1
|
Yang J, Zhang T, Ma S, Shang J, Li L, Ning Y, Zhao X. Enhancing microplastic removal and nitrogen mitigation in constructed wetlands: An earthworm-centric perspective. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137540. [PMID: 39938366 DOI: 10.1016/j.jhazmat.2025.137540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/01/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
The presence of microplastics (MPs) in wastewater poses significant threats to ecosystems. Although constructed wetlands (CWs) demonstrate effective removal of microplastics, their efficiency is often limited by various environmental variables and system equilibrium factors. This study introduces Eisenia fetida to enhance the ecological performance of constructed wetlands and improves their removal efficiency. The findings revealed that the addition of earthworms significantly increased the removal efficiencies of polylactic acid (PLA) microplastics, chemical oxygen demand, total nitrogen, and ammonium nitrogen, with respective improvements of 13.5 %, 8.4 %, 9.7 %, and 10.5 %, respectively. Notably, the ingestion of polylactic acid microplastics by earthworms led to a substantial increase in the abundance of microorganisms, such as Actinobacteria, that were associated with microplastic degradation. Furthermore, microbial communities involved in nitrogen cycling were notably enriched, with a 12.4 % increase in nitrogen-fixing microbes and a 4.3 % increase in nitrifying microbes. These findings suggested that earthworms, through the restructuring of their gut microbial communities, not only facilitated efficient polylactic acid degradation but also enhanced nitrogen cycling processes. This provides a novel ecological mechanism for improving pollutant management and nutrient recycling in constructed wetlands.
Collapse
Affiliation(s)
- Jinyi Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tuoshi Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shengjun Ma
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jiacheng Shang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lixin Li
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
| | - Yucui Ning
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Xinyue Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Cao Z, Yan L, Duan X, Li Z, Wang X. Adsorption and nitrogen removal of NH 4+-N based on Mn (II)/α-MnO 2 cycle in bio-electrochemical system. BIORESOURCE TECHNOLOGY 2025; 431:132628. [PMID: 40334797 DOI: 10.1016/j.biortech.2025.132628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 05/02/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
This paper developed a single-chamber α-MnO2-coupled microbial electrolysis cell (α-MnO2-MEC) system to enhance the oxidation denitrification rate of ammonia nitrogen (NH4+-N) in order to overcome the electrode repulsion problem between NH4+ and the anode. The α-MnO2 material with an equilibrium adsorption capacity of 10.6 mg·g-1 for NH4+-N was developed. The removal rate of total nitrogen in the α-MnO2-MEC reactor is 95.8 %, and NH4+ oxidation efficiency is 100 % in 20 h, which is 78.7 % and 47.8 % higher than in the α-MnO2 reactor and the MEC reactor, respectively. The Mn(II)/α-MnO2 cycle was realized in α-MnO2-MEC reactor, avoiding the loss of the Mn(II). The 16S rRNA gene sequencing identified key microbial genera involved in the ammonia removal are Candidatus_Brocadia, SC-I-84, and Thauera. This study demonstrates that combining α-MnO2 with bioelectrochemistry provides a novel strategy for ammonia nitrogen wastewater treatment, offering a new insight for optimizing electrochemical-microbial coupled nitrogen removal.
Collapse
Affiliation(s)
- Zhanping Cao
- College of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Li Yan
- College of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xinyue Duan
- College of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Zhengran Li
- College of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xingyue Wang
- College of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
3
|
Cheng X, Hu L, Liu T, Cheng X, Li J, Xu K, Zheng M. High-level nitrogen removal achieved by Feammox-based autotrophic nitrogen conversion. WATER RESEARCH X 2025; 27:100292. [PMID: 39723189 PMCID: PMC11667699 DOI: 10.1016/j.wroa.2024.100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Anaerobic ammonium oxidation coupled with Fe(III) reduction (Feammox) is an essential process in the geochemical iron and nitrogen cycling. This study explores Feammox-based nitrogen removal in a continuous laboratory up-flow bioreactor stimulated by intermittently adding 5 mM Fe(OH)3 at intervals of approximately two months. The feed was synthetic wastewater with a relatively low ammonium concentration (∼100 mg N/L), yet without organic carbon in order to test its autotrophic nitrogen removal performance. The operation of this system showed the achievement of high-level ammonium and total nitrogen removal efficiency (∼97% and ∼90% on average, respectively) within four months of operation, along with a relatively practical rate of ∼50 mg N/(L·d). The demand of Fe(Ⅲ) for ammonium removal during the whole bioreactor operation was estimated to be only 0.033, two orders of magnitude less than that calculated based on the Feammox reaction producing nitrogen gas. A series of assays on Fe(II) oxidation with different oxidants (O2, NO2 - and NO3 -) in abiotic and biotic batch tests further revealed an important role of Fe(II) oxidation processes, likely driven by microbial nitrate reduction and chemical oxygen reduction, in assisting the regeneration of Fe(III) for continuous Feammox-based nitrogen removal. This work demonstrates that Feammox-based autotrophic nitrogen conversion is a potential option for future wastewater treatment.
Collapse
Affiliation(s)
- Xiaohui Cheng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Lanlan Hu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Tao Liu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Xiang Cheng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jiyun Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kangning Xu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
4
|
Li Z, Xu H, Zhang L, Zhou Y. Genome-Resolved Metagenomic and Metatranscriptomics Reveal Feammox Metabolism of Anaerobic Ammonia Oxidation Bacteria in Microaerobic Granular Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7145-7155. [PMID: 40188455 DOI: 10.1021/acs.est.4c13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
Anammox is an energy-efficient nitrogen removal process in which anammox bacteria (AnAOB) oxidize NH4+-N to N2 using NO2--N as the electron acceptor. Recent evidence suggests that AnAOB can perform extracellular electron transfer (EET), potentially coupling Fe(III) reduction with NH4+-N oxidation (Feammox). However, whether AnAOB directly participate in Feammox within complex wastewater treatment systems remains unclear. Here, we investigated the iron-mediated nitrogen metabolism pathways in a microaerobic granular sludge (MGS) reactor by integrating enzyme inhibition assays with analyses of gene dynamics and co-occurrence patterns of nitrogen- and iron-cycling genes. Results demonstrate that AnAOB contributed to Feammox activity. The iron reduction gene CT573071, coding a porin-cytochrome c protein complex associated with EET, co-occurred with hao, hzsABC, and hdh genes in Candidatus Kuenenia, suggesting its role in Feammox. Furthermore, four high-quality metagenome-assembled genomes (MAGs) affiliated with Kuenenia stuttgartiensis_A harbored CT573071, hao-like, hzsABC, and hdh genes, along with the hao-cluster, which catalyzes the oxidation of NH4+-N to hydroxylamine. This genomic evidence further supports their dual metabolic capacity. Metatranscriptomic analysis confirmed CT573071 upregulation and its coexpression with the hao, hzsABC, and hdh genes. These findings establish the potential role of K. stuttgartiensis_A in Feammox, providing novel insights into nitrogen removal in low-strength wastewater treatment systems.
Collapse
Affiliation(s)
- Zong Li
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Xu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Liang Zhang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
5
|
Li D, Wei W, Xu W, Li C, Yang Y, Chu Z, Zheng B. The interactive application and impacts of iron/nitrogen biogeochemical cycling in distributed ponds for non-point source pollution control in a watershed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124797. [PMID: 40058038 DOI: 10.1016/j.jenvman.2025.124797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
The linkages of distributed ponds are utilized in conjunction with one another to remediate non-point source (NPS) pollution in a water-scarce basin. This study provides an overview of a state-of-the-art thorough evaluation of ponds, which offers insight into the majority of topics covered by the ongoing scientific studies, including their various functions and factors affecting their functioning on the hydrological, physicochemical, and biological processes, such as environmental climate factors and basin-specific landscape configuration parameters, as well as process parameters for design, operation and management aspects. The linkages of ponds provide a variety of sustainable services (6R functions), such as resources, restoration, reduction, reuse, recycling, and recovery. The significance of regional environmental geochemical substrates in the ponds, such as red soil, as a hotspot for microbial reaction is emphasized to demonstrate the significant contribution of the migration and transformation of Fe/N cycles to the pollution removal process. In this review, 178 original research publications were thoroughly analyzed to improve our knowledge of the iron-nitrogen cycle in wetlands. From a molecular biology standpoint, the identification of functional microbe species and genes linked to microbially driven iron-nitrogen cycle activities is delved. Reliable data and homogeneous datasets from 42 studies were collected. The correlation analysis results demonstrated Feammox rates contributed to the N loss amount (r = 0.871; p < 0.01), and they had a positive correlation with Fe(III) concentration (r = 0.965; p < 0.01). The proposal for the treatment of NPS pollution by large-scale linkages of ponds in a basin involves optimizing Fe/N microbial processes to promote iron crystallization and efficient circulation of Fe(II) and Fe(III). The co-benefits of geochemistry, biotechnology, and environmental science should be considered when managing contamination in engineering applications. The linkages framework for integrated ponds, which incorporates macro (watershed management) and micro (biogeochemical cycle mechanism) investigations, provides a systematic approach to the application of integrated ponds and sustainable water management for NPS pollution control.
Collapse
Affiliation(s)
- Dan Li
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China.
| | - Weiwei Wei
- State Environmental Protection Key Laboratory of Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenyi Xu
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Lennart Hjelms väg 9, 75007, Uppsala, Sweden
| | - Chunhua Li
- State Environmental Protection Key Laboratory of Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yinchuan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhaosheng Chu
- State Environmental Protection Key Laboratory of Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Binghui Zheng
- State Environmental Protection Key Laboratory of Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
6
|
Wang T, Zhang M, Jiang N, Jiang X, Li N, Lobo FL, Chen M, Wang X. Enhanced ammonium oxidation and iron cycle of Feammox under micro-oxygen condition. ENVIRONMENTAL RESEARCH 2025; 275:121443. [PMID: 40118323 DOI: 10.1016/j.envres.2025.121443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/23/2025]
Abstract
Autotrophic anaerobic ammonium oxidation coupled to Fe(III) reduction (Feammox) is a promising technology for treating low C/N wastewater. However, Feammox still faces bottlenecks of slow ammonium oxidation rate and the continuous supply of Fe(III) source. This study adopts micro-oxygen strategy to overcome these obstacles. Micro-oxygen increased the ammonium oxidation rate up to 5.7 times higher than under anaerobic condition, and drove the iron cycle in the form of vivianite [Fe(II)] and leucophosphite [Fe(III)]. Furthermore, it was confirmed that the ammonium oxidation in Feammox relies on ammonia monooxygenase (AMO), as evidenced by 10 times increase in the relative amo expression and 1.2 times increase in AMO activity under micro-oxygen compared to anaerobic condition. Additionally, this approach enhanced the growth and co-metabolism of functional bacteria. Long-term experiments demonstrated the sustainability of the Feammox system with iron cycle under micro-oxygen condition. These findings provide valuable insights into the practical application of Feammox process.
Collapse
Affiliation(s)
- Tuo Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Mou Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nana Jiang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xinlei Jiang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Fernanda Leite Lobo
- Federal University of Ceará, Department of Hydraulic and Environmental Engineering, Brazil
| | - Mei Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
7
|
Zhao N, Qi P, Li J, Tan B, Kong W, Lu H. Tracking the nitrogen transformation in saline wastewater by marine anammox bacteria-based Fe(II)-driven autotrophic denitratation and anammox. WATER RESEARCH 2025; 272:122995. [PMID: 39708377 DOI: 10.1016/j.watres.2024.122995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Marine anammox bacteria-based Fe(II)-driven autotrophic denitratation and anammox (MFeADA) was investigated for nitrogen removal from saline wastewater for the first time. The study demonstrated that varying influent doses of Fe(II), which participate in the Fe cycle, significantly influenced nitrogen removal performance by altering the fate of nitrite. When 50 mg/L Fe(II) was added, the nitrogen removal was mainly performed by the anammox and Fe(II)-driven autotrophic denitratation (FeAD). As the Fe(II) rose to 100-150 mg/L, the anammox, FeAD and Feammox mainly occurred. Optimal nitrogen removal efficiency, reaching 93 %, was achieved at an influent Fe(II) concentration of 150 mg/L. As the Fe(II) reached 250 mg/L, however, nitrate was directly reduced to dinitrogen gas by the excessive Fe(II) through the Fe(II)-driven autotrophic denitrification (FeADN). Candidatus Scalindua (4.1 %), Marinicella (5.3 %) and SM1A02 (31.8 %) were the dominant functional microbes. In addition, the normalized nitrate reductase abundance was about 3.1 times that of nitrite reductase, leading to the occurrence of FeAD, which achieved a stable nitrite supply for marine anammox bacteria. This novel study can promote the practical implementation of the MFeADA process in nitrogen-laden saline wastewater treatment.
Collapse
Affiliation(s)
- Na Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Panqing Qi
- College of Engineering, Peking University, Beijing 100871, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Bowei Tan
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Weichuan Kong
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Xia Q, Qiu Q, Cheng J, Huang W, Yi X, Yang F, Huang W. Microbially mediated iron redox processes for carbon and nitrogen removal from wastewater: Recent advances. BIORESOURCE TECHNOLOGY 2025; 419:132041. [PMID: 39765277 DOI: 10.1016/j.biortech.2025.132041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/23/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Iron is the most abundant redox-active metal on Earth. The microbially mediated iron redox processes, including dissimilatory iron reduction (DIR), ammonium oxidation coupled with Fe(III) reduction (Feammox), Fe(III) dependent anaerobic oxidation of methane (Fe(III)-AOM), nitrate-reducing Fe(II) oxidation (NDFO), and Fe(II) dependent dissimilatory nitrate reduction to ammonium (Fe(II)-DNRA), play important parts in carbon and nitrogen biogeochemical cycling globally. In this review, the reaction mechanisms, electron transfer pathways, functional microorganisms, and characteristics of these processes are summarized; the prospective applications for carbon and nitrogen removal from wastewater are reviewed and discussed; and the research gaps and future directions of these processes for the treatment of wastewater are also underlined. This review is expected to give new insights into the development of economic and environmentally friendly iron-based wastewater treatment procedures.
Collapse
Affiliation(s)
- Qing Xia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Qingzhen Qiu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Jun Cheng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Wenli Huang
- MOE Key Laboratory of Pollution Process and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Xuesong Yi
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Fei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China.
| |
Collapse
|
9
|
Zheng M, Lloyd J, Wardrop P, Duan H, Liu T, Ye L, Ni BJ. Path to zero emission of nitrous oxide in sewage treatment: is nitrification controllable or avoidable? Curr Opin Biotechnol 2025; 91:103230. [PMID: 39631213 DOI: 10.1016/j.copbio.2024.103230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
Amid growing concerns over climate change, the need to reduce nitrous oxide (N2O) emissions from sewage treatment is more urgent than ever. Sewage treatment plants are significant sources of N2O due to its production as an intermediate in nitrification and its release into the air during aeration. Effective management of the nitrification process is therefore vital for controlling or eliminating these emissions. Despite substantial efforts to quantify and understand N2O emissions from sewage treatment, success in reducing them has been limited. This review discusses and proposes promising solutions for reducing N2O emissions in sewage treatment, evaluates the potential of various strategies, and identifies ways to accelerate their development and implementation.
Collapse
Affiliation(s)
- Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney NSW 2052, Australia.
| | - James Lloyd
- Melbourne Water, 990 La Trobe St, Docklands VIC 3000, Australia
| | - Peter Wardrop
- Melbourne Water, 990 La Trobe St, Docklands VIC 3000, Australia
| | - Haoran Duan
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney NSW 2052, Australia
| | - Tao Liu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, PR China
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Bing-Jie Ni
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
10
|
Xia Q, Cheng J, Yang F, Yi X, Huang W, Lei Z, Wang D, Huang W. Activated carbon and anthraquinone-2,6-disulfonate as electron shuttles for enhancing carbon and nitrogen removal from simultaneous methanogenesis, Feammox and denitrification system. BIORESOURCE TECHNOLOGY 2025; 418:131975. [PMID: 39674352 DOI: 10.1016/j.biortech.2024.131975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Anthraquinone-2,6-disulfonate (AQDS) and activated carbon (AC) were employed as exogenous electron shuttles (ESs) for enhancing the performance of an integrated simultaneous methanogenesis, Feammox, and denitrification (SMFD) system treating fish sludge. The addition of AQDS and AC led to an increased total nitrogen removal efficiency by 30.2 % and 66.5 %, an increased total chemical oxygen demand removal efficiency by 9.5 % and 24.5 %, and an improved methane yield by 5.2 % and 12.6 %, respectively. Regarding nitrogen removal, AQDS mainly facilitated NH4+-N oxidation into NO3--N via Feammox, while AC facilitated both Feammox and denitrification. Regarding carbon removal, both ESs promoted the hydrolysis-acidification process via stimulating dissimilatory iron reduction and established direct interspecies electron transfer (DIET) between methanogens and syntrophic bacteria. Microbial analysis confirmed the enrichment of iron-reducing bacteria, denitrifiers, DIET-related methanogens and syntrophic partners in the presence of ESs. The study provides an ESs-assisted strategy for enhancing simultaneous nitrogen and carbon removal from high-strength wastewater.
Collapse
Affiliation(s)
- Qing Xia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Jun Cheng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Fei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Xuesong Yi
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Wenli Huang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300350, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Dexin Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China.
| |
Collapse
|
11
|
Xu H, Zhang L, Li Z, Chen Y, Yang B, Zhou Y. Activation of iron oxides through organic matter-induced dissolved oxygen penetration depth dynamics enhances iron-cycling driven ammonium oxidation in microaerobic granular sludge. WATER RESEARCH 2024; 266:122400. [PMID: 39260195 DOI: 10.1016/j.watres.2024.122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
The iron redox cycle can enhance anammox in treating low-strength ammonia wastewater. However, maintaining an effective iron redox cycle and suppressing nitrite-oxidizing bacteria in a one-stage partial nitritation and anammox (PN/A) process poses challenges during long-term aeration. We proposed a novel and simple strategy to achieve an efficient iron redox cycle in an iron-mediated anoxic-microaerobic (A/O) process by controlling organic matter (OM) at medium-strength levels (30-110 mg COD/L) in microaerobic granular sludge (MGS)-dominated reactor. The developed A/O process consistently achieved >90 % OM removal and >75 % nitrogen removal. Medium-strength OM varied the penetration depths of dissolved oxygen (DO) in MGS, regulating redox conditions and promoting redox reactions across MGS layers, thus activating accumulated inert iron oxides. Ammonia-oxidizing bacteria (Nitrosomonas), iron-reducing bacteria (e.g., Ignavibacterium, Geobacter), and anammox bacteria (Ca. Kuenenia) coexisted harmoniously in MGS. This coexistence ensured high anammox and Feammox rates along with a robust iron redox cycle, thereby mitigating the adverse impacts of fluctuating DO and OM on one-stage PN/A process stability. The identification of iron reduction-associated genes within Ca. Kuenenia, Ignavibacterium, and Geobacter suggests their potential roles in supporting Feammox coupled in one-stage PN/A process. This study introduces an iron-cycle-driven A/O process as an energy-efficient alternative for simultaneous carbon and nitrogen removal from low-strength wastewater.
Collapse
Affiliation(s)
- Hui Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Liang Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zong Li
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Yun Chen
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Bo Yang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yan Zhou
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
12
|
Ji L, Zhang X, Zhu X, Gao B, Zhao R, Wu P. Novel insights into Feammox coupled with the NDFO: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175721. [PMID: 39181258 DOI: 10.1016/j.scitotenv.2024.175721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Ammonium oxidation coupled with Fe(III) reduction, known as Feammox, and nitrate-dependent ferrous oxidation (NDFO) are two processes that can be synergistically achieved through the Fe(III)/Fe(II) cycle. This integrated approach enables the simultaneous removal of ammonia nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) from wastewater, representing a novel method for complete nitrogen removal. This study presents a systematic and exhaustive examination of the Feammox-NDFO coupled process. An initial thorough exploration of the underlying mechanisms behind the coupling process is conducted, highlighting how the Fe(III)/Fe(II) cycle enables the concurrent occurrence of these reactions. Further, the functional microorganisms associated with and playing a crucial role in the Feammox-NDFO process are summarized. Next, the key influencing factors that govern the efficiency of the Feammox-NDFO process are explored. These include parameters such as pH, temperature, carbon source, iron source, nitrogen source, and various electron shuttles that may mediate electron transfer. Understanding the impact of these factors is essential for optimizing the process. The most recent trends and endeavors on the Feammox-NDFO coupling technology in wastewater treatment applications are also examined. This includes examining both laboratory-scale studies and field trials, highlighting their successes and challenges. Finally, an outlook is presented regarding the future advancement of the Feammox-NDFO technology. Areas of improvement and novel strategies that could further enhance the efficiency of simultaneous nitrogen removal from the iron cycle are discussed. In summary, this study aspires to offer a thorough comprehension of the Feammox-NDFO coupled process, with a focus on its mechanisms, influencing factors, applications, and prospects. It is anticipated to yield invaluable insights for the advancement of process optimization, thus sparking fresh ideas and strategies aimed at accomplishing the thorough elimination of nitrogen from wastewater via the iron cycle.
Collapse
Affiliation(s)
- Luomiao Ji
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xurui Zhu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Bo Gao
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Rui Zhao
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
13
|
Bi Y, Liu F, Fu Z, Qiao H, Wang J. Enhancing total nitrogen removal in constructed wetlands: A Comparative study of iron ore and biochar amendments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121873. [PMID: 39059309 DOI: 10.1016/j.jenvman.2024.121873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Efficient nitrogen removal in constructed wetlands (CWs) remains challenging when treating agricultural runoff with a low carbon-to-nitrogen ratio (C/N). However, using biochar, iron ore, and FeCl3-modified biochar (Fe-BC) as amendments could potentially improve total nitrogen (TN) removal efficiency in CWs, but the underlying mechanisms associated with adding these substrates are unclear. In this study, five CWs: quartz sand constructed wetland (Control), biochar constructed wetland, Fe-BC constructed wetland, iron ore constructed wetland, and iron ore + biochar constructed wetland, were built to compare their treatment performance. The rhizosphere microbial community compositions and their co-occurrence networks were analyzed to reveal the underlying mechanisms driving their treatment performance. The results showed that iron ore was the most efficient amendment, although all treatments increased TN removal efficiency in the CWs. Ammonia-oxidizing, heterotrophic denitrifying, nitrate-dependent anaerobic ferrous oxidizing (NAFO), and Feammox bacteria abundance was higher in the iron ore system and led to the simultaneous removal of NH4+-N, NO3--N, and NO2--N. Visual representations of the co-occurrence networks further revealed that there was an increase in cooperative mutualism (the high proportion of positive links) and more complex interactions among genera related to the nitrogen and iron cycle (especially ammonia-oxidizing bacteria, heterotrophic denitrifying bacteria, NAFO bacteria, and Feammox bacteria) in the iron ore system, which ultimately contributed to the highest TN removal efficiency. This study provides critical insights into how different iron ore or biochar substrates could be used to treat agricultural runoff in CWs.
Collapse
Affiliation(s)
- Yucui Bi
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Fuxing Liu
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Zishi Fu
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Hongxia Qiao
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Junli Wang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China.
| |
Collapse
|
14
|
Shaw DR, Terada A, Saikaly PE. Future directions in microbial nitrogen cycling in wastewater treatment. Curr Opin Biotechnol 2024; 88:103163. [PMID: 38897092 DOI: 10.1016/j.copbio.2024.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Discoveries in the past decade of novel reactions, processes, and micro-organisms have altered our understanding of microbial nitrogen cycling in wastewater treatment systems. These advancements pave the way for a transition toward more sustainable and energy-efficient wastewater treatment systems that also minimize greenhouse gas emissions. This review highlights these innovative directions in microbial nitrogen cycling within the context of wastewater treatment. Processes such as comammox, Feammox, electro-anammox, and nitrous oxide mitigation offer innovative approaches for sustainable, energy-efficient nitrogen removal. However, while these emerging processes show promise, advancing from laboratory research to practical applications, particularly in decentralized systems, remains a critical next step toward a sustainable and efficient wastewater management.
Collapse
Affiliation(s)
- Dario R Shaw
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Akihiko Terada
- Department of Applied Physics and Chemical Engineering, Department of Industrial Technology and Innovation, Tokyo University of Agriculture and Technology, 2-24-16 Building 4-320 Naka, Koganei, Tokyo 184-8588, Japan.
| | - Pascal E Saikaly
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Environmental Science & Engineering Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
15
|
Ye W, Yan J, Yan J, Lin JG, Ji Q, Li Z, Ganjidoust H, Huang L, Li M, Zhang H. Potential electron acceptors for ammonium oxidation in wastewater treatment system under anoxic condition: A review. ENVIRONMENTAL RESEARCH 2024; 252:118984. [PMID: 38670211 DOI: 10.1016/j.envres.2024.118984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Anaerobic ammonium oxidation has been considered as an environmental-friendly and energy-efficient biological nitrogen removal (BNR) technology. Recently, new reaction pathway for ammonium oxidation under anaerobic condition had been discovered. In addition to nitrite, iron trivalent, sulfate, manganese and electrons from electrode might be potential electron acceptors for ammonium oxidation, which can be coupled to traditional BNR process for wastewater treatment. In this paper, the pathway and mechanism for ammonium oxidation with various electron acceptors under anaerobic condition is studied comprehensively, and the research progress of potentially functional microbes is summarized. The potential application of various electron acceptors for ammonium oxidation in wastewater is addressed, and the N2O emission during nitrogen removal is also discussed, which was important greenhouse gas for global climate change. The problems remained unclear for ammonium oxidation by multi-electron acceptors and potential interactions are also discussed in this review.
Collapse
Affiliation(s)
- Weizhuo Ye
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Jiaqi Yan
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China.
| | - Jih-Gaw Lin
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu City, 30010, Taiwan
| | - Qixing Ji
- The Earth, Ocean and atmospheric sciences thrust (EOAS), Hong Gong University of Science and Technology (Guangzhou), 511442, Guangzhou, China
| | - Zilei Li
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Hossein Ganjidoust
- Faculty of Civil and Environmental Engineering, Tarbiat Modarres University, 14115-397, Tehran, Iran
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Meng Li
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| |
Collapse
|
16
|
González M, Cerda Á, Rodríguez C, Serrano J, Leiva E. Coupling of the Feammox - Anammox pathways by using a sequential discontinuous bioreactor. BIORESOURCE TECHNOLOGY 2024; 395:130334. [PMID: 38242238 DOI: 10.1016/j.biortech.2024.130334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Treating nitrogenous compounds in wastewater is a contemporary challenge, prompting novel approaches for ammonium (NH4+) conversion to molecular nitrogen (N2). This study explores the classic anaerobic ammonium oxidation process (Anammox) coupled to the iron-dependent anaerobic ammonium oxidation process (Feammox) in a sequential discontinuous bioreactor (SBR) for NH4+ removal. Feammox and Anammox cultures were individually enriched and combined, optimizing the coupling, and identifying key variables influencing the enrichment process. Adding sodium acetate as a carbon source significantly reduces Fe3+ to Fe2+, indicating Feammox activity. Both Anammox and Feammox processes were successfully operated in SBRs, achieving efficient NH4+ removal (Anammox: 64.6 %; Feammox: 43.4 %). Combining these pathways in a single SBR enhances the NH4+ removal capacity of 50.8 %, improving Feammox efficiency. The Feammox process coupled with Anammox may generate the nitrite (NO2-) needed for Anammox. This research contributes to biotechnological advancements for sustainable nitrogenous compound treatment in SBRs.
Collapse
Affiliation(s)
- Macarena González
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul 7820436, Santiago, Chile
| | - Ámbar Cerda
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul 7820436, Santiago, Chile.
| | - Carolina Rodríguez
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul 7820436, Santiago, Chile.
| | - Jennyfer Serrano
- Escuela de Biotecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile.
| | - Eduardo Leiva
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul 7820436, Santiago, Chile; Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| |
Collapse
|
17
|
Xu H, Zhang L, Xu R, Yang B, Zhou Y. Iron cycle-enhanced anaerobic ammonium oxidation in microaerobic granular sludge. WATER RESEARCH 2024; 250:121022. [PMID: 38113591 DOI: 10.1016/j.watres.2023.121022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Granule-based partial nitritation and anaerobic ammonium oxidation (PN/A) is an energy-efficient approach for treating ammonia wastewater. When treating low-strength ammonia wastewater, the stable synergy between PN and anammox is however difficult to establish due to unstable dissolved oxygen control. Here, we proposed, the PN/A granular sludge formed by a micro-oxygen-driven iron redox cycle with continuous aeration (0.42 ± 0.10 mg-O2/L) as a novel strategy to achieve stable and efficient nitrogen (N) removal. 240-day bioreactor operation showed that the iron-involved reactor had 37 % higher N removal efficiency than the iron-free reactor. Due to the formation of the microaerobic granular sludge (MGS), the bio(chemistry)-driven iron cycle could be formed with the support of anaerobic ammonium oxidation coupled to Fe3+ reduction. Both ammonia-oxidizing bacteria and generated Fe2+ could scavenge the oxygen as a defensive shield for oxygen-sensitive anammox bacteria in the MGS. Moreover, the iron minerals derived from iron oxidation and Fe-P precipitates were also deposited on the MGS surface and/or embedded in the internal channels, thus reducing the size of the channels that could limit oxygen mass transfer inside the MGS. The spatiotemporal assembly of diverse functional microorganisms in the MGS for the realization of stable PN/A could be achieved with the support of the iron redox cycle. In contrast, the iron-free MGS could not optimize oxygen mass transfer, which led to an unstable and inefficient PN/A. This work provides an alternative iron-related autotrophic N removal for low-strength ammonia wastewater.
Collapse
Affiliation(s)
- Hui Xu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Liang Zhang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ronghua Xu
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Bo Yang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
18
|
Ponce-Jahen SJ, Cercado B, Estrada-Arriaga EB, Rangel-Mendez JR, Cervantes FJ. Anammox with alternative electron acceptors: perspectives for nitrogen removal from wastewaters. Biodegradation 2024; 35:47-70. [PMID: 37436663 PMCID: PMC10774155 DOI: 10.1007/s10532-023-10044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/09/2023] [Indexed: 07/13/2023]
Abstract
In the context of the anaerobic ammonium oxidation process (anammox), great scientific advances have been made over the past two decades, making anammox a consolidated technology widely used worldwide for nitrogen removal from wastewaters. This review provides a detailed and comprehensive description of the anammox process, the microorganisms involved and their metabolism. In addition, recent research on the application of the anammox process with alternative electron acceptors is described, highlighting the biochemical reactions involved, its advantages and potential applications for specific wastewaters. An updated description is also given of studies reporting the ability of microorganisms to couple the anammox process to extracellular electron transfer to insoluble electron acceptors; particularly iron, carbon-based materials and electrodes in bioelectrochemical systems (BES). The latter, also referred to as anodic anammox, is a promising strategy to combine the ammonium removal from wastewater with bioelectricity production, which is discussed here in terms of its efficiency, economic feasibility, and energetic aspects. Therefore, the information provided in this review is relevant for future applications.
Collapse
Affiliation(s)
- Sergio J Ponce-Jahen
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230, Querétaro, Mexico
| | - Bibiana Cercado
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C., Parque Tecnológico Querétaro Sanfandila, Querétaro, 76703, Pedro Escobedo, Mexico
| | - Edson Baltazar Estrada-Arriaga
- Subcoordinación de Tratamiento de Aguas Residuales, Instituto Mexicano de Tecnología del Agua, Paseo Cuauhnáhuac 8532, Progreso, C.P. 62550, Morelos, Mexico
| | - J Rene Rangel-Mendez
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4ª Sección, SLP78216, San Luis Potosí, Mexico
| | - Francisco J Cervantes
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230, Querétaro, Mexico.
| |
Collapse
|
19
|
Yang L, Li W, Zhu H, Dong S, Mu H, Hu K, Wang T, Li J. Functions and mechanisms of sponge iron-mediated multiple metabolic processes in anaerobic ammonium oxidation. BIORESOURCE TECHNOLOGY 2023; 390:129821. [PMID: 37806360 DOI: 10.1016/j.biortech.2023.129821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Sponge iron (SI) is a promising material for nitrogen removal from wastewater. This study reveals the potential functions and mechanisms of SI-mediated multiple metabolic processes in the nitrogen removal of Anammox. The results showed that although the SI application prolonged the start-up time of the reactor, achieved efficient and stable nitrogen removal after a successful start-up. The total nitrogen removal efficiency of the SI-Anammox system (92.62%) was 13.30% higher than that of R0 without SI (79.32%). The increase in nitrogen removal performance was accompanied by an increase in SAA and EPS content. Further microbial analysis showed significant enrichment of functional microorganisms, such as Candidatus_Brocadia, Nitrosomonas, Ellin6067, and Nitrospira. Multi-omics evidence suggests that efficient nitrogen removal is ultimately attributable to the enhancement of the specific key Fe- and N-functional genes in Anammox.
Collapse
Affiliation(s)
- Lili Yang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Wenxuan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Hongjuan Zhu
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Sanqiang Dong
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hao Mu
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Kaiyao Hu
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Te Wang
- Shaanxi Municipal Architectural Design & Research Institute Co., Ltd., Xi'an 710000, China
| | - Jie Li
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Lanzhou 730020, China
| |
Collapse
|
20
|
Liang E, Xu L, Su J, Liu Y, Qi S, Li X. Hydrogel bioreactor drives Feammox and synergistically removes composite pollutants: Performance optimization, microbial communities and functional genetic differences. BIORESOURCE TECHNOLOGY 2023; 387:129604. [PMID: 37544543 DOI: 10.1016/j.biortech.2023.129604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Mixed pollutant wastewater has been a difficult problem due to the high toxicity of water bodies and the difficulty of treatment. Rice husk biochar modified with nano-iron tetroxide (RBC-nFe3O4) by polyvinyl alcohol cross-linking internal doping was used to introduce iron-reducing bacteria Klebsiella sp. FC61 to construct a bioreactor. The results of the long-term operation of the bioreactor showed that the removal efficiency of ammonia nitrogen (NH4+-N) and chemical oxygen demand best reached 90.18 and 98.49%, respectively. In addition, in the co-presence of Ni2+, Cd2+, and ciprofloxacin, the bioreactor was still able to remove pollutants efficiently by RBC-nFe3O4 and bio-iron precipitation inside the biocarrier. During the long-term operation, Klebsiella was always the dominant species in the bioreactor. And the sequencing data for functional prediction showed that the biocarrier contained a variety of enzymes and proteins involved in Feammox-related activities to ensure the stable and efficient operation of the bioreactor.
Collapse
Affiliation(s)
- Enlei Liang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shangzhe Qi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
21
|
Xia Q, Liu F, Sun S, Huang W, Zhao Z, Yang F, Lei Z, Huang W, Yi X. Coupling Iron Sludge Addition and Intermittent Aeration for Achieving Simultaneous Methanogenesis, Feammox, and Denitrification in a Single Reactor Treating Fish Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15065-15075. [PMID: 37772420 DOI: 10.1021/acs.est.3c03009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
An integrated anaerobic digestion system for the simultaneous removal of carbon and nitrogen from fish sludge was developed by coupling iron sludge supplementation with intermittent aeration. In terms of nitrogen removal, Fe(III) in iron sludge could trigger Feammox reactions and intermittent aeration could drive the Fe(II)/Fe(III) cycle to sustain continuous ammonia removal. Mass balance analysis suggested that nitrate was the main product of Feammox, which was subsequently removed through heterotrophic denitrification. In terms of carbon removal, the Fe(III)-induced dissimilatory iron reduction (DIR) process significantly promoted fish sludge hydrolysis and provided more simple organics for methanogens and denitrifiers, but aeration showed a negative impact on methanogenesis. To promote nitrogen removal and avoid serious methanogenesis inhibition, different aeration intensities were studied. Results showed that compared with the control without aeration or iron sludge addition, aeration for 5 min every 3 days (150 mL/min) contributed to a 29.0% lower NH4+-N concentration and a 12.1% lower total chemical oxygen demand level on day 28, and the decline in methane yield was acceptable (only 13.5% lower). Simultaneous methanogenesis, Feammox, and denitrification in a single reactor treating fish sludge were achieved, which provides a simple and low-cost strategy for the treatment of organic wastewater.
Collapse
Affiliation(s)
- Qing Xia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Fei Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Shengrui Sun
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Wenli Huang
- MOE Key Laboratory of Pollution Process and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Ziwen Zhao
- Ministry of Ecology and Environment, South China Institute of Environmental Sciences, 7 Yuancun West Street, Tianhe District, Guangzhou 510345, China
| | - Fei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Xuesong Yi
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| |
Collapse
|
22
|
Cisternas J, Rodríguez C, Serrano J, Leiva E. Study of the key biotic and abiotic parameters influencing ammonium removal from wastewaters by Fe 3+-mediated anaerobic ammonium oxidation (Feammox). CHEMOSPHERE 2023; 339:139463. [PMID: 37480952 DOI: 10.1016/j.chemosphere.2023.139463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/27/2023] [Accepted: 07/09/2023] [Indexed: 07/24/2023]
Abstract
The release of ammonia (as NH4+) into water bodies causes serious environmental problems. Therefore, the removal of ammonia from wastewater effluents has become a worldwide concern. New autotrophic biological alternatives for ammonia removal could reduce the limitations of conventional organic carbon-dependent nitrification-denitrification methods. Here, the potential of anaerobic ammonium oxidation coupled to Fe3+ reduction (a process known as Feammox) is studied in wastewater treatment plants of the yeast and beer production industry, not related to ammonium or iron treatment. This process is presented as a viable option to improve the efficiency of ammonia removal from wastewater. The results of this study show that enrichments under Feammox conditions achieved removals of 28.19-32.25% of the total NH4+. The highest rates of ammonium removal and Fe3+ reduction were achieved using FeCl3 as iron source and pH = 7.0. Different environmental conditions for the enrichments were studied and it was found that the use of sodium acetate as a carbon source and an incubation temperature of 35 °C presented higher rates of iron reduction and higher increase in nitrate concentration, related to ammonium oxidative processes. Likewise, the presence of relevant species of the iron and nitrogen cycles as Ferrovum myxofaciens, Geobacter spp, Shewanella spp, Albidiferax ferrireducens and Anammox was verified, supporting the findings of this study. These results provide information that may be relevant to the potential applicability of Feammox to treat wastewater with high ammonia load and could help develop cost-effective and environmentally friendly methods for ammonium removal in wastewater treatment plants.
Collapse
Affiliation(s)
- Jaime Cisternas
- Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile; Escuela de Biotecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile.
| | - Carolina Rodríguez
- Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| | - Jennyfer Serrano
- Escuela de Biotecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile.
| | - Eduardo Leiva
- Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile; Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| |
Collapse
|
23
|
Wang T, Chen M, Zhu J, Li N, Wang X. Anodic ammonium oxidation in microbial electrolysis cell: Towards nitrogen removal in low C/N environment. WATER RESEARCH 2023; 242:120276. [PMID: 37392506 DOI: 10.1016/j.watres.2023.120276] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Biological nitrogen removal in low C/N environment is challenging in wastewater treatment for a long time. Autotrophic ammonium oxidation is promising due to the no need of carbon source addition, but alternative electron acceptors other than oxygen has to be widely investigated. Recently, microbial electrolysis cell (MEC), which applies a polarized inert electrode as the electron harvester, has been proved effective to oxidize ammonium with electroactive biofilm. That is, anodic microbes stimulated by exogenous low power can extract electron from ammonium and transfer electron to electrodes. This review aims to consolidate the recent advances in anodic ammonium oxidation in MEC. Various technologies based on different functional microbes and mechanisms of these processes are reviewed. Thereafter, the crucial factors influencing the ammonium oxidation technology are discussed. Challenges and prospects of anodic ammonium oxidation in ammonium-containing wastewater treatment are also proposed to provide valuable insights on the technologic reference and potential value of MEC in ammonium-containing wastewater treatment.
Collapse
Affiliation(s)
- Tuo Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Mei Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Jiaxuan Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
24
|
Liang E, Xu L, Su J, Yang Y, Liu Y. Nano iron tetroxide-modified rice husk biochar promoted Feammox performance of Klebsiella sp. FC61 and synergistically removed Ni 2+ and ciprofloxacin. BIORESOURCE TECHNOLOGY 2023; 382:129183. [PMID: 37210034 DOI: 10.1016/j.biortech.2023.129183] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
The iron reduction coupled with ammonia oxidation process (Feammox) is a biological reaction process associated with the nitrogen cycle that has been discovered in recent years. In this study, the iron-reducing bacterium Klebsiella sp. FC61 was attached by synthesizing nano-loadings of iron tetroxide (nFe3O4) onto rice husk biochar (RBC), and the RBC-nFe3O4 was used as an electron shuttle to participate in the biological iron reduction process of soluble and insoluble Fe3+ to improve the ammonia oxidation efficiency to 81.82%. This acceleration of electron transfer increased the carbon consumption rate and further tuned up the COD removal efficiency to 98.00%. The Feammox could be coupled with iron denitrification for internal nitrogen/iron cycling to reduce the accumulation of nitrate by-products and achieve the recycling of iron. In addition, pollutants such as Ni2+, ciprofloxacin, and formed chelates could be removed by pore adsorption and π-π interactions using bio-iron precipitates produced by iron-reducing bacteria.
Collapse
Affiliation(s)
- Enlei Liang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yuzhu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
25
|
Hou Y, He M, Liu Y, Wang Q, Yang A, Yang F, Lei Z, Yi X, Huang W. Biological nitrogen removal mechanisms during anaerobic digestion of swine manure: Effects of biogas circulation and activated carbon addition. BIORESOURCE TECHNOLOGY 2023; 374:128766. [PMID: 36813051 DOI: 10.1016/j.biortech.2023.128766] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the biological nitrogen removal mechanisms during the anaerobic digestion of swine manure and the effects of biogas circulation and activated carbon (AC) addition. Biogas circulation, AC addition, and their combination increased the methane yield by 25.9%, 22.3%, and 44.1%, respectively, when compared to the control. Nitrogen species analysis and metagenomic results indicated that nitrification-denitrification was the dominant ammonia removal pathway in all digesters with little oxygen, while anammox did not occur. Biogas circulation could promote mass transfer and induce air infiltration to enrich nitrification- and denitrification-related bacteria and functional genes. And AC might act as an electron shuttle to facilitate ammonia removal. The combined strategies showed a synergetic effect on the enrichment of nitrification and denitrification bacteria and functional genes, significantly lowering the total ammonia nitrogen by 23.6%. A single digester with biogas circulation and AC addition could enhance methanogenesis and ammonia removal via nitrification and denitrification.
Collapse
Affiliation(s)
- Yaoqi Hou
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Mengqi He
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Yongjie Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Qian Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Aopan Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Fei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Xuesong Yi
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China.
| |
Collapse
|
26
|
Nguyen HT, Nguyen LD, Le CP, Hoang ND, Dinh HT. Nitrogen and carbon removal from anaerobic digester effluents with low carbon to nitrogen ratios under feammox conditions. BIORESOURCE TECHNOLOGY 2023; 371:128585. [PMID: 36623576 DOI: 10.1016/j.biortech.2023.128585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Removal of nitrogen and carbon from anaerobic digester (AD) effluents is challenging for currently available technologies. Herein, effective treatment for real AD effluents was achieved via the feammox process by using a Multistage Feammox Bioreactor (MSFB). The reactor achieved the best performance with AD effluent of a low carbon to nitrogen (C/N) ratio of 2.5. A 6-day retention time reached removal efficiencies for NH4+ and COD at 99 % and 97 %, respectively, with a thorough conversion of NH4+ to N2. Accordingly, the MSFB achieved removal rates for N and C of 14 and 34 mg L-1 d-1, respectively. The C/N ratio of 2.5 is regarded to be the critical point above which the feammox is shifted to conventional iron reduction with organic carbon. Iron-reducing bacteria of the γ- Proteobacteria (Pseudomonas and Acinetobacter), and δ- Proteobacteria (Geobacter) were dominant in the MSFB and were supposed to drive the feammox process.
Collapse
Affiliation(s)
- Hai T Nguyen
- VNU-Institute of Microbiology and Biotechnology, 144 Xuan Thuy Str., Hanoi, Viet Nam
| | - Luu D Nguyen
- VNU-Institute of Microbiology and Biotechnology, 144 Xuan Thuy Str., Hanoi, Viet Nam
| | - Chung P Le
- Nha Trang University, 02 Nguyen Dinh Chieu Str., Nha Trang, Khanh Hoa, Viet Nam
| | - Nam D Hoang
- Technical University HCM City, 268 Ly Thuong Kiet Str., Ho Chi Minh City, Viet Nam
| | - Hang T Dinh
- VNU-Institute of Microbiology and Biotechnology, 144 Xuan Thuy Str., Hanoi, Viet Nam.
| |
Collapse
|
27
|
Sun S, Zhang M, Gu X, Yan P, He S, Chachar A. New insight and enhancement mechanisms for Feammox process by electron shuttles in wastewater treatment - A systematic review. BIORESOURCE TECHNOLOGY 2023; 369:128495. [PMID: 36526117 DOI: 10.1016/j.biortech.2022.128495] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Ammonium oxidation coupled to Fe(III) reduction (Feammox) is a newly discovered iron-nitrogen cycle process of microbial catalyzed NH4+ oxidation coupled with iron reduction. Fe(III) often exists in the form of insoluble iron minerals resulting in reduced microbial availability and low efficiency of Feammox. Electron shuttles(ESs) can be reversibly oxidized and reduced which has the potential to improve Feammox efficiency. This review summarizes the discovery process, electron transfer mechanism, influencing factors and driven microorganisms of Feammox, ang expounds the possibility and potential mechanism of ESs to enhance Feammox efficiency. Based on an in-depth analysis of the current research situation of Feammox for nitrogen removal, the knowledge gaps and future research directions including how to apply ESs enhanced Feammox to promote nitrogen removal in practical wastewater treatment have been highlighted. This review can provide new ideas for the engineering application research of Feammox and strong theoretical support for its development.
Collapse
Affiliation(s)
- Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 20092, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China.
| | - Azharuddin Chachar
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
28
|
Lin BL, Lee DJ, Mannina G, Guo W. Advanced biological technologies for removal and recovery of reactive nitrogen (Nr) from wastewaters. BIORESOURCE TECHNOLOGY 2023; 368:128327. [PMID: 36396034 DOI: 10.1016/j.biortech.2022.128327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Bin-Le Lin
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong.
| | - Giorgio Mannina
- Engineering Department - Palermo University, Viale delle Scienze, Ed. 8, 90128 Palermo, Italy
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney 2007, NWS, Australia
| |
Collapse
|