1
|
Wu H, Bai X, Li L, Li Z, Wang M, Zhang Z, Zhu C, Xu Y, Xiong H, Xie X, Tian X, Li J. Two-stage partial nitrification-denitrification and anammox process for nitrogen removal in vacuum collected toilet wastewater at ambient temperature. ENVIRONMENTAL RESEARCH 2024; 262:119917. [PMID: 39251178 DOI: 10.1016/j.envres.2024.119917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
Vacuum collected toilet wastewater (VCTW) contains high and fluctuating contents of organics and nitrogen, which exerts technological challenges to biological treatment processes. A partial nitrification-denitrification and anammox (PND-AMX) process was developed in sequencing batch reactor (SBR) and moving bed biofilm reactor (MBBR) to achieve effective nitrogen removal in VCTW at low ambient temperature. Stable PND was achieved, and nitrogen removal efficiency in SBR could be manipulated by adjusting influent COD/N ratios. As temperature ≥18 °C, 91.0% nitrogen was removed in PND-AMX process. In spite of the decreased anammox activity at 13-18 °C, more than 90% nitrogen removal could be obtained by adjusting SBR influent COD/N to 2.43 ± 0.32 with methanol. In MBBR reactor, Candidatus Kuenenia was the dominant anammox bacteria and contributed to more than 90% nitrogen removal capacity. Co-existing anammox and denitrifying bacteria synergistically contributed to the removal of ammonium, nitrite, nitrate, and COD in MBBR.
Collapse
Affiliation(s)
- Haoyuan Wu
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Xiaolei Bai
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Lei Li
- Beijing Key Laboratory of Watershed Water Environment and Ecological Technology, Beijing Water Science and Technology Institute, Beijing, 100048, China
| | - Zhaoxin Li
- Beijing Key Laboratory of Watershed Water Environment and Ecological Technology, Beijing Water Science and Technology Institute, Beijing, 100048, China
| | - Mengyu Wang
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Zhongguo Zhang
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China; Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Cheng Zhu
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China; Tianheshui Environmental Technology Co., Ltd., Nanjing, 210017, China
| | - Yuanmin Xu
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China; Tianheshui Environmental Technology Co., Ltd., Nanjing, 210017, China
| | - Huiqin Xiong
- Nanjing Jianye District Water Bureau, Nanjing, 210017, China
| | - Xin Xie
- Nanjing Jianye District Water Facilities Comprehensive Maintenance Center, Nanjing, 210017, China
| | - Xiujun Tian
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Jiuyi Li
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
2
|
Shen H, Zhang Q, Li M, Tan X, Dong X, Wang H. Research on intensive nitrogen removal of municipal sewage by mainstream anaerobic ammonia oxidation process. CHEMOSPHERE 2024; 367:143622. [PMID: 39461438 DOI: 10.1016/j.chemosphere.2024.143622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
The anaerobic ammonia oxidation (anammox) process is a pivotal nitrogen removal technique, playing a significant role in the field of wastewater treatment. The paper commences by delineating the merits of the anammox process in comparison to conventional nitrification-denitrification techniques. Subsequently, it delves into the characteristics of different sludge morphologies process of the behavior of anammox bacteria and their reactions to environmental factors. Revising the issues associated with managing urban sewage in mainstream areas., it discusses the issues faced by the anammox process under reduced nitrogen loads, such as restricted activity due to decreased the levels of ammonia nitrogen and nitrite concentrations, as well as the impact of environmental factors like low temperature, organic matter, and sulfur ions. Following this, a comprehensive review of various types of coupled anammox processes is provided, highlighting the advantages and characteristics of partial nitrification (PN), partial denitrification (PD), methane-dependent nitrite/nitrate reduction (DAMO), sulfur-driven autotrophic denitrification (SAD), iron ammonia oxidation (feammox) and algae photoautotrophy coupling techniques, emphasizing their significance in system stability and resource utilization efficiency. Future research directions include exploring the applicability of the anammox process under various temperature conditions and addressing NO3--N issues in effluent. The findings from these studies will offer valuable insights for further enhancing the optimization of the anammox process in mainstream urban wastewater treatment.
Collapse
Affiliation(s)
- Haonan Shen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China.
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Xibei Tan
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaoqian Dong
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
3
|
Zhang Y, Gong H, Zhu D, Lu D, Zhou S, Wang Y, Dai X. A two-stage partial nitritation-denitritation/anammox (PN-DN/A) process to treat high-solid anaerobic digestion (HSAD) reject water: Verification based on pilot-scale and full-scale projects. WATER RESEARCH X 2024; 22:100213. [PMID: 38414757 PMCID: PMC10897884 DOI: 10.1016/j.wroa.2024.100213] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
High-solid anaerobic digestion (HSAD) reject water, distinguished by elevated levels of chemical oxygen demand (COD), NH4+-N and an imbalanced COD/TIN, presents a significant challenge for treatment through conventional partial nitritation/ anammox (PN/A) process. This study introduced a revised two-stage PN/A process, namely partial nitritation/denitritation-anammox (PN-DN/A) process. Its effectiveness was investigated through both pilot-scale (12 t/d) and full-scale (400 t/d) operations, showcasing stable operation with an impressive total removal rate of over 90 % for total inorganic nitrogen (TIN) and exceeding 60 % for COD. Notably, 30 % of TIN was eliminated through heterotrophic denitritation in partial nitritation-denitritation (PN-DN) stage, while approximately 55 % of TIN removal occurred in the anammox stage with anaerobic ammonium oxidizing bacteria (AnAOB) enrichment (Candidatus Kuenenia, 25.9 % and 26.6 % relative abundance for pilot and full scale). In the PN-DN stage, aerobic-anaerobic alternation promoted organics elimination (around 50 % COD) and balanced nitrogen species. Microbial and metagenomic analysis verified the coupling between autotrophic and heterotrophic denitritation and demonstrated that PN-DN stage acted as a protective buffer for anammox stage. This comprehensive study highlights the PN-DN/A process's efficacy in stably treating HSAD reject water.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Hui Gong
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Danyang Zhu
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Dandan Lu
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Shuyan Zhou
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Yayi Wang
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
4
|
Li Y, Liang H, Cheng L, Yang W, Wang P, Gao D. Mainstream deammonification at ambient temperature treating real sewage by a plug-flow fixed-bed reactor based on zeolite/tourmaline-modified polyurethane carriers. BIORESOURCE TECHNOLOGY 2023:129184. [PMID: 37207694 DOI: 10.1016/j.biortech.2023.129184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/21/2023]
Abstract
A plug-flow fixed-bed reactor (PFBR) with zeolite/tourmaline-modified polyurethane (ZTP) carriers (PFBRZTP) was constructed to realize mainstream deammonification for real domestic sewage treatment. The PFBRZTP and PFBR were operated for 111 days treating aerobically pretreated sewage in parallel. A higher nitrogen removal rate of 0.12 kg N·(m3·d)-1 was achieved in PFBRZTP despite lowering the temperature (16.8-19.7 ℃) and fluctuating water quality. Meanwhile, it was indicated that anaerobic ammonium oxidation dominated (64.0 ±13.2%) in PFBRZTP, by nitrogen removal pathway analysis and high anaerobic ammonium-oxidizing bacteria (AnAOB) activity (2.89 mg N·(g VSS·h)-1). And, the lower protein/polysaccharides (PS) ratio further indicated a better biofilm structure in PFBRZTP owing to a higher abundance of microorganisms relevant to PS and cryoprotective EPS secretion. Furthermore, partial denitrification was an important nitrite supply process in PFBRZTP based on low AOB activity/AnAOB activity ratio, higher Thauera abundance and a remarkably positive correlation between Thauera abundance and AnAOB activity.
Collapse
Affiliation(s)
- Yuqi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lang Cheng
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Wenbo Yang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Peng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
| | - Dawen Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China; Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| |
Collapse
|