1
|
Sajdak M, Majewski AJ, Sobek S, Gałko G, Ouadi M. Design of experiments method into upgrading pyrolytic oil for sustainable aviation fuel additives by hydrotreating and hydrocracking. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 194:258-269. [PMID: 39832412 DOI: 10.1016/j.wasman.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/05/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Recycling waste to produce liquid fuels for the automotive and aviation industries is a major global concern, especially in light of the ongoing energy crisis. Because waste is used in thermal conversion processes, the resulting liquid products often require additional processing to reduce their density and viscosity, and to remove oxygenated compounds or pollutants that hinder further utilization. Catalytic hydrogenolytic reactions such as hydrodeoxygenation (HDO) and hydrocracking (HC) have been extensively applied to upgrade pyrolysis oils. Selecting the appropriate catalyst and optimizing the process operating conditions are crucial for yielding high-quality fuel. Design of experiments (DOE) and analysis of variance (ANOVA) can identify the primary factors of the process and their possible interactions. This research focuses on the conversion of pyrolysis oil derived from car tires into jet fuel and aims to determine the optimal HDO and HC conditions to maximize the concentration of the kerosene fraction. Hydrodeoxygenation and hydrocracking reactions using NiMo/γ-Al2O3 catalysts are examined under varying temperature, pressure, and time conditions. The compositions of the raw tire pyrolysis oil (TPO) are mainly characterized by heteroatom content, aromatic compounds, olefins and acetylenes, alkanes, and cycloalkanes, which play key roles during HDO and HC procedures. Subsequently, the distillation and separation of the fuel fractions are carried out to determine the quality of the product.
Collapse
Affiliation(s)
- Marcin Sajdak
- Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100, Gliwice, Poland.
| | - Artur J Majewski
- School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, UK
| | - Szymon Sobek
- Department of Heating Ventilation, And Dust Removal Technology, Silesian University of Technology, Gliwice 44-100, Poland
| | - Grzegorz Gałko
- Institute for Ecology of Industrial Areas, 40-844, Katowice, Poland
| | - Miloud Ouadi
- School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, UK
| |
Collapse
|
2
|
Yang W, Choi D, Yu HK, Jung S, Lee J. A strategic recovery of value-added monomer from polycarbonate waste through catalytic pyrolysis on ultra-high porous MgO. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123564. [PMID: 39637500 DOI: 10.1016/j.jenvman.2024.123564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/15/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
The huge generation of plastic waste has become significant environmental problem. For environmentally sustainable plastic waste management, thermochemical recycling of widely used plastic waste such as polyethylene, polypropylene, polystyrene, and polyethylene terephthalate have vigorously studied. However, development of proper recycling process for other types of plastic waste is required. In this study, a thermo-catalytic treatment was applied for recovery of value-added monomers and gaseous products from polycarbonate (PC). The systematic study investigating the relationships between pyrolysis conditions (temperature, atmospheric gas, the presence of catalyst) and yield of value-added products was performed. To make the thermochemical process environmentally benign and more efficient, carbon dioxide (CO2) was used as an atmospheric gas in comparing to inert gas (N2). When CO2 was introduced, the yield of PC monomer, bisphenol A (BPA), was nearly doubled at 600 °C. At higher temperature, BPA yield decreased with the increased yield of gaseous products. Because CO2 was the major gaseous product, BPA recovery from the PC pyrolysis was the useful approach in PC disposal practice. To improve BPA yield from PC pyrolysis, two MgO catalysts were utilized (medium porosity MgO-1 and ultrahigh porosity MgO-2). Catalytic pyrolysis under CO2 environment increased BPA yield from 12.8 (pyrolysis without catalyst under N2) to 25.6 (MgO-1) and 30.5 wt% (MgO-2) at 600 °C. High porosity MgO catalyst was more effective in BPA production, and the catalyst deactivation was not shown for 4 consecutive reactions. This study informs that MgO catalyst and CO2 flow gas more than doubled the BPA yield from pyrolysis of PC in reference to conventional pyrolysis system (non-catalytic under N2).
Collapse
Affiliation(s)
- Wooyoung Yang
- Department of Global Smart City, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Doeun Choi
- Department of Global Smart City, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hak Ki Yu
- Department of Energy Systems Research & Department of Materials Science and Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Sungyup Jung
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Jechan Lee
- Department of Global Smart City, Sungkyunkwan University, Suwon, 16419, Republic of Korea; School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, 2066 Seobu-ro, Suwon, 16419, Republic of Korea.
| |
Collapse
|
3
|
Yan C, Cai G. Sodium hydroxide/magnesium chloride multistage activated sludge biochar: interfacial chemical behavior and Cd(II) adsorption performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28379-28391. [PMID: 38536573 DOI: 10.1007/s11356-024-32972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/05/2024] [Indexed: 04/30/2024]
Abstract
To enhance the adsorption performance of municipal sludge biochar on Cd(II), modified sludge biochar was prepared by sodium hydroxide/magnesium chloride (NaOH/MgCl2) graded activation, and the Cd(II) adsorption performance on sludge biochar (BC), NaOH-activated sludge biochar (NBC) and NaOH/MgCl2 activated sludge biochar (NBC-Mg) was investigated. The results showed that NaOH/MgCl2 graded activation upgraded the surface structure and enhanced the graphitization of sludge biochar. The adsorption experiments indicated that the adsorption kinetic and adsorption isotherm for Cd(II) were in accordance with the pseudo second-order kinetic and Langmuir model. The adsorption capacity of NBC-Mg (143.49 mg/g) for Cd(II) was higher than that of BC (50.40 mg/g) and NBC (85.20 mg/g). The mechanism of Cd(II) adsorption included ion exchange, complexation, cation-π interaction, and mineral precipitation. After five regeneration, the removal efficiency of Cd(II) by NBC-Mg remained above 90%. This work indicated that sludge biochar prepared by multistage activation could be an effective material for Cd-containing wastewater treatment.
Collapse
Affiliation(s)
- Chao Yan
- School of Civil Engineering, Anhui Jianzhu University, Hefei, 23061, People's Republic of China.
- Anhui Province Intelligent Underground Exploration and Environmental Geotechnical Engineering Research Center, Anhui Jianzhu University, Hefei, 230601, Anhui, People's Republic of China.
| | - Guojun Cai
- School of Civil Engineering, Anhui Jianzhu University, Hefei, 23061, People's Republic of China
- Anhui Province Intelligent Underground Exploration and Environmental Geotechnical Engineering Research Center, Anhui Jianzhu University, Hefei, 230601, Anhui, People's Republic of China
| |
Collapse
|
4
|
Cho SH, Jung S, Park J, Lee S, Kim Y, Lee J, Fai Tsang Y, Kwon EE. Strategic use of crop residue biochars for removal of hazardous compounds in wastewater. BIORESOURCE TECHNOLOGY 2023; 387:129658. [PMID: 37591466 DOI: 10.1016/j.biortech.2023.129658] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Crop residues are affordable lignocellulosic waste in the world, and a large portion of the waste has been burned, releasing toxic pollutants into the environment. Since the crop residue is a carbon and ingredient rich material, it can be strategically used as a sorptive material for (in)organic pollutants in the wastewater after thermo-chemical valorization (i.e., biochar production). In this review, applications of crop residue biochars to adsorption of non-degradable synthetic dyes, antibiotics, herbicides, and inorganic heavy metals in wastewater were discussed. Properties (porosity, functional groups, heteroatom, and metal(oxide)s, etc.) and adsorption capacity relationships were comprehensively reviewed. The current challenges of crop residue biochars and guidelines for development of efficient adsorbents were also provided. In the last part, the future research directions for practical applications of the crop residue biochars in wastewater treatment plants have been suggested.
Collapse
Affiliation(s)
- Seong-Heon Cho
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sungyup Jung
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - JongHyun Park
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sangyoon Lee
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Youkwan Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jechan Lee
- Department of Global Smart City, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
5
|
Liu Y, Chen L, Chen Y, Zhang X, Liu J, Liu Q, Li Y, Wang C, Zhang Q, Ma L. Pilot study on production of aviation fuel from catalytic conversion of corn stover. BIORESOURCE TECHNOLOGY 2023; 372:128653. [PMID: 36682474 DOI: 10.1016/j.biortech.2023.128653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Aviation fuel is high energy density and is usually produced from refinery in petroleum industry. Production of renewable aviation fuel from biomass eases pressure of carbon emission regulation. The operational processes in this study include steam stripping, hydrolysis of residues, condensation reaction unit, autoclave hydrogenation, fixed-bed hydrodeoxygenation, and oil-upgrading unit. The biomass-derived aviation fuel has a low oxygen content of 0.4 %, while its high heat value is 45.5 MJ/kg. The aviation fuel ranges from C8 ∼ C15, and rich in isoparaffins (50.4 %) while the n-paraffins have a selectivity of 12.2 % and other components are cycloparaffins (19.0 %), aromatic hydrocarbons (11.3 %), and alkenes (5.6 %). The mass yield for aviation fuel from corn stover reaches 10.6 %. This pilot study achieved production of aviation fuel from raw biomass corn stover.
Collapse
Affiliation(s)
- Yong Liu
- School of Resources & Environment and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, PR China
| | - Lungang Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China.
| | - Yubao Chen
- School of Energy and Environmental Science, Yunnan Normal University, Kunming, Yunan 650500, PR China
| | - Xinghua Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Jianguo Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Qiying Liu
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Yuping Li
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Chenguang Wang
- School of Resources & Environment and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Qi Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Longlong Ma
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| |
Collapse
|
6
|
Piechota G, Unpaprom Y, Dong CD, Kumar G. Recent advances in biowaste management towards sustainable environment. BIORESOURCE TECHNOLOGY 2023; 368:128326. [PMID: 36396035 DOI: 10.1016/j.biortech.2022.128326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bio-wastes and their utilization has been increasing enormously, due to its generation and management practices towards making the clearner environment. Bio-waste disposal that follow the emerging global human population has commended the hunt to certain methods sustainably for the bio-waste management to overwhelmed the ecological issues, prompted by means of the collection of such waste materials. The bio-conversion process of the various bio-wastes into high value added products seems to be practicable in various venues in terms of technological and financial supports. Thereby, this preface presentat about of bio-wastes management and new trends towards circular economy and challenges to acheive it by considering the Virtual Special Issue (VSI) dedicated in Bioresourse Technology Journal.
Collapse
Affiliation(s)
- Grzegorz Piechota
- GPCHEM. Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, 87-100 Toruń, Poland
| | - Yuwalee Unpaprom
- Program in Biotechnology, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand
| | - Cheng-Di Dong
- Research Center for Environmental Medicine, Kaohsiung University, Kaohsiung City 807, Taiwan
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway.
| |
Collapse
|
7
|
David E, Kopac J. Assessment of the Catalytic Performances of Nanocomposites Materials Based on 13X Zeolite, Calcium Oxide and Metal Zinc Particles in the Residual Biomass Pyrolysis Process. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3841. [PMID: 36364617 PMCID: PMC9657492 DOI: 10.3390/nano12213841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Nanocomposites based on 13X zeolite (13XZ), calcium oxide (CaO) and metal zinc particles (Zn) were prepared. The resulting nanocomposites were characterized by different techniques. Then, a comparative study on catalytic and noncatalytic pyrolysis of biomass waste was performed to establish the influence of nanocomposites used as catalysts on the yields and characteristics of liquid and solid products. Residual rapeseed biomass (RRB) was employed for pyrolysis experiments and a fixed bed reactor was used. By introducing CaO and metal zinc particles into 13X zeolite mass, the surface area (SBET) of nanocomposites was reduced, and this decrease is due to the introduction of nano-calcium carbonate and nano-zinc particles, which occupied an important space into zeolite structure. By adding CaO to 13XZ, the pore structure was changed and there was a decrease in the micropores volume. The analysis of the pore area distribution showed a hierarchical pore structure for nanocomposites. The elements composition showed that the main elements contained in nanocomposites are Si, Al, Ca and Zn, confirming the preservation of the zeolite structure. Using these nanocomposites as catalysts in pyrolysis process, the residual biomass could be valorized, producing bio-oil and biochar for the management and sustainability of this low-value waste.
Collapse
Affiliation(s)
- Elena David
- National Research Institute of Cryogenics & Isotopic Technologies, Street Uzinei No. 4, P.O. Râureni, P.O. Box 7, 240050 Râmnicu Vâlcea, Romania
| | - Janez Kopac
- Faculty of Mechanical Engineering, University of Ljubljana, Askerceva 6, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Balaghi Inaloo E, Saidi M, Taheri Najafabadi A. Valuable Biofuel Production via Pyrolysis Process of Olive Pomace over Alkali and Transition Metal Oxides Catalysts Supported on Activated Biochar. ChemistrySelect 2022. [DOI: 10.1002/slct.202200789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Majid Saidi
- School of Chemistry, College of Science University of Tehran PO Box 14155–6455 Tehran Iran
| | - Ali Taheri Najafabadi
- School of Chemistry, College of Science University of Tehran PO Box 14155–6455 Tehran Iran
| |
Collapse
|