1
|
Zeng L, Tian Z, Kang X, Xu Y, Zhao B, Chen Q, Gu Y, Xiang Q, Zhao K, Zou L, Ma M, Penttinen P, Yu X. Bacterial community drives soil organic carbon transformation in vanadium titanium magnetite tailings through remediation using Pongamia pinnata. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121156. [PMID: 38744211 DOI: 10.1016/j.jenvman.2024.121156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
With continuous mine exploitation, regional ecosystems have been damaged, resulting in a decline in the carbon sink capacity of mining areas. There is a global shortage of effective soil ecological restoration techniques for mining areas, especially for vanadium (V) and titanium (Ti) magnetite tailings, and the impact of phytoremediation techniques on the soil carbon cycle remains unclear. Therefore, this study aimed to explore the effects of long-term Pongamia pinnata remediation on soil organic carbon transformation of V-Ti magnetite tailing to reveal the bacterial community driving mechanism. In this study, it was found that four soil active organic carbon components (ROC, POC, DOC, and MBC) and three carbon transformation related enzymes (S-CL, S-SC, and S-PPO) in vanadium titanium magnetite tailings significantly (P < 0.05) increased with P. pinnata remediation. The abundance of carbon transformation functional genes such as carbon degradation, carbon fixation, and methane oxidation were also significantly (P < 0.05) enriched. The network nodes, links, and modularity of the microbial community, carbon components, and carbon transformation genes were enhanced, indicating stronger connections among the soil microbes, carbon components, and carbon transformation functional genes. Structural equation model (SEM) analysis revealed that the bacterial communities indirectly affected the soil organic carbon fraction and enzyme activity to regulate the soil total organic carbon after P. pinnata remediation. The soil active organic carbon fraction and free light fraction carbon also directly regulated the soil carbon and nitrogen ratio by directly affecting the soil total organic carbon content. These results provide a theoretical reference for the use of phytoremediation to drive soil carbon transformation for carbon sequestration enhancement through the remediation of degraded ecosystems in mining areas.
Collapse
Affiliation(s)
- Lan Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhuo Tian
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xia Kang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Yueyue Xu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bing Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, 611130, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Petri Penttinen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, 611130, China.
| |
Collapse
|
2
|
Yue W, Genji Y, Bowen W, Yaozu M, Yang Z, Tian M, Hailian Z, Chuanwu X, Yi C, Chunyan L. Papermaking wastewater treatment coupled to 2,3-butanediol production by engineered psychrotrophic Raoultella terrigena. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131994. [PMID: 37418966 DOI: 10.1016/j.jhazmat.2023.131994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
The simultaneous bioremediation and bioconversion of papermaking wastewater by psychrotrophic microorganisms holds great promise for developing sustainable environments and economies in cold regions. Here, the psychrotrophic bacterium Raoultella terrigena HC6 presented high endoglucanase (26.3 U/mL), xylosidase (732 U/mL), and laccase (8.07 U/mL) activities for lignocellulose deconstruction at 15 °C. mRNA monitoring and phenotypic variation analyses confirmed that cold-inducible cold shock protein A (CspA) facilitated the expression of the cel208, xynB68, and lac432 genes to increase the enzyme activities in strain HC6. Furthermore, the cspA gene-overexpressing mutant (strain HC6-cspA) was deployed in actual papermaking wastewater and achieved 44.3%, 34.1%, 18.4%, 80.2% and 100% removal rates for cellulose, hemicellulose, lignin, COD, and NO3--N at 15 °C. Simultaneously, 2,3-butanediol (2,3-BD) was produced from the effluent with a titer of 2.98 g/L and productivity of 0.154 g/L/h. This study reveals an association between the cold regulon and lignocellulolytic enzymes and provides a promising candidate for simultaneous papermaking wastewater treatment and 2,3-BD production.
Collapse
Affiliation(s)
- Wang Yue
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Yang Genji
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Wu Bowen
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Mi Yaozu
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Zhou Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Ma Tian
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Zang Hailian
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Xi Chuanwu
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Cheng Yi
- College of Plant Protection, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China.
| | - Li Chunyan
- College of Resources and Environment, Northeast Agricultural University, Harbin, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China.
| |
Collapse
|
3
|
Zhao X, Zhang T, Chen X, Guo M, Meng X, Wang X, Bai S. Exploring the resilience of constructed wetlands to harmful algal blooms disturbances: A study on microbial response mechanisms. BIORESOURCE TECHNOLOGY 2023; 383:129251. [PMID: 37268089 DOI: 10.1016/j.biortech.2023.129251] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Constructed wetlands (CWs) have emerged as a promising environmentally sustainable technique for wastewater treatment. However, the susceptibility of CWs to disturbances caused by harmful algal blooms (HABs) raises concerns. This study aimed to investigate the impact of HABs on the pollutants' removal performance of CWs and the response of rhizosphere microbial community. Results revealed that CWs possessed an adaptive capacity that enabled them to recover caused by HABs. The rhizosphere was found to stimulate the occurrence of Acinetobacter, which played a critical role to help resist HABs disturbance. This study also observed an increased dissimilatory nitrate reduction metabolic pathway which promoted denitrification and enhanced the nitrogen removal efficiency of CWs. Additionally, the structural equation model further suggested that dissolved oxygen exerted a significant influence on the microbial activities and then affected the pollutants removal performance. Overall, our findings shed light on the mechanism for CW stability maintenance during HABs disturbance.
Collapse
Affiliation(s)
- Xinyue Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tuoshi Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xi Chen
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mengran Guo
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiangwei Meng
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shunwen Bai
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
4
|
Deng Z, Geng X, Shi M, Chen X, Wei Z. Effect of different moisture contents on hydrogen sulfide malodorous gas emission during composting. BIORESOURCE TECHNOLOGY 2023; 380:129093. [PMID: 37100296 DOI: 10.1016/j.biortech.2023.129093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/14/2023]
Abstract
The sulfate reduction reaction releases malodorous gases (H2S) during composting, with potential pollution risks to the environment. In this study, chicken manure (CM) with high sulfur content and beef cattle manure (BM) with low sulfur content were used to investigate the effect of control (CK) and low moisture content (LW) on sulfur metabolism. The results showed that compared to CK composting, the cumulative H2S emission of CM and BM composting decreased by 27.27% and 21.08% under LW condition, respectively. Meanwhile, the abundance of core microorganisms related to sulfur components was reduced under LW condition. Furthermore, the KEGG sulfur pathway and network analysis suggested that LW composting weakened the sulfate reduction pathway, and reduced the number and abundance of functional microorganisms and genes. These results indicated that low moisture content had important effects on inhibiting the release of H2S during composting, which provided a scientific basis to control environmental pollution.
Collapse
Affiliation(s)
- Ze Deng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Xinyu Geng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingzi Shi
- College of Life Science, Henan Agricultural University, Zhengzhou 450000, China
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; College of Life Science, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
5
|
Zhang C, Zhao X, Liang A, Li Y, Song Q, Li X, Li D, Hou N. Insight into the soil aggregate-mediated restoration mechanism of degraded black soil via biochar addition: Emphasizing the driving role of core microbial communities and nutrient cycling. ENVIRONMENTAL RESEARCH 2023; 228:115895. [PMID: 37054835 DOI: 10.1016/j.envres.2023.115895] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
Soil microbial communities are responsive to biochar application. However, few studies have investigated the synergistic effects of biochar application in the restoration of degraded black soil, especially soil aggregate-mediated microbial community changes that improve soil quality. From the perspective of soil aggregates, this study explored the potential microbial driving mechanism of biochar (derived from soybean straw) addition in black soil restoration in Northeast China. The results showed that biochar significantly improved the soil organic carbon, cation exchange capacity and water content, which play crucial roles in aggregate stability. The addition of biochar also significantly increased the concentration of the bacterial community in mega-aggregates (ME; 0.25-2 mm) compared with micro-aggregates (MI; <0.25 mm). Microbial co-occurrence networks analysis showed that biochar enhanced microbial interactions in terms of the number of links and modularity, particularly in ME. 16 S rRNA sequencing predicted that the expression of genes related to carbon (rbcL, acsA, gltS, aclB, and mcrA) and nitrogen (nifH and amoA) transformation increased after the addition of biochar. Furthermore, the functional microbes involved in carbon fixation (Firmicutes and Bacteroidetes) and nitrification (Proteobacteria) were significantly enriched and are the key regulators of carbon and nitrogen kinetics. Structural equation model (SEM) analysis further showed that the application of biochar promoted soil aggregates to positively regulate the abundance of soil nutrient conversion-related microorganisms, thereby increasing soil nutrient content and enzyme activities. These results provide new insights into the mechanisms of soil restoration through biochar addition.
Collapse
Affiliation(s)
- Chi Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Xin Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Aijie Liang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Yunying Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Qiuying Song
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Xianyue Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Dapeng Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China.
| | - Ning Hou
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China.
| |
Collapse
|
6
|
An X, Li N, Zhang S, Han Y, Zhang Q. Integration of proteome and metabolome profiling to reveal heat stress response and tolerance mechanisms of Serratia sp. AXJ-M for the bioremediation of papermaking black liquor. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131092. [PMID: 36857821 DOI: 10.1016/j.jhazmat.2023.131092] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/12/2023] [Accepted: 02/24/2023] [Indexed: 05/20/2023]
Abstract
The use of thermophilic bacteria for treating paper black liquor seems to be an efficient bioremediation strategy. In our previous work, the lignin-degrading bacterium Serratia sp. AXJ-M exhibited excellent heat tolerance ability. However, the molecular mechanism of its response to heat stress is unknown. Therefore, the heat stress response of AXJ-M was investigated using morphological and analytical methods. A comparative genomics analysis revealed interesting insights into the adaptability of the genetic basis of AXJ-M to harsh environments. Moreover, TMT quantitative proteomic analysis and parallel reaction monitoring (PRM) assays revealed that proteins related to both component systems, ABC transporters, carbohydrate, and amino metabolism, energy metabolism, etc., were differentially expressed. The non-targeted metabolome analysis revealed that the metabolic pathways associated with the fatty acid and amino acid biosynthesis and metabolism, together with the TCA cycle were most significantly enriched. Furthermore, integrated omics suggested that AXJ-M made metabolic adaptations to compensate for the increased energy demand caused by adverse environmental stimuli. The dominant heat regulator HspQ mediated heat adaptation of AXJ-M at high temperatures and modulated DyP expression. To summarize, the present study sheds light on the effect of high temperature on the lignin-degrading bacterium and its tolerance and underlying regulatory mechanisms.
Collapse
Affiliation(s)
- Xuejiao An
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Nanchang 330045, PR China.
| | - Ningjian Li
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Shulin Zhang
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Yanyan Han
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Qinghua Zhang
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Nanchang 330045, PR China
| |
Collapse
|
7
|
Sun Y, Sun S, Pei F, Zhang C, Cao X, Kang J, Wu Z, Ling H, Ge J. Response characteristics of Flax retting liquid addition during chicken manure composting: Focusing on core bacteria in organic carbon mineralization and humification. BIORESOURCE TECHNOLOGY 2023; 381:129112. [PMID: 37137452 DOI: 10.1016/j.biortech.2023.129112] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
To explore the applicability of flax retting liquid (FRL) addition, the physicochemical properties, microbial community structure and function, carbon conversion and humus (HS) formation were assessed during chicken manure (CM) aerobic composting. Compared with the control group, the addition of FRL increased the temperature at thermophilic phase, while the microbial mass carbon content (MBC) in SCF and FRH groups raised to 96.1±0.25 g/Kg and 93.33±0.27 g/Kg, respectively. Similarly, FRL also improved the concent of humic acid (HA) to 38.44±0.85 g/Kg, 33.06±0.8 g/Kg, respcetively. However, fulvic acid (FA) decreased to 30.02±0.55g/Kg, 31.4±0.43 g/Kg, respectively and further reduced CO2 emissions. FRL influenced the relative abundance of Firmicutes at thermophilic phase and Ornithinimicrobium at maturity phase. Additionally, FRL strengthen the association among flora and reduce the number of bacteria, which was negative correlated with HA and positive with CO2 during composting. These findings offer powerful technological support for improving agricultural waste recycling.
Collapse
Affiliation(s)
- Yangcun Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Shanshan Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Fangyi Pei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Chi Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Xinbo Cao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zhenchao Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Hongzhi Ling
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
| |
Collapse
|
8
|
Su Q, Wu Y, Wang S, Li Y, Zhao J, Huang F, Wu J. The reverse function of lignin-degrading enzymes: The polymerization ability to promote the formation of humic substances in domesticated composting. BIORESOURCE TECHNOLOGY 2023; 380:129059. [PMID: 37075849 DOI: 10.1016/j.biortech.2023.129059] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
This study aimed to confirm the ability of lignin peroxidase (LiP) and manganese peroxidase (MnP) in promoting the formation of humic substances (HS) during domesticated composting. Three raw materials with different lignin types were used for composting, including rice straw, tree branches, and pine needles. Results suggested that LiP and MnP activity increased during domesticated composting. But HS formation was only promoted by LiP. The effect of MnP was insignificant, which might be caused by the lack of enzyme cofactors like Mn2+. Meanwhile, bacteria highly associated with LiP and MnP production were identified as core bacteria. Function prediction of 16S-PICRUSt2 showed that the function of core bacteria was consistent with total bacterial functions which mainly promoted compost humification. Therefore, it speculated that LiP and MnP had the ability to promote HS formation during composting. Accordingly, it is a new understanding of the role of biological enzymes in composting.
Collapse
Affiliation(s)
- Qunyang Su
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - You Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Siyi Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yirui Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jinghan Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Fuli Huang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
9
|
Miao L, Sun S, Ma T, Abdelrahman Yousif Abdellah Y, Wang Y, Mi Y, Yan H, Sun G, Hou N, Zhao X, Li C, Zang H. A Novel Estrone Degradation Gene Cluster and Catabolic Mechanism in Microbacterium oxydans ML-6. Appl Environ Microbiol 2023; 89:e0148922. [PMID: 36847539 PMCID: PMC10057884 DOI: 10.1128/aem.01489-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/05/2023] [Indexed: 03/01/2023] Open
Abstract
Global-scale estrone (E1) contamination of soil and aquatic environments results from the widespread use of animal manure as fertilizer, threatening both human health and environmental security. A detailed understanding of the degradation of E1 by microorganisms and the associated catabolic mechanism remains a key challenge for the bioremediation of E1-contaminated soil. Here, Microbacterium oxydans ML-6, isolated from estrogen-contaminated soil, was shown to efficiently degrade E1. A complete catabolic pathway for E1 was proposed via liquid chromatography-tandem mass spectrometry (LC-MS/MS), genome sequencing, transcriptomic analysis, and quantitative reverse transcription-PCR (qRT-PCR). In particular, a novel gene cluster (moc) associated with E1 catabolism was predicted. The combination of heterologous expression, gene knockout, and complementation experiments demonstrated that the 3-hydroxybenzoate 4-monooxygenase (MocA; a single-component flavoprotein monooxygenase) encoded by the mocA gene was responsible for the initial hydroxylation of E1. Furthermore, to demonstrate the detoxification of E1 by strain ML-6, phytotoxicity tests were performed. Overall, our findings provide new insight into the molecular mechanism underlying the diversity of E1 catabolism in microorganisms and suggest that M. oxydans ML-6 and its enzymes have potential applications in E1 bioremediation to reduce or eliminate E1-related environmental pollution. IMPORTANCE Steroidal estrogens (SEs) are mainly produced by animals, while bacteria are major consumers of SEs in the biosphere. However, the understanding of the gene clusters that participate in E1 degradation is still limited, and the enzymes involved in the biodegradation of E1 have not been well characterized. The present study reports that M. oxydans ML-6 has effective SE degradation capacity, which facilitates the development of strain ML-6 as a broad-spectrum biocatalyst for the production of certain desired compounds. A novel gene cluster (moc) associated with E1 catabolism was predicted. The 3-hydroxybenzoate 4-monooxygenase (MocA; a single-component flavoprotein monooxygenase) identified in the moc cluster was found to be necessary and specific for the initial hydroxylation of E1 to generate 4-OHE1, providing new insight into the biological role of flavoprotein monooxygenase.
Collapse
Affiliation(s)
- Lei Miao
- College of Resources and Environment, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Shanshan Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Tian Ma
- College of Resources and Environment, Northeast Agricultural University, Harbin, People’s Republic of China
| | | | - Yue Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Yaozu Mi
- College of Resources and Environment, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Haohao Yan
- College of Resources and Environment, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Guanjun Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Ning Hou
- College of Resources and Environment, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Xinyue Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Hailian Zang
- College of Resources and Environment, Northeast Agricultural University, Harbin, People’s Republic of China
| |
Collapse
|
10
|
Zhao X, Meng X, Dang B, Zhang T, Shi W, Hou N, Yan Q, Li C. Succession dynamics of microbial communities responding to the exogenous microalgae ZM-5 and analysis of the environmental sustainability of a constructed wetland system. BIORESOURCE TECHNOLOGY 2023; 371:128642. [PMID: 36681352 DOI: 10.1016/j.biortech.2023.128642] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Constructed wetlands (CWs) are economical and effective swine tailwater treatment systems. However, nitrogen removal in CWs is limited by the lack of carbon source for denitrification. In this study, we studied the feasibility of dosing the microalgae ZM-5 to improve the nitrogen removal ability in CWs. Compared to the control CW, a 20 % higher removal capacity of COD and TN was observed for the coupled system (EG). The microalgae ZM-5 could interact with denitrifying bacteria to compensate for the deficiency of denitrifying stage in CWs. HT-qPCR chip analysis also provided evidence that denitrification genes significantly increased (p < 0.05). According to the life cycle assessment (LCA), ultrasonic extraction had the best environmental sustainability among four lipid extraction processes. As an improvement strategy, clean energy could be utilized to optimize the electricity source to reduce environmental load (45 %-60 %). These findings offer new insights into the feasibility of EG for environmentally sustainable wastewater treatment.
Collapse
Affiliation(s)
- Xinyue Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiangwei Meng
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bin Dang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tuoshi Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wen Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Ning Hou
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qingsheng Yan
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Ma 02215, USA
| | - Chunyan Li
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
11
|
Bai S, Chen J, Guo M, Ren N, Zhao X. Vertical-scale spatial influence of radial oxygen loss on rhizosphere microbial community in constructed wetland. ENVIRONMENT INTERNATIONAL 2023; 171:107690. [PMID: 36516673 DOI: 10.1016/j.envint.2022.107690] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Complex interactions between plants and microorganisms form the basis of constructed wetlands (CWs) for pollutant removal. In the rhizosphere, radial oxygen loss (ROL) plays a key role in the activity and abundance of functional microorganisms. However, little has been done to explore how ROL would influence the niche differentiation of microbial communities at different vertical spatial scales. We demonstrate that ROL decreases with depth, promoting an oxidation-reduction rhizosphere microecosystem in CWs. The high level of ROL in the upper layer could support the oxygen supply for aerobic bacteria (Haliangium), facilitating the COD (60%) and NH4+-N (50%) removal, whereas the enrichment of denitrifiers (e.g., Hydrogenophaga and Ralstonia) and methanotrophs (Methanobaterium) in the lower layer could stimulate denitrification. The function prediction results further certified that the abundance of genes catalyzing nitrifying and denitrification processes were significantly enhanced in the upper and bottom layers, respectively, which was attributed to the oxygen concentration gradient in the rhizosphere. This study contributes to further unraveling the rhizosphere effect and enables an improved understanding of the decontamination mechanisms of CWs.
Collapse
Affiliation(s)
- Shunwen Bai
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Juntong Chen
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mengran Guo
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Nanqi Ren
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinyue Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Miao L, Chen S, Yang H, Hong Y, Sun L, Yang J, Sun G, Liu Y, Li C, Zang H, Cheng Y. Enhanced bioremediation of triclocarban-contaminated soil by Rhodococcus rhodochrous BX2 and Pseudomonas sp. LY-1 immobilized on biochar and microbial community response. Front Microbiol 2023; 14:1168902. [PMID: 37065135 PMCID: PMC10098447 DOI: 10.3389/fmicb.2023.1168902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 04/18/2023] Open
Abstract
Triclocarban (TCC), an emerging organic contaminant (EOC), has become a severe threat to soil microbial communities and ecological security. Here, the TCC-degrading strain Rhodococcus rhodochrous BX2 and DCA-degrading strain Pseudomonas sp. LY-1 (together referred to as TC1) were immobilized on biochar to remove TCC and its intermediates in TCC-contaminated soil. High-throughput sequencing was used to investigate the microbial community structure in TCC-contaminated soil. Analysis of co-occurrence networks was used to explore the mutual relationships among soil microbiome members. The results showed that the immobilized TC1 significantly increased the removal efficiency of TCC from 84.7 to 92.7% compared to CK (no TC1 cells on biochar) in 10 mg/L TCC liquid medium. The utilization of immobilized TC1 also significantly accelerated the removal of TCC from contaminated soil. Microbial community analysis revealed the crucial microorganisms and their functional enzymes participating in TCC degradation in soil. Moreover, the internal labor division patterns and connections of TCC-degrading microbes, with a focus on strains BX2 and LY-1, were unraveled by co-occurrence networks analysis. This work provides a promising strategy to facilitate the bioremediation of TCC in soil, which has potential application value for sustainable biobased economies.
Collapse
Affiliation(s)
- Lei Miao
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Siyuan Chen
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Hua Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Yaqi Hong
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Liwen Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Jie Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Guanjun Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Yi Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Hailian Zang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Yi Cheng
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China
- College of Plant Protection, Northeast Agricultural University, Harbin, China
- *Correspondence: Yi Cheng,
| |
Collapse
|
13
|
Xu C, Wu B, Zhao P, Wang Y, Yang H, Mi Y, Zhou Y, Ma T, Zhang S, Wu L, Chen L, Zang H, Li C. Biological saccharification coupled with anaerobic digestion using corn straw for sustainable methane production. BIORESOURCE TECHNOLOGY 2023; 367:128277. [PMID: 36356846 DOI: 10.1016/j.biortech.2022.128277] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
In this study, accumulated fermentable sugars from biosaccharified corn straw were used to generate methane through anaerobic digestion (AD). The results showed that reducing sugars from biosaccharification expanded corn straw (BECS) treated with Clostridium thermocellum XF811 accumulated with yields of 94.9 mg/g. The BECS used for AD was converted into a high methane yield (7436 mL), which was 49.3 % higher than that of expanded corn straw (ECS). High-throughput microbial analysis suggested that Methanoculleus and Methanobacterium greatly contributed to the high methane yield. Industrial experiments demonstrated that the methane production from BECS by AD was 72,955 m3, which increased by 13.2 % compared to that from ECS. Biosaccharification pretreatment accelerated ECS destruction and accumulated sugars, thereby increasing methane yields. This study provides a strategy for producing clean energy from lignocellulose biomass.
Collapse
Affiliation(s)
- Chengjiao Xu
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bowen Wu
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Peichao Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Wang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Hua Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yaozu Mi
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yang Zhou
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tian Ma
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuo Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Linxuan Wu
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Chen
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Hailian Zang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chunyan Li
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
14
|
Wang D, Chen G, Tang Y, Ming J, Huang R, Li J, Ye M, Fan Z, Yin L, Zhang Q, Zhang W. Effect of non-core microbes on the key odorants of paocai. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|