutions. This study investigates an innovative approach that integrates microalgae cultivation with DWW treatment for simultaneous bioremediation and biomass production, while also exploring carbon sequestration. We analyzed the growth characteristics, nutrient removal efficiency, protein accumulation, and ultrastructural changes of Chlamydomonas reinhardtii and Scenedesmus dimorphus under varying nitrogen-to-phosphorus (N/P) ratios in diluted DWW. Optimal nutrient removal and biomass accumulation were achieved at N/P concentrations of 46/11.5 mg L-1. C. reinhardtii showed particularly high nutrient removal rates, with significantly high removal rates for total nitrogen, total phosphorus, and chemical oxygen demand. S. dimorphus, under the same conditions, demonstrated exceptional protein accumulation and also effectively removed pollutants. Both species showed enhanced performance under these conditions, with microalgal cell organelles remaining structurally intact, and chloroplasts and thylakoid layers well-developed. The study also explored carbon sequestration potential using varying CO2 concentrations, where C. reinhardtii exhibited enhanced biomass accumulation at 3000 ppm CO2. This integrated approach offers an effective and economically feasible solution for distillery wastewater treatment, simultaneously enabling biomass production and carbon capture. The dual benefits of bioremediation and bioenergy generation position this technology as a promising pathway for sustainable resource management and environmental protection.
Collapse
Affiliation(s)
- Han Yuan
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University Chengdu 610065 PR China
- Institute of New Energy and Low Carbon Technology, Sichuan University Chengdu 610065 PR China
| | - Pengxinyue Huang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University Chengdu 610065 PR China
| | - Jiang Yu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University Chengdu 610065 PR China
- Institute of New Energy and Low Carbon Technology, Sichuan University Chengdu 610065 PR China
- Yibin Institute of Industrial Technology, Sichuan University Yibin 644000 PR China
| | - Pu Wang
- Suining Ecological Environmental Monitoring Centre of Sichuan Province Suining Sichuan 629000 China
| | - Hong Bin Jiang
- Suining Ecological Environmental Monitoring Centre of Sichuan Province Suining Sichuan 629000 China
| | - Yinying Jiang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University Chengdu 610065 PR China
- Institute of New Energy and Low Carbon Technology, Sichuan University Chengdu 610065 PR China
| | - Siwei Deng
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University Chengdu 610065 PR China
- Soil and Groundwater Pollution Prevention Research Institute, Sichuan Academy of Eco-Environmental Sciences 610046 Chengdu P. R. China
| | - Zhi Huang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University Chengdu 610065 PR China
- Institute of New Energy and Low Carbon Technology, Sichuan University Chengdu 610065 PR China
| | - Jie Yu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University Chengdu 610065 PR China
| | - Weiwei Zhu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University Chengdu 610065 PR China
| |
Collapse
|
4
|
Cao Y, Xu X, Zhi S, Phyu K, Wang H, Liu J, Chang CC, Zhang K. Microalgal-bacterial system responses to nitrogen forms in dairy farm wastewater: Focusing on the phycosphere and nitrogen transformation. ENVIRONMENTAL RESEARCH 2025; 276:121451. [PMID: 40122500 DOI: 10.1016/j.envres.2025.121451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
As an environmentally friendly medium, microalgae are often used in wastewater treatment. However, few studies have examined the effects of different nitrogen forms on microalgae and bacteria, particularly regarding material and gene transfer and nitrogen metabolic pathways in phycosphere and various extracellular polymeric substance layers. To address this research gap, Chlorella vulgaris was used to treat the dairy farm wastewater with different nitrogen additives. The results showed that the dry weight and chlorophyll a production were lowest at high ammonia nitrogen concentrations (0.460 g/L and 0.883 mg/L, respectively). The ability of microalgae to remove total phosphorus and ammonia nitrogen was significantly enhanced at appropriate nitrogen concentrations. There were clear differences in community abundance between phycosphere and different extracellular polymeric substance layers bacteria. Nitrate nitrogen promoted electron transfer in photosynthesis, while organic nitrogen facilitated the synthesis of siderophores. In high-ammonia nitrogen wastewater, ammonia nitrogen conversion primarily occurred through the action of nitrifying bacteria, whereas denitrification promoted nitrate nitrogen conversion. There is an interaction between nitrogen forms and microalgal-bacterial system. The study provided critical insights for microalgae treatment of dairy farm wastewater, contributing to environmental friendly and resource recycling wastewater management.
Collapse
Affiliation(s)
- Yuang Cao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Xiaoyu Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Suli Zhi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Key Laboratory of Low-Carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China.
| | - Khinkhin Phyu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Han Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jiahua Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Chein-Chi Chang
- Washington D.C. Water and Sewer Authority, Ellicott City, MD, 21042, USA
| | - Keqiang Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Key Laboratory of Low-Carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| |
Collapse
|
5
|
Luo L, Tan J, Dzakpasu M, Lou C, Guo W, Ngo HH, Wang XC. Impact of recharge water source quality on Chlorella vulgaris growth and biomass: Strategies for eutrophication control in urban landscape lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177740. [PMID: 39615175 DOI: 10.1016/j.scitotenv.2024.177740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Understanding the relationship between recharge water quality and algal metabolism is critical for managing eutrophication in urban landscape water bodies. This study investigates six landscape water bodies in Xi'an City, utilizing natural and reclaimed water recharge sources to cultivate and evaluate the growth and biomass composition of Chlorella vulgaris. The findings revealed that the growth and metabolic rate of C. vulgaris were faster in reclaimed water sources, whereas nitrogen (N) and phosphorus (P) conversion rates were higher in natural water sources. Redundancy and statistical analyses indicated that total nitrogen (TN) in reclaimed water was a major factor influencing C. vulgaris growth, contributing 74.3 % to its growth dynamics. In contrast, natural water sources did not significantly affect the growth characteristics of C. vulgaris. The biomass characteristics of C. vulgaris across different recharge water sources were similar, exhibiting a strong correlation with water quality. Environmental factors such as COD, N/P ratio, and PO4-P contributed most significantly to biomass accumulation. These findings provide a strategy for preventing and controlling eutrophication in landscape water bodies that utilize reclaimed water recharge sources in Xi'an City.
Collapse
Affiliation(s)
- Li Luo
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China.
| | - Jiahao Tan
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China
| | - Mawuli Dzakpasu
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China
| | - Chenghao Lou
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| | - Xiaochang C Wang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China
| |
Collapse
|
6
|
Zhao S, Qian J, Lu B, Tang S, He Y, Liu Y, Yan Y, Jin S. Enhancing treatment performance of Chlorella pyrenoidosa on levofloxacin wastewater through microalgae-bacteria consortia: Mechanistic insights using the transcriptome. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135670. [PMID: 39213769 DOI: 10.1016/j.jhazmat.2024.135670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/29/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Microalgae-bacteria consortia (MBC) system has been shown to enhance the efficiency of microalgae in wastewater treatment, yet its effectiveness in treating levofloxacin (LEV) wastewater remains unexplored. This study compared the treatment of LEV wastewater using pure Chlorella pyrenoidosa (PA) and its MBC constructed with activated sludge bacteria. The results showed that MBC improved the removal efficiency of LEV from 3.50-5.41 % to 33.62-57.20 % by enhancing the growth metabolism of microalgae. The MBC increased microalgae biomass and extracellular polymeric substance (EPS) secretion, yet reduced photosynthetic pigment content compared to the PA. At the phylum level, Proteobacteria and Actinobacteriota are the major bacteria in MBC. Furthermore, the transcriptome reveals that the growth-promoting effects of MBC are associated with the up-regulation of genes encoding the glycolysis, the citrate cycle (TCA cycle), and the pentose phosphate pathway. Enhanced carbon fixation, coupled with down-regulation of photosynthetic electron transfer processes, suggests an energy allocation mechanism within MBC. The up-regulation of porphyrin and arachidonic acid metabolism, along with the expression of genes encoding LEV-degrading enzymes, provides evidence of MBC's superior tolerance to and degradation of LEV. Overall, these findings lead to a better understanding of the underlying mechanisms through which MBC outperforms PA in treating LEV wastewater.
Collapse
Affiliation(s)
- Shasha Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yin Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yitong Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shuai Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
7
|
Cao Y, Zhi S, Phyu K, Wang H, Liu J, Xu X, Zhang K. Interaction between microalgae and phycosphere bacteria in a binary cultivation system-based dairy farm wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 409:131248. [PMID: 39127364 DOI: 10.1016/j.biortech.2024.131248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
The combination of microalgal culture and wastewater treatment is an emerging topic. This study investigated the use of different microalgae to treat different types of dairy farm wastewater. The results showed that the removal of ammonia nitrogen and total phosphorus by mixed microalgae was over 99% and 80%, respectively. The highest production of protein in biomass and extracellular polymeric substances was observed in high-concentration wastewater. In the phycosphere, the abundance of Proteobacteria and Cyanobacteria increased, while that of Bacteroidota decreased. Phycosphere bacteria were strongly correlated with microalgal growth and the composition of extracellular polymeric substances, especially with bound extracellular polymeric substances relative to soluble extracellular polymeric substances. Genes associated with photosynthesis and respiration in phycosphere bacteria were upregulated, contributing to the material exchange capacity in the microalgal-bacterial systems. The interaction between microalgae and phycosphere bacteria thus represents the core of the binary cultivation system-based wastewater treatment and requires further investigation.
Collapse
Affiliation(s)
- Yuang Cao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Suli Zhi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - KhinKhin Phyu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Han Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jiahua Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaoyu Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Li W, Wang L, Qiang X, Song Y, Gu W, Ma Z, Wang G. Design, construction and application of algae-bacteria synergistic system for treating wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121720. [PMID: 38972186 DOI: 10.1016/j.jenvman.2024.121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
The wastewater treatment technology of algae-bacteria synergistic system (ABSS) is a promising technology which has the advantages of low energy consumption, good treatment effect and recyclable high-value products. In this treatment technology, the construction of an ABSS is a very important factor. At the same time, the emergence of some new technologies (such as microbial fuel cells and bio-carriers, etc.) has further enriched constructing the novel ABSS, which could improve the efficiency of wastewater treatment and the biomass harvesting rate. Thus, this review focuses on the construction of a novel ABSS in wastewater treatment in order to provide useful suggestions for the technology of wastewater treatment.
Collapse
Affiliation(s)
- Weihao Li
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Lijun Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xi Qiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Yuling Song
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Wenhui Gu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| | - Guangce Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
9
|
Wang X, Wang Q, Hong Y, Wang Z. A whole process study of dual microalgae cultivation coupled to domestic wastewater treatment and wheat growth. ENVIRONMENTAL RESEARCH 2024; 254:119168. [PMID: 38762007 DOI: 10.1016/j.envres.2024.119168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
The multiple microalgal collaborative treatment of domestic wastewater has been extensively investigated, but its whole life cycle tracking and consequent potential have not been fully explored. Herein, a dual microalgal system was employed for domestic wastewater treatment, tracking the variation in microalgal growth and pollutants removal from shake flask scale to 18 L photobioreactors scales. The results showed that Chlorella sp. HL and Scenedesmus sp. LX1 combination had superior growth and water purification performance, and the interspecies soluble algal products promoted their growth. Through microalgae mixing ratio and inoculum size optimized, the highest biomass yield (0.42 ± 0.03 g/L) and over 91 % N, P removal rates were achieved in 18 L photobioreactor. Harvested microalgae treated in different forms all promoted wheat growth and suppressed yellow leaf rate. This study provided data support for the whole process tracking of dual microalgal system in treating domestic wastewater and improving wheat growth.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Qiao Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Zeyuan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
10
|
Yu Q, Chen J, Ye M, Wei Y, Zhang C, Ge Y. N-acyl homoserine lactones (AHLs) enhanced removal of cadmium and other pollutants by algae-bacteria consortia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121792. [PMID: 39002459 DOI: 10.1016/j.jenvman.2024.121792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Signal transduction is an important mode of algae-bacteria interaction, in which bacterial quorum sensing (QS) may affect microalgal growth and metabolism. Currently, little is known whether acyl homoserine lactones (AHLs) released by bacteria can affect the pollutant removal by algae-bacteria consortia (ABC). In this study, we constructed ABC using Chlorella vulgaris (Cv) with two AHLs-producing bacteria and investigated their performance in the removal of multiple pollutants, including chemical oxygen demand (COD), total nitrogen (TN), phosphorus (P), and cadmium (Cd). The AHLs-producing bacteria, namely Agrobacterium sp. (Ap) and Ensifer adherens (Ea), were capable of forming a symbiosis with C. vulgaris. Consortia of Cv and Ap with ratio of 2:1 (Cv2-Ap1) showed the optimal growth promotion and higher removal of Cd, COD, TN, and P compared to the C. vulgaris monoculture. Cv2-Ap1 ABC removed 36.1-47.5% of Cd, 94.5%-94.6% COD, 37.1%-56.0% TN, and 90.4%-93.5% P from the culture medium. In addition, increase of intracellular neutral lipids and extracellular protein, as well as the types of functional groups on cell surface contributed to Cd removal and tolerance in the Cv2-Ap1 ABC. Six AHLs were detected in the Cv2-Ap1 culture. Among these, 3OC8-HSL and 3OC12-HSL additions promoted the ABC growth and enhanced their Cd accumulation. These findings may contribute to further understanding of AHL-mediated communication between algae and bacteria and provide support bioremediation efforts of metal-containing wastewater.
Collapse
Affiliation(s)
- Qingnan Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiale Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Menglei Ye
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanping Wei
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunhua Zhang
- Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Ge
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
11
|
Wang X, Hong Y, Wang Z, Yuan Y, Sun D. High capacities of carbon capture and photosynthesis of a novel organic carbon-fixing microalgae in municipal wastewater: From mutagenesis, screening, ability evaluation to mechanism analysis. WATER RESEARCH 2024; 257:121722. [PMID: 38723359 DOI: 10.1016/j.watres.2024.121722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
The development of wastewater treatment processes capable of reducing and fixing carbon is currently a hot topic in the wastewater treatment field. Microalgae possess a natural carbon-fixing advantage, and microalgae that can symbiotically coexist with indigenous bacteria in actual wastewater attract more significant attention. Ultraviolet (UV) mutagenesis and dissolved organic carbon (DOC) acclimation were applied to strengthen the carbon-fixing performance of microalgae in this study. The mechanisms associated with microalgal water purification ability, gene regulation at the molecular level and photosynthetic potential under different trophic modes resulting from carbon fixation and transformation were disclosed. The superior performance of Chlorella sp. MHQ2 was eventually screened out among a large number of mutants generated from 3 wild-type Chlorella strains. Results indicated that the dry cell weight of the optimal species Chlorella sp. HQ mutant MHQ2 was 1.91 times that of the wild strain in the pure algal system, more carbon from municipal wastewater (MW) were transferred to the microalgae and re-entered into the biological cycle through resource utilization. In addition, COD, NH3-N and TP removal efficiencies of MW by Chlorella sp. MHQ2 were found to increase to 95.8% (1.1-times), 96.4% (1.4-times), and 92.9% (1.2-times), respectively, under the extra DOC supply and the assistance of indigenous bacteria in the MW. In the transcriptome analysis of the logarithmic phase, the glycolytic pathway was inhibited, and the pentose phosphate pathway was mainly carried out for microalgal life activities, further promoting efficient energy utilization. Upon analysis of carbon capture capacity and photosynthetic potential in trophic mode, the addition of NaHCO3 increased the photosynthetic rate of Chlorella sp. MHQ2 in mixotrophy whereas it was attenuated in autotrophy. This study could provide a new perspective for the study of resource utilization and microalgae carbon- fixing mechanisms in the actual wastewater treatment process.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Zeyuan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yaqian Yuan
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Dezhi Sun
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
12
|
Huang L, Zhao X, Wu K, Liang C, Liu J, Yang H, Yin F, Wang C, Yang B, Zhang W. Enhancing biomass and lipid accumulation by a novel microalga for unsterilized piggery biogas slurry remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31097-31107. [PMID: 38625472 DOI: 10.1007/s11356-024-33179-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
The cost and efficiency of an algal-BS treatment system are determined by the specific microalgal species and BS pretreatment method. This study examines the growth of a novel algae Chlorella sp. YSD-2 and the removal of nutrients from the BS using different pretreatment methods, including dilution ratio and sterilization. The highest biomass production (1.84 g L-1) was achieved in the 1:2 unsterilized biogas slurry, which was 2.03 times higher than that in the sterilized group, as well as higher lipid productivity (17.29 mg L-1 d-1). Nevertheless, the sterilized biogas slurry at a 1:1 dilution ratio exhibited the most notable nutrient-removal efficiency, with COD at 71.97%, TP at 91.32%, and TN at 88.80%. Additionally, the analysis of 16S rRNA sequencing revealed a significant alteration in the indigenous bacterial composition of the biogas slurry by microalgal treatment, with Proteobacteria and Cyanobacteria emerging as the predominant phyla, and unidentified_Cyanobacteria as the primary genus. These findings suggest that Chlorella sp. YSD-2 exhibits favorable tolerance and nutrient-removal capabilities in unsterilized, high-strength biogas slurry, along with high productivity of biomass and lipids. Consequently, these results offer a theoretical foundation for the development of an efficient and economically viable treatment method for algal-BS.
Collapse
Affiliation(s)
- Li Huang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Faculty of Environment and Chemical Engineering, Kunming Metallurgy College, Kunming, 650000, People's Republic of China
| | - Xingling Zhao
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Kai Wu
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Chengyue Liang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Jing Liu
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Hong Yang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Fang Yin
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Changmei Wang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Bin Yang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Wudi Zhang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China.
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China.
| |
Collapse
|
13
|
Liu Q, Jia J, Hu H, Li X, Zhao Y, Wu C. Nitrogen and phosphorus limitations promoted bacterial nitrate metabolism and propagation of antibiotic resistome in the phycosphere of Auxenochlorella pyrenoidosa. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133786. [PMID: 38367442 DOI: 10.1016/j.jhazmat.2024.133786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Despite that nitrogen (N) and phosphorus (P) play critical roles in the lifecycle of microalgae, how N and P further affect the distribution of bacteria and antibiotic resistance genes (ARGs) in the phycosphere is still poorly understood. In this study, the effects of N and P on the distribution of ARGs in the phycosphere of Auxenochlorella pyrenoidosa were investigated. Results showed that the growth and chlorophyll synthesis of microalgae were inhibited when N or P was limited, regardless of the N/P ratios, but the extracellular polymeric substances content and nitrate assimilation efficiency were enhanced in contrast. Metagenomic sequencing revealed that N or P limitation resulted in the recruitment of specific bacteria that highly contribute to the nitrate metabolism in the phycosphere. Besides, N or P limitation promoted the propagation of phycosphere ARGs, primarily through horizontal gene transfer mediated by mobile genetic elements. The enrichment of specific bacteria induced by changes in the algal physiology also contributed to the ARGs proliferation under nutrient limitation. Our results demonstrated that the reduction of algal cells caused by nutrient limitation could promote the propagation of ARGs, which provides new insights into the occurrence and spread of ARGs in the phycosphere.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jia Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Hongjuan Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yanhui Zhao
- Ecology and Environment Monitoring and Scientific Research Center, Yangtze Basin Ecology and Environment Administration, Ministry of Ecological and Environment, Wuhan 430010, China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
14
|
Yu X, Li Y, Wu Y, Gao H, Liu W, Liu H, Gong S, Wu H. Seasonal changes of prokaryotic microbial community structure in Zhangjiayan Reservoir and its response to environmental factors. Sci Rep 2024; 14:5513. [PMID: 38448523 PMCID: PMC10918105 DOI: 10.1038/s41598-024-55702-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
As a typical sub-deep reservoir in the upper reaches of the Yangtze River in the southwest region, Zhangjiayan Reservoir is also an important source of drinking water. Exploring the role of microorganisms in the material cycle of water bodies is of great significance for preventing the exacerbation of eutrophication in the reservoir. In this study, water samples from the overlying water of five points in the reservoir were collected four times in spring (April), summer (July), autumn (November), and winter (January) of 2022-2023 using a gas-tight water sampler. Physicochemical factors were measured, and the microbial community structure was analyzed by high-throughput MiSeq sequencing of the V3-V4 hypervariable region of 16S rRNA gene in order to explore the relationship between physicochemical factors and microbial community structure and the dominant microbial populations that affect eutrophication of the reservoir. The following results were obtained through analysis. Among the 20 overlying water samples from Zhangjiayan Reservoir, a total of 66 phyla, 202 classes, 499 orders, 835 families, 1716 genera, and 27,904 ASVs of the bacterial domain were detected. The phyla Proteobacteria and Actinobacteria were dominant in the microbial community of the overlying water in Zhangjiayan Reservoir. At the genus level, hgcI_clade and Actinobacteria had the highest abundance and was the dominant population. The microbial community in the water of Zhangjiayan Reservoir has a high level of diversity. The diversity index ranked by numerical order was winter > autumn > summer > spring. Significant differences were found in the composition and structure of the microbial community between the spring/summer and autumn/winter seasons (p < 0.05). Total phosphorus, dissolved total phosphorus, soluble reactive phosphorus, and dissolved oxygen have a significant impact on the composition and structure of the microbial community (p < 0.01). The bacterial community in the overlying water of Zhangjiayan Reservoir showed a mainly positive correlation. Sphingomonas, Brevundimonas, and Blastomonas were the central populations of the bacterial community in the overlying water of Zhangjiayan Reservoir. This study indicates that environmental factors, such as phosphorus and other nutrients, have a significant impact on the formation of the microbial community structure in different seasons. Sphingomonas, Brevundimonas, and Blastomonas are key populations that may have a significant impact on eutrophication in Zhangjiayan Reservoir.
Collapse
Affiliation(s)
- Xintao Yu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610059, China
| | - Yong Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610059, China.
| | - Yue Wu
- Sichuan Aqua Gathering Eco-environment Management Co., Ltd., Neijiang, 641000, China
| | - Hui Gao
- Eastern Newly Developed Area Water Conservany Administrative Station, Pihe River Administrative Office, Sichuan Du Jiangyan Water Conservancy Development Center, Chengdu, 641400, China
| | - Wei Liu
- Eastern Newly Developed Area Water Conservany Administrative Station, Pihe River Administrative Office, Sichuan Du Jiangyan Water Conservancy Development Center, Chengdu, 641400, China
| | - Huan Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610059, China
| | - Sidan Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610059, China
| | - Honglian Wu
- Eastern Newly Developed Area Water Conservany Administrative Station, Pihe River Administrative Office, Sichuan Du Jiangyan Water Conservancy Development Center, Chengdu, 641400, China
| |
Collapse
|
15
|
Silva-Gálvez AL, López-Sánchez A, Camargo-Valero MA, Prosenc F, González-López ME, Gradilla-Hernández MS. Strategies for livestock wastewater treatment and optimised nutrient recovery using microalgal-based technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120258. [PMID: 38387343 DOI: 10.1016/j.jenvman.2024.120258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
Global sustainable development faces several challenges in addressing the needs of a growing population. Regarding food industries, the heightening pressure to meet these needs has resulted in increased waste generation. Thus, recognising these wastes as valuable resources is crucial to integrating sustainable models into current production systems. For instance, the current 24 billion tons of nutrient-rich livestock wastewater (LW) generated yearly could be recovered and valorised via biological uptake through microalgal biomass. Microalgae-based livestock wastewater treatment (MbLWT) has emerged as an effective technology for nutrient recovery, specifically targeting carbon, nitrogen, and phosphorus. However, the viability and efficacy of these systems rely on the characteristics of LW, including organic matter and ammonium concentration, content of suspended solids, and microbial load. Thus, this systematic literature review aims to provide guidance towards implementing an integral MbLWT system for nutrient control and recovery, discussing several pre-treatments used in literature to overcome the challenges regarding LW as a suitable media for microalgae cultivation.
Collapse
Affiliation(s)
- Ana Laura Silva-Gálvez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico; BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Anaid López-Sánchez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico
| | - Miller Alonso Camargo-Valero
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK; Departamento de Ingeniería Química, Universidad Nacional de Colombia, Campus La Nubia, Manizales, Colombia
| | - Franja Prosenc
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Martín Esteban González-López
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico.
| | - Misael Sebastián Gradilla-Hernández
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico.
| |
Collapse
|
16
|
Li M, Chen Z, Zhou D, Xu S, Qiu S, Ge S. Coagulation pretreatment coupled with indigenous microalgal-bacterial consortium system for on-site treatment of rural black wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169728. [PMID: 38160812 DOI: 10.1016/j.scitotenv.2023.169728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/16/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Improper treatment of rural black wastewater (RBW) presents substantial challenges, including the wastage of resource, environmental contamination, and economic consequences. This study proposed an integrated process for RBW treatment, consisting of coagulation/flocculation (C/F) pretreatment and subsequent inoculation of indigenous microalgal-bacterial consortium (IMBC) for nitrogen recovery, namely C/F-IMBC process. Specifically, the optimal C/F conditions (polyaluminium chloride of 4 g/l, polyacrylamide of 50 mg/l, and pH of 6) were determined through a series of single-factor experiments, considering CN, turbidity, and dissolved organic matter (DOM) removal, economic cost, and potential influence on the water environment. Compared to the sole IMBC system for RBW treatment, the proposed C/F-IMBC process exhibited a remarkable 1.23-fold increase in microalgal growth and a substantial 17.6-22.6 % boost in nitrogen recovery. The altered RBW characteristic induced by C/F pretreatment was supposed to be responsible for the improved system performance. In particular, the abundance of DOM was decreased and its composition was simplified after C/F pretreatment, based on the analysis for excitation-emission matrices with parallel factor and gas chromatography-mass spectrometry, thus eliminating the potential impacts of toxic DOM components (e.g., Bis(2-ethylhexyl) phthalate) on IMBC activity. It should also be noted that C/F pretreatment modified microbial community structure as well, thereby regulating the expression of nitrogen-related genes and enhancing the system nitrogen recovery capacity. For instance, the functional Cyanobacteria responsible for nutrient recovery was enriched by 1.95-fold and genes involved in the assimilatory nitrate reduction to ammonia pathway were increased by 1.52-fold. These fundamental findings are expected to offer insights into the improvement of DOM removal and nitrogen recovery for IMBC-based wastewater treatment system, and provide valuable guidance for the development of sustainable on-site RBW treatment technologies.
Collapse
Affiliation(s)
- Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Di Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shiling Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
17
|
Mou Y, Liu N, Lu T, Jia C, Xu C, Song M. The effects of carbon nitrogen ratio and salinity on the treatment of swine digestion effluent simultaneously producing bioenergy by microalgae biofilm. CHEMOSPHERE 2023; 339:139694. [PMID: 37536538 DOI: 10.1016/j.chemosphere.2023.139694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
In order to remove high concentrations of ammonia nitrogen (NH4+-N) and refractory sulfamethazine (SM2) from swine digestion effluent, different carbon/nitrogen (C/N) ratios and salinity were used to determine the effects of pollutants removal in the microalgae biofilm system. Microalgae biofilm treatment under optimal environmental conditions in synthetic swine digestion effluent were C/N ratio of 20 and salinity of 140 mM. In order to make the actual swine digestion effluent discharge up to the standard, three different two-cycle treatments (suspended microalgae, microalgae biofilm, microalgae biofilm under the optimal conditions) were studied. The results showed that after two-cycle treatment with microalgae biofilm under the optimal conditions, the actual swine digestion effluent levels of total nitrogen (TN), NH4+-N, total phosphorus (TP), chemical oxygen demand (COD), SM2 were 22.65, 9.32, 4.11, 367.28, and 0.99 mg L-1, respectively, which could satisfy the discharge standards for livestock and poultry wastewater in China. At the same time, first-order kinetic simulation equations suggested a degradation half-life of 4.85 d for SM2 under optimal conditions in microalgae biofilm, and microbial community analysis indicated that the dominant genus was Halomonas. Furthermore, 35.66% of lipid, 32.56% of protein and 18.44% of polysaccharides were harvested after two-cycle in microalgae biofilm treatment under optimal environmental conditions. These results indicated that the regulation of C/N and salinity in microalgae biofilm for the treatment of swine digestion effluent was a high-efficiency strategy to simultaneously achieve wastewater treatment and bioenergy production.
Collapse
Affiliation(s)
- Yiwen Mou
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Na Liu
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Tianxiang Lu
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Cong Jia
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Chongqing Xu
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China; Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250013, PR China
| | - Mingming Song
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China.
| |
Collapse
|
18
|
Tong CY, Honda K, Derek CJC. A review on microalgal-bacterial co-culture: The multifaceted role of beneficial bacteria towards enhancement of microalgal metabolite production. ENVIRONMENTAL RESEARCH 2023; 228:115872. [PMID: 37054838 DOI: 10.1016/j.envres.2023.115872] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023]
Abstract
Mass microalgal-bacterial co-cultures have come to the fore of applied physiological research, in particularly for the optimization of high-value metabolite from microalgae. These co-cultures rely on the existence of a phycosphere which harbors unique cross-kingdom associations that are a prerequisite for the cooperative interactions. However, detailed mechanisms underpinning the beneficial bacterial effects onto microalgal growth and metabolic production are rather limited at the moment. Hence, the main purpose of this review is to shed light on how bacteria fuels microalgal metabolism or vice versa during mutualistic interactions, building upon the phycosphere which is a hotspot for chemical exchange. Nutrients exchange and signal transduction between two not only increase the algal productivity, but also facilitate in the degradation of bio-products and elevate the host defense ability. Main chemical mediators such as photosynthetic oxygen, N-acyl-homoserine lactone, siderophore and vitamin B12 were identified to elucidate beneficial cascading effects from the bacteria towards microalgal metabolites. In terms of applications, the enhancement of soluble microalgal metabolites is often associated with bacteria-mediated cell autolysis while bacterial bio-flocculants can aid in microalgal biomass harvesting. In addition, this review goes in depth into the discussion on enzyme-based communication via metabolic engineering such as gene modification, cellular metabolic pathway fine-tuning, over expression of target enzymes, and diversion of flux toward key metabolites. Furthermore, possible challenges and recommendations aimed at stimulating microalgal metabolite production are outlined. As more evidence emerges regarding the multifaceted role of beneficial bacteria, it will be crucial to incorporate these findings into the development of algal biotechnology.
Collapse
Affiliation(s)
- C Y Tong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
19
|
Wu H, Li A, Zhang H, Gao S, Li S, Cai J, Yan R, Xing Z. The potential and sustainable strategy for swine wastewater treatment: Resource recovery. CHEMOSPHERE 2023; 336:139235. [PMID: 37343397 DOI: 10.1016/j.chemosphere.2023.139235] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Swine wastewater is highly polluted with complex and harmful substances that require effective treatment to minimize environmental damage. There are three commonly used biological technologies for treating swine wastewater: conventional biological technology (CBT), microbial electrochemical technology (MET), and microalgae technology (MT). However, there is a lack of comparison among these technologies and a lack of understanding of their unique advantages and efficient operation strategies. This review aims to compare and contrast the characteristics, influencing factors, improvement methods, and microbial mechanisms of each technology. CBT is cost-effective but has low resource recovery efficiency, while MET and MT have the highest potential for resource recovery. However, all three technologies are affected by various factors and toxic substances such as heavy metals and antibiotics. Improved methods include exogenous/endogenous enhancement, series reactor operation, algal-bacterial symbiosis system construction, etc. Though MET is limited by construction costs, CBT and MT have practical applications. While swine wastewater treatment processes have developed automatic control systems, the application need further promotion. Furthermore, key functional microorganisms involved in CBT's pollutant removal or transformation have been detected, as have related genes. The unique electroactive microbial cooperation mode and symbiotic mode of MET and MT were also revealed, respectively. Importantly, the future research should focus on broadening the scope and scale of engineering applications, preventing and controlling emerging pollutants, improving automated management level, focusing on microbial synergistic metabolism, enhancing resource recovery performance, and building a circular economy based on low-cost and resource utilization.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Huaiwen Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Sicong Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Suqi Li
- College of Life and Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jindou Cai
- School of Culture and Tourism, Chongqing City Management College, Chongqing, 402160, PR China
| | - Ruixiao Yan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China.
| |
Collapse
|
20
|
Mao X, Zhou X, Fan X, Jin W, Xi J, Tu R, Naushad M, Li X, Liu H, Wang Q. Proteomic analysis reveals mechanisms of mixed wastewater with different N/P ratios affecting the growth and biochemical characteristics of Chlorella pyrenoidosa. BIORESOURCE TECHNOLOGY 2023; 381:129141. [PMID: 37169198 DOI: 10.1016/j.biortech.2023.129141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Effects of different nutrient ratios on the biochemical compositions of microalgae and the changes were rarely studied at the molecular level. In this study, the impacts of various nitrogen to phosphorus (N/P) ratios on growing of C. pyrenoidosa, as well as biochemical compositions and the metabolic regulation mechanism in mixed sewage, were investigated. The results suggested that 18 was optimal N/P ratio, while the dry weight (1.0 g/L), chlorophyll-a (Chla) (3.63 mg/L), and lipid production (0.28 g/L) were all the highest comparing with other groups. In contrast, the protein production (0.37 g/L) was the least. The nature of the regulatory mechanisms inthe metabolic pathways of these biochemical compositions was revealed by proteomic results, and there were 62 different expression proteins (DEPs) taken part in fatty acid and lipid biosynthesis metabolism (FA), amino acid biosynthesis metabolism (AA), photosynthesis (PHO), carbon fixation in photosynthetic organisms (CFP), and central carbon metabolism (CCM).
Collapse
Affiliation(s)
- Xinrui Mao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
| | - Xiumin Fan
- Shenzhen ecological and environmental intelligent management and control center, Shenzhen, 518034, China
| | - Wenbiao Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Jingjing Xi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Renjie Tu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
21
|
Zhao X, Meng X, Dang B, Zhang T, Shi W, Hou N, Yan Q, Li C. Succession dynamics of microbial communities responding to the exogenous microalgae ZM-5 and analysis of the environmental sustainability of a constructed wetland system. BIORESOURCE TECHNOLOGY 2023; 371:128642. [PMID: 36681352 DOI: 10.1016/j.biortech.2023.128642] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Constructed wetlands (CWs) are economical and effective swine tailwater treatment systems. However, nitrogen removal in CWs is limited by the lack of carbon source for denitrification. In this study, we studied the feasibility of dosing the microalgae ZM-5 to improve the nitrogen removal ability in CWs. Compared to the control CW, a 20 % higher removal capacity of COD and TN was observed for the coupled system (EG). The microalgae ZM-5 could interact with denitrifying bacteria to compensate for the deficiency of denitrifying stage in CWs. HT-qPCR chip analysis also provided evidence that denitrification genes significantly increased (p < 0.05). According to the life cycle assessment (LCA), ultrasonic extraction had the best environmental sustainability among four lipid extraction processes. As an improvement strategy, clean energy could be utilized to optimize the electricity source to reduce environmental load (45 %-60 %). These findings offer new insights into the feasibility of EG for environmentally sustainable wastewater treatment.
Collapse
Affiliation(s)
- Xinyue Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiangwei Meng
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bin Dang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tuoshi Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wen Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Ning Hou
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qingsheng Yan
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Ma 02215, USA
| | - Chunyan Li
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
22
|
Qv M, Dai D, Liu D, Wu Q, Tang C, Li S, Zhu L. Towards advanced nutrient removal by microalgae-bacteria symbiosis system for wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 370:128574. [PMID: 36603749 DOI: 10.1016/j.biortech.2022.128574] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
In this study, the microalgae-bacteria symbiosis (ABS) system by co-culturing Chlorella sorokiniana with activated sludge was constructed for pollutants removal, and the according interaction mechanism was investigated. The results showed that the ABS system could almost completely remove ammonia nitrogen, and the removal efficiency of total nitrogen and total phosphorus could accordingly reach up to 65.3 % and 42.6 %. Brevundimonas greatly promoted microalgal biomass growth (maximum chlorophyll-a concentration of 9.4 mg/L), and microalgae contributed to the increase in the abundance of Dokdonella and Thermomonas in ABS system, thus facilitating nitrogen removal. The extended Derjaguin-Landau-Verwey-Overbeek theory indicated a repulsive potential barrier of 561.7 KT, while tryptophan-like proteins and tyrosine-like proteins were key extracellular polymeric substances for the formation of flocs by microalgae and activated sludge. These findings provide an in-depth understanding of interaction mechanism between microalgae and activated sludge for the removal of contaminants from wastewater.
Collapse
Affiliation(s)
- Mingxiang Qv
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Dian Dai
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Dongyang Liu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Qirui Wu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Chunming Tang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Shuangxi Li
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
23
|
Yu Q, Pei X, Wei Y, Naveed S, Wang S, Chang M, Zhang C, Ge Y. The roles of bacteria in resource recovery, wastewater treatment and carbon fixation by microalgae-bacteria consortia: A critical review. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Luo X, Liu Y, Muhmood A, Zhang Q, Wang J, Ruan R, Wang Y, Cui X. Effect of time and temperature of pretreatment and anaerobic co-digestion of rice straw and swine wastewater by domesticated paddy soil microbes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116218. [PMID: 36108514 DOI: 10.1016/j.jenvman.2022.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Rice straw and swine wastewater are abundant, easy to obtain, and inexpensive biomass materials. Anaerobic digestion of rice straw and swine wastewater effectively regulates the carbon-to-nitrogen ratio and also improves methane production efficiency. The dense lignocellulosic structure, unsuitable carbon-to-nitrogen ratio, and light texture of rice straw hinder its application in anaerobic digestion. Effective pretreatment technologies can improve degradation efficiency and methane production. Our study is the first to apply domesticated paddy soil microbes to enhance the efficiency of hydrolytic acidification of rice straw and swine wastewater at varying temperatures and times. The results show that the highest total organic carbon (1757.2 mg/L), soluble chemical oxygen demand (5341.7 mg/L), and organic acid concentration (4134.6 mg/L) appeared in the hydrolysate after five days of hydrolytic acidification at 37 °C. Moreover, the use of hydrolysate produced 13% more gas and reduced the anaerobic digestion period by ten days compared to the untreated control. This suggests that using domesticated paddy soil microbes as a pretreatment might be a sustainable and cost-effective strategy for improving the degradation efficacy and methane production from lignocellulosic materials.
Collapse
Affiliation(s)
- Xuan Luo
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China
| | - Atif Muhmood
- Institute of Soil Chemistry & Environmental Sciences, AARI, Faisalabad, Pakistan
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China
| | - Jingjing Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China
| | - Roger Ruan
- Center for Biorefining and Dept. of Bioproducts and Biosystems Engineering, University of Minnesota, Paul, 55108, USA
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China.
| | - Xian Cui
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi, 330047, PR China.
| |
Collapse
|
25
|
Je S, Yamaoka Y. Biotechnological Approaches for Biomass and Lipid Production Using Microalgae Chlorella and Its Future Perspectives. J Microbiol Biotechnol 2022; 32:1357-1372. [PMID: 36310359 PMCID: PMC9720082 DOI: 10.4014/jmb.2209.09012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Heavy reliance on fossil fuels has been associated with increased climate disasters. As an alternative, microalgae have been proposed as an effective agent for biomass production. Several advantages of microalgae include faster growth, usage of non-arable land, recovery of nutrients from wastewater, efficient CO2 capture, and high amount of biomolecules that are valuable for humans. Microalgae Chlorella spp. are a large group of eukaryotic, photosynthetic, unicellular microorganisms with high adaptability to environmental variations. Over the past decades, Chlorella has been used for the large-scale production of biomass. In addition, Chlorella has been actively used in various food industries for improving human health because of its antioxidant, antidiabetic, and immunomodulatory functions. However, the major restrictions in microalgal biofuel technology are the cost-consuming cultivation, processing, and lipid extraction processes. Therefore, various trials have been performed to enhance the biomass productivity and the lipid contents of Chlorella cells. This study provides a comprehensive review of lipid enhancement strategies mainly published in the last five years and aimed at regulating carbon sources, nutrients, stresses, and expression of exogenous genes to improve biomass production and lipid synthesis.
Collapse
Affiliation(s)
- Sujeong Je
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea,Corresponding author Phone: +82-2-2164-4034 Fax: +82-2-2164-4778 E-mail:
| |
Collapse
|
26
|
Goh PS, Ahmad NA, Lim JW, Liang YY, Kang HS, Ismail AF, Arthanareeswaran G. Microalgae-Enabled Wastewater Remediation and Nutrient Recovery through Membrane Photobioreactors: Recent Achievements and Future Perspective. MEMBRANES 2022; 12:1094. [PMID: 36363649 PMCID: PMC9699475 DOI: 10.3390/membranes12111094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The use of microalgae for wastewater remediation and nutrient recovery answers the call for a circular bioeconomy, which involves waste resource utilization and ecosystem protection. The integration of microalgae cultivation and wastewater treatment has been proposed as a promising strategy to tackle the issues of water and energy source depletions. Specifically, microalgae-enabled wastewater treatment offers an opportunity to simultaneously implement wastewater remediation and valuable biomass production. As a versatile technology, membrane-based processes have been increasingly explored for the integration of microalgae-based wastewater remediation. This review provides a literature survey and discussion of recent progressions and achievements made in the development of membrane photobioreactors (MPBRs) for wastewater treatment and nutrient recovery. The opportunities of using microalgae-based wastewater treatment as an interesting option to manage effluents that contain high levels of nutrients are explored. The innovations made in the design of membrane photobioreactors and their performances are evaluated. The achievements pave a way for the effective and practical implementation of membrane technology in large-scale microalgae-enabled wastewater remediation and nutrient recovery processes.
Collapse
Affiliation(s)
- Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Nor Akalili Ahmad
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
| | - Yong Yeow Liang
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan 26300, Pahang, Malaysia
| | - Hooi Siang Kang
- Marine Technology Centre, Institute for Vehicle System & Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Gangasalam Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620015, India
| |
Collapse
|
27
|
Zhang J, Xia A, Yao D, Guo X, Lam SS, Huang Y, Zhu X, Zhu X, Liao Q. Removal of oxytetracycline and ofloxacin in wastewater by microalgae-bacteria symbiosis for bioenergy production. BIORESOURCE TECHNOLOGY 2022; 363:127891. [PMID: 36089133 DOI: 10.1016/j.biortech.2022.127891] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The development of microalgae-bacteria symbiosis for treating wastewater is flourishing owing to its high biomass productivity and exceptional ability to purify contaminants. A nature-selected microalgae-bacteria symbiosis, mainly consisting of Dictyosphaerium and Pseudomonas, was used to treat oxytetracycline (OTC), ofloxacin (OFLX), and antibiotic-containing swine wastewater. Increased antibiotic concentration gradually reduced biomass productivity and intricately changed symbiosis composition, while 1 mg/L OTC accelerated the growth of symbiosis. The symbiosis biomass productivity reached 3.4-3.5 g/L (5.7-15.3 % protein, 18.4-39.3 % carbohydrate, and 2.1-3.9 % chlorophyll) when cultured in antibiotic-containing swine wastewater. The symbiosis displayed an excellent capacity to remove 76.3-83.4 % chemical oxygen demand, 53.5-62.4 % total ammonia nitrogen, 97.5-100.0 % total phosphorus, 96.3-100.0 % OTC, and 32.8-60.1 % OFLX in swine wastewater. The microbial community analysis revealed that the existence of OTC/OFLX increased the richness and evenness of microalgae but reduced bacteria species in microalgae-bacteria, and the toxicity of OFLX to bacteria was stronger than that of OTC.
Collapse
Affiliation(s)
- Jingmiao Zhang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| | - Dunxue Yao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaobo Guo
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|