1
|
Zhao L, Li Y, Fan B, Wang M, Sun N, Yang F. Biochar promotes the dissolution of inorganic inactive phosphorus by mediating the bacterial community during corn stover and cattle manure composting. CHEMOSPHERE 2025; 373:143946. [PMID: 39674413 DOI: 10.1016/j.chemosphere.2024.143946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Phosphorus (P) is a macroelement primarily found in insoluble forms in nature. Enhancing the effectiveness of P is crucial for sustainable agricultural development and ecosystems. The research employed a combination of sequential extraction methods, high-throughput sequencing techniques, microbial culturing, and ecological network analysis of bacterial communities, along with module comparison, to explore the dynamics of different P fractions in calcareous soils. The objective of incorporating biochar into the composting of maize stover and cattle dung was to uncover potential microbial processes that could facilitate the activation of inorganic non-labile P. Findings revealed that during the composting process with biochar, bacterial populations played three distinct roles in the transformation of inorganic non-labile P compounds (such as occluded P and Ca10-P). Primarily, the introduction of biochar significantly increased both the diversity and abundance of bacterial communities. Additionally, it enhanced the ability of phosphate-solubilizing bacteria to maintain the structure of bacterial ecological networks by boosting their complexity, interconnectedness, and stability. Moreover, the incorporation of biochar stimulated the P-related metabolic activities within the bacterial community, significantly enriching key metabolic pathways such as the citrate (TCA) cycle, glycolysis/gluconeogenesis, the pentose phosphate pathway, galactose metabolism, starch, and sucrose metabolism, as well as the metabolism of amino and nucleotide sugars. Moreover, biochar addition intensified the connections between key operational taxonomic units (OTUs) and non-labile P while simultaneously increasing the total organic carbon concentration and enhancing alkaline phosphatase activity. This study provides valuable insights for enhancing P effectiveness in calcareous soils.
Collapse
Affiliation(s)
- Linqin Zhao
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ying Li
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Bowen Fan
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Mengmeng Wang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ning Sun
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Fengjun Yang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
2
|
Li H, Chen S, Wang M, Shi S, Zhao W, Xiong G, Zhou J, Qu J. Phosphate solubilization and plant growth properties are promoted by a lactic acid bacterium in calcareous soil. Appl Microbiol Biotechnol 2024; 108:24. [PMID: 38159115 DOI: 10.1007/s00253-023-12850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 01/03/2024]
Abstract
On the basis of good phosphate solubilization ability of a lactic acid bacteria (LAB) strain Limosilactobacillus sp. LF-17, bacterial agent was prepared and applied to calcareous soil to solubilize phosphate and promote the growth of maize seedlings in this study. A pot experiment showed that the plant growth indicators, phosphorus content, and related enzyme activity of the maize rhizospheric soils in the LF treatment (treated with LAB) were the highest compared with those of the JP treatment (treated with phosphate solubilizing bacteria, PSB) and the blank control (CK). The types of organic acids in maize rhizospheric soil were determined through LC-MS, and 12 acids were detected in all the treatments. The abundant microbes belonged to the genera of Lysobacter, Massilia, Methylbacillus, Brevundimonas, and Limosilactobacillus, and they were beneficial to dissolving phosphate or secreting growth-promoting phytohormones, which were obviously higher in the LF and JP treatments than in CK as analyzed by high-throughput metagenomic sequencing methods. In addition, the abundance values of several enzymes, Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology, and Carbohydrate-Active Enzymes (CAZys), which were related to substrate assimilation and metabolism, were the highest in the LF treatment. Therefore, aside from phosphate-solubilizing microorganisms, LAB can be used as environmentally friendly crop growth promoters in agriculture and provide another viable option for microbial fertilizers. KEY POINTS: • The inoculation of LAB strain effectively promoted the growth and chlorophyll synthesis of maize seedlings. • The inoculation of LAB strain significantly increased the TP content of maize seedlings and the AP concentration of the rhizosphere soil. • The inoculation of LAB strain increased the abundances of the dominant beneficial functional microbes in the rhizosphere soil.
Collapse
Affiliation(s)
- Haifeng Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Siyuan Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Mengyu Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Shuoshuo Shi
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Wenjian Zhao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Guoyang Xiong
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jia Zhou
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jianhang Qu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
3
|
Qiu T, Shen L, Guo Y, Gao M, Gao H, Li Y, Zhao G, Wang X. Impact of aeration rate on the transfer range of antibiotic-resistant plasmids during manure composting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124851. [PMID: 39216666 DOI: 10.1016/j.envpol.2024.124851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Conjugative plasmids are important vectors of mobile antibiotic resvistance genes (ARGs), facilitating their horizontal transfer within the environment. While composting is recognized as an effective method to reduce antibiotics and ARGs in animal manure, its impact on the bacterial host communities containing antibiotic-resistant plasmids remains unclear. In this study, we investigated the permissiveness of bacterial community during composting when challenged with multidrug-resistant conjugative RP4 plasmids, employing Pseudomonas putida as the donor strain. Ultimately, this represents the first exploration of the effects of aeration rates on the range of RP4 plasmid transfer hosts. Transconjugants were analyzed through fluorescent reporter gene-based fluorescence-activated cell sorting and Illumina sequencing. Overall, aeration rates were found to influence various physicochemical parameters of compost, including temperature, pH, total organic matter, total nitrogen, and potassium. Regarding RP4 plasmid host bacteria, the dominant phylum was determined to shift from Bacteroidetes in the raw material to Proteobacteria in the compost. Notably, a moderate-intensity aeration rate (0.05 L/min/L) was found to be more effective in reducing the diversity and richness of the RP4 plasmid host bacterial community. Following composting, the total percentage of dominant transconjugant-related genera decreased by 66.15-76.62%. Ultimately, this study determined that the aeration rate negatively impacts RP4 plasmid host abundance primarily through alterations to the environmental factors during composting. In summary, these findings enhance our understanding of plasmid host bacterial communities under varying composting aeration rates and offer novel insights into preventing the dissemination of ARGs from animal manure to farmland.
Collapse
Affiliation(s)
- Tianlei Qiu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lei Shen
- College of Life Sciences, Langfang Normal University, Langfang, China
| | - Yajie Guo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Min Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haoze Gao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ying Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Guozhu Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xuming Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
4
|
Yan B, Lan T, Lv Y, Xing C, Liang Y, Wang H, Wu Q, Guo L, Guo WQ. Enhancing simultaneous nitrogen and phosphorus availability through biochar addition during Chinese medicinal herbal residues composting: Synergism of microbes and humus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172515. [PMID: 38642759 DOI: 10.1016/j.scitotenv.2024.172515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
The disposal of Chinese medicinal herbal residues (CMHRs) derived from Chinese medicine extraction poses a significant environmental challenge. Aerobic composting presents a sustainable treatment method, yet optimizing nutrient conversion remains a critical concern. This study investigated the effect and mechanism of biochar addition on nitrogen and phosphorus transformation to enhance the efficacy and quality of compost products. The findings reveal that incorporating biochar considerably enhanced the process of nutrient conversion. Specifically, biochar addition promoted the retention of bioavailable organic nitrogen and reduced nitrogen loss by 28.1 %. Meanwhile, adding biochar inhibited the conversion of available phosphorus to non-available phosphorus while enhancing its conversion to moderately available phosphorus, thereby preserving phosphorus availability post-composting. Furthermore, the inclusion of biochar altered microbial community structure and fostered organic matter retention and humus formation, ultimately affecting the modification of nitrogen and phosphorus forms. Structural equation modeling revealed that microbial community had a more pronounced impact on bioavailable organic nitrogen, while humic acid exerted a more significant effect on phosphorus availability. This research provides a viable approach and foundation for regulating the levels of nitrogen and phosphorus nutrients during composting, serving as a valuable reference for the development of sustainable utilization technologies pertaining to CMHRs.
Collapse
Affiliation(s)
- Bo Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tian Lan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yang Lv
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuanming Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yongqi Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liang Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
5
|
Guo T, Zhang S, Song C, Zhao R, Jia L, Wei Z. Response of phosphorus fractions transformation and microbial community to carbon-to-phosphorus ratios during sludge composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121145. [PMID: 38788406 DOI: 10.1016/j.jenvman.2024.121145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/20/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Phosphorus (P) is one of the essential nutrient elements for plant growth and development. Sludge compost products can be used as an important source of soil P to solve the shortage of soil P. The difference in the initial carbon-to-phosphorus ratio (C/P) will lead to difference in the bacterial community, which would affect the biological pathway of P conversion in composting. However, few studies have been reported on adjusting the initial C/P of composting to explore P conversion. Therefore, this study investigated the response of P component transformations, bacterial community and P availability to C/P during sludge composting by adjusting initial C/P. The results showed that increasing C/P promoted the mineralization of organic P and significantly increased the content of the labile P. High C/P also increased the relative content of available P, especially when the C/P was at 45 and 60, it reached 60.51% and 60.47%. High C/P caused differences in the community structure, and improved the binding ability of microbial network modules and the competitiveness of microbial communities. Additionally, high C/P strengthened the effect of microbial communities on the transformation of P components. Finally, the study showed that C/P was the main contributor to P content variation (64.7%) and indirectly affected P component conversion by affecting the microbial community. Therefore, adjusting the C/P is crucial to improve the P utilization rate of composting products.
Collapse
Affiliation(s)
- Tong Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Shubo Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Ran Zhao
- Heilongjiang Province Environment Monitoring Centre, Harbin, 150056, China
| | - Liming Jia
- Heilongjiang Province Environment Monitoring Centre, Harbin, 150056, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
6
|
Zhang Z, Xu D, Huang T, Zhang Q, Li Y, Zhou J, Zou R, Li X, Chen J. High levels of cadmium altered soil archaeal activity, assembly, and co-occurrence network in volcanic areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171529. [PMID: 38453065 DOI: 10.1016/j.scitotenv.2024.171529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Soil microbial communities are essential to biogeochemical cycles. However, the responses of microorganisms in volcanic soil with high heavy metal levels remain poorly understood. Here, two areas with high levels of cadmium (Cd) from the same volcano were investigated to determine their archaeal composition and assembly. In this study, the Cd concentrations (0.32-0.38 mg/ kg) in the volcanic soils exceeded the standard risk screening values (GB15618-2018) and correlated with archaeal communities strongly (P < 0.05). Moreover, the area with elevated levels of Cd (periphery) exhibited a greater diversity of archaeal species, albeit with reduced archaeal activity, compared to the area with lower levels of Cd (center). Besides, stochastic processes mainly governed the archaeal communities. Furthermore, the co-occurrence network was simplest in the periphery. The proportion of positive links between taxa increased positively with Cd concentration. Moreover, four keystone taxa (all from the family Nitrososphaeraceae) were identified from the archaeal networks. In its entirety, this study has expanded our comprehension of the variations of soil archaeal communities in volcanic areas with elevated cadmium levels and serves as a point of reference for the agricultural development of volcanic soils in China.
Collapse
Affiliation(s)
- Zihua Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Daolong Xu
- Inner Mongolia Academy of Science and Technology, Hohhot 010010, Inner Mongolia, China
| | - Tao Huang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Qing Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Yingyue Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Jing Zhou
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Ruifan Zou
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyu Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China.
| | - Jin Chen
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
7
|
Su J, Zhan Y, Chang Y, Chang S, Luo Y, Chen P, Tao X, Chen Y, Yang L, Xu T, Qiao Y, Li J, Wei Y. Phosphate additives promote humic acid carbon and nitrogen skeleton formation by regulating precursors and composting bacterial communities. BIORESOURCE TECHNOLOGY 2024; 399:130617. [PMID: 38513923 DOI: 10.1016/j.biortech.2024.130617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
This study aimed to compare the effect of different phosphate additives including superphosphate (CP) and MP [Mg(OH)2 + H3PO4] on nitrogen conversion, humus fractions formation and bacterial community in food waste compost. The results showed the ratio of humic acid nitrogen in total nitrogen (HA-N/TN) in CP increased by 49 %. Ammonium nitrogen accumulation was increased by 75 % (CP) and 44 % (MP). Spectroscopic techniques proved that phosphate addition facilitated the formation of complex structures in HA. CP enhanced the dominance of Saccharomonospora, while Thermobifida and Bacillus were improved in MP. Structural equation modeling and network analysis demonstrated that ammonium nitrogen can be converted to HA-N and has positive effects on bacterial composition, reducing sugars and amino acids, especially in CP with more clustered network and synergic bacterial interactions. Therefore, the addition of phosphate provides a new idea to regulate the retained nitrogen toward humification in composting.
Collapse
Affiliation(s)
- Jing Su
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yabin Zhan
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Yuan Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Su Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yan Luo
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Peizhen Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xingling Tao
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yunfeng Chen
- Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Li Yang
- Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Ting Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuhui Qiao
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
8
|
Fan B, Zhao C, Zhao L, Wang M, Sun N, Li Z, Yang F. Biochar application can enhance phosphorus solubilization by strengthening redox properties of humic reducing microorganisms during composting. BIORESOURCE TECHNOLOGY 2024; 395:130329. [PMID: 38224785 DOI: 10.1016/j.biortech.2024.130329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Phosphorus (P) in nature mostly exists in an insoluble state, and humic reducing microorganisms (HRMs) can dissolve insoluble substances through redox properties. This study aimed to investigate the correlations between insoluble P and dominant HRMs amenable to individual culture during biochar composting. These analyses revealed that, in comparison to the control, biochar addition increased the relative abundance of dominant HRMs by 20.3% and decreased redox potential (Eh) levels by 15.4% hence, enhancing the moderately-labile-P and non-labile-P dissolution. The pathways underlying the observed effects were additionally assessed through structural equation modeling, revealing that biochar addition promoted insoluble P dissolution through both the direct effects of bacterial community structure as well as the direct effects of HRMs community structure and indirect effects based on Eh of HRMs community structure. This research offers a better understanding of the effect of HRMs on insoluble P during the composting process.
Collapse
Affiliation(s)
- Bowen Fan
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China; College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang 163319, China; Engineering Research Center of Crop Straw Utilization, Daqing, Heilongjiang 163319, China
| | - Changjiang Zhao
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang 163319, China; Engineering Research Center of Crop Straw Utilization, Daqing, Heilongjiang 163319, China
| | - Liqin Zhao
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mengmeng Wang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ning Sun
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zoutong Li
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang 163319, China; Engineering Research Center of Crop Straw Utilization, Daqing, Heilongjiang 163319, China
| | - Fengjun Yang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China.
| |
Collapse
|
9
|
Zhao H, Li S, Pu J, Wang H, Dou X. Effects of Bacillus-based inoculum on odor emissions co-regulation, nutrient element transformations and microbial community tropological structures during chicken manure and sawdust composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120328. [PMID: 38354615 DOI: 10.1016/j.jenvman.2024.120328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
This study aims to evaluate whether different doses of Bacillus-based inoculum inoculated in chicken manure and sawdust composting will provide distinct effects on the co-regulation of ammonia (NH3) and hydrogen sulfide (H2S), nutrient conversions and microbial topological structures. Results indicate that the Bacillus-based inoculum inhibits NH3 emissions mainly by regulating bacterial communities, while promotes H2S emissions by regulating both bacterial and fungal communities. The inoculum only has a little effect on total organic carbon (TOC) and inhibits total sulfur (TS) and total phosphorus (TP) accumulations. Low dose inoculation inhibits total potassium (TK) accumulation, while high dose inoculation promotes TK accumulation and the opposite is true for total nitrogen (TN). The inoculation slightly affects the bacterial compositions, significantly alters the fungal compositions and increases the microbial cooperation, thus influencing the compost substances transformations. The microbial communities promote ammonium nitrogen (NH4+-N), TN, available phosphorus (AP), total potassium (TK) and TS, but inhibit nitrate nitrogen (NO3--N), TP and TK. Additionally, the bacterial communities promote, while the fungal communities inhibit the nitrite nitrogen (NO2--N) production. The core bacterial and fungal genera regulate NH3 and H2S emissions through the secretions of metabolic enzymes and the promoting or inhibiting effects on NH3 and H2S emissions are always opposite. Hence, Bacillus-based inoculum cannot regulate the NH3 and H2S emissions simultaneously.
Collapse
Affiliation(s)
- Huaxuan Zhao
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - Shangmin Li
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China.
| | - Junhua Pu
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - Hongzhi Wang
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - Xinhong Dou
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| |
Collapse
|
10
|
Zhan Y, Xu S, Hou Z, Gao X, Su J, Peng B, Zhao J, Wang Z, Cheng M, Zhang A, Guo Y, Ding G, Li J, Wei Y. Co-inoculation of phosphate-solubilizing bacteria and phosphate accumulating bacteria in phosphorus-enriched composting regulates phosphorus transformation by facilitating polyphosphate formation. BIORESOURCE TECHNOLOGY 2023; 390:129870. [PMID: 37839642 DOI: 10.1016/j.biortech.2023.129870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
This study aimed to explore the impact of co-inoculating phosphate-solubilizing bacteria (PSB) and phosphate accumulating bacteria (PAB) on phosphorus forms transformation, microbial biomass phosphorus (MBP) and polyphosphate (Poly-P) accumulation, bacterial community composition in composting, using high throughput sequencing, PICRUSt 2, network analysis, structural equation model (SEM) and random forest (RF) analysis. The results demonstrated PSB-PAB co-inoculation (T1) reduced Olsen-P content (1.4 g) but had higher levels of MBP (74.2 mg/kg) and Poly-P (419 A.U.) compared to PSB-only (T0). The mantel test revealed a significantly positive correlation between bacterial diversity and both bioavailable P and MBP. Halocella was identified as a key genus related to Poly-P synthesis by network analysis. SEM and RF analysis showed that pH and bacterial community had the most influence on Poly-P synthesis, and PICRUSt 2 analysis revealed inoculation of PAB increased ppk gene abundance in T1. Thus, PSB-PAB co-inoculation provides a new idea for phosphorus management.
Collapse
Affiliation(s)
- Yabin Zhan
- Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Shaoqi Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Zhuonan Hou
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Xin Gao
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Jing Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Bihui Peng
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Jinyue Zhao
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Zhigang Wang
- DBN Agriculture Science and Technology Group CO., Ltd., DBN Pig Academy, Beijing 102629, China
| | - Meidi Cheng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Ake Zhang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Fuyang Academy of Agricultural Sciences, Fuyang 236065, China
| | - Yanbin Guo
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Guochun Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
11
|
He L, Zhao Y, Zhao X, Wang Y, Dang Q. Regulating method of microbial driving the phosphorus bioavailability in factory composting. BIORESOURCE TECHNOLOGY 2023; 387:129676. [PMID: 37586430 DOI: 10.1016/j.biortech.2023.129676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Phosphorus bioavailability is essential for assessing compost quality. However, the effects of microbial and environmental factors on potentially active phosphorus (H2O-P + NaHCO3-Pi) in factory compost have not been investigated. The findings indicated that chicken manure had significantly higher available phosphorus (AP) and H2O-P + NaHCO3-Pi throughout the composting process than kitchen waste (P < 0.05). Chicken manure compost also exhibited higher α-microbial diversity. Novibacillus, Marinococcaceae and Bacillales were the core bacteria involved in bioavailable phosphorus conversion in both composts. The core bacteria in kitchen waste compost had a broader range of phosphorus metabolism functions. Moreover, moisture and pH were the key environmental factors that significantly influenced the bioavailable phosphorus (P < 0.05). These findings provide a scientific foundation for regulating the composting process and improving phosphorus utilization efficiency.
Collapse
Affiliation(s)
- Liangzi He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiuling Dang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
12
|
Meng X, Wang Q, Zhao X, Cai Y, Fu J, Zhu M, Ma X, Wang P, Liu R, Wang Y, Liu W, Ren L. Effect of aeration/micro-aeration on lignocellulosic decomposition, maturity and seedling phytotoxicity during full-scale biogas residues composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 168:246-255. [PMID: 37327518 DOI: 10.1016/j.wasman.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
With the accelerated construction of biogas plants, the amount of biogas residues are expanding. Composting has been widely implemented to deal with biogas residues. Aeration regulation is the main factor affecting the post-composting treatment of biogas residues as high-quality fertilizer or soil amendment. Therefore, this study aimed to investigate the impact of different aeration regulations on full-scale biogas residues compost maturity by controlling oxygen concentration under micro-aeration and aeration conditions. Results showed that micro-aerobic extended the thermophilic stage of 17 days at above 55 ℃ and facilitated the mineralization process of organic nitrogen into nitrate nitrogen to retain higher N nutrition levels compared to aerobic treatment. For biogas residues with high moisture, aeration should be regulated at different full-scale composting stages. Total organic carbon (TOC), NH4+-N, NO3--N, total potassium (TK), total phosphorus (TP) and the germination index (GI) could be used to evaluate stabilization, fertilizer efficiency and phytotoxicity of compost with frequent monitoring times. However, seedling growth trials were still necessary in full-scale composting plants when changing of composting process or biogas residues feedstock.
Collapse
Affiliation(s)
- Xingyao Meng
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China; School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Qingping Wang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China; School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Xixi Zhao
- China IPPR International Engineering Co., Ltd, Logistics and Industrial Engineering Research Institute, Beijing 100083, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingyi Fu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China; School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Mingcheng Zhu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China; School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Xuguang Ma
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China
| | - Pan Wang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China; School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Rufei Liu
- Cucde Environmental Technology Co., Ltd, Beijing 100120, China
| | - Yongjing Wang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China; School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China.
| | - Wei Liu
- Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs /Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Science, Wuhan, 430064, China
| | - Lianhai Ren
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China; School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
13
|
Jiang Y, Cui T, Cao L, Huang J, Tu Y, Chen Y, Zhang Y, Xu A, Zhou J, Ni M, Wei K. REDOX physical-chemical method boosted phospholytic bacteria technology for enhanced phosphorus solubilization. Front Bioeng Biotechnol 2023; 10:1124832. [PMID: 36686248 PMCID: PMC9846245 DOI: 10.3389/fbioe.2022.1124832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Affiliation(s)
- Yongwei Jiang
- Jiangsu Provincial Environmental Engineering Technology Co, Ltd., Nanjing, Jiangsu, China,Jiangsu Province Engineering Research Center of Synergistic Control of Pollution and Carbon Emissions in Key Industries, Nanjing, China,Jiangsu Province Engineering Research Center of Standardized Construction and Intelligent Management of Industrial Parks, Nanjing, China
| | - Tao Cui
- Jiangsu Provincial Environmental Engineering Technology Co, Ltd., Nanjing, Jiangsu, China,Jiangsu Province Engineering Research Center of Synergistic Control of Pollution and Carbon Emissions in Key Industries, Nanjing, China,Jiangsu Province Engineering Research Center of Standardized Construction and Intelligent Management of Industrial Parks, Nanjing, China
| | - Lei Cao
- Jiangsu Provincial Environmental Engineering Technology Co, Ltd., Nanjing, Jiangsu, China,Jiangsu Province Engineering Research Center of Synergistic Control of Pollution and Carbon Emissions in Key Industries, Nanjing, China,Jiangsu Province Engineering Research Center of Standardized Construction and Intelligent Management of Industrial Parks, Nanjing, China
| | - Jian Huang
- Jiangsu Provincial Environmental Engineering Technology Co, Ltd., Nanjing, Jiangsu, China,Jiangsu Province Engineering Research Center of Synergistic Control of Pollution and Carbon Emissions in Key Industries, Nanjing, China,Jiangsu Province Engineering Research Center of Standardized Construction and Intelligent Management of Industrial Parks, Nanjing, China
| | - Yong Tu
- Jiangsu Provincial Environmental Engineering Technology Co, Ltd., Nanjing, Jiangsu, China,Jiangsu Province Engineering Research Center of Synergistic Control of Pollution and Carbon Emissions in Key Industries, Nanjing, China,Jiangsu Province Engineering Research Center of Standardized Construction and Intelligent Management of Industrial Parks, Nanjing, China
| | - Yong Chen
- Jiangsu Provincial Environmental Engineering Technology Co, Ltd., Nanjing, Jiangsu, China,Jiangsu Province Engineering Research Center of Synergistic Control of Pollution and Carbon Emissions in Key Industries, Nanjing, China,Jiangsu Province Engineering Research Center of Standardized Construction and Intelligent Management of Industrial Parks, Nanjing, China
| | - Yonghao Zhang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China,School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, China,*Correspondence: Yonghao Zhang, ; Kajia Wei,
| | - Anlin Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Junwei Zhou
- Jiangsu Provincial Environmental Engineering Technology Co, Ltd., Nanjing, Jiangsu, China,Jiangsu Province Engineering Research Center of Synergistic Control of Pollution and Carbon Emissions in Key Industries, Nanjing, China,Jiangsu Province Engineering Research Center of Standardized Construction and Intelligent Management of Industrial Parks, Nanjing, China
| | - Ming Ni
- Jiangsu Provincial Environmental Engineering Technology Co, Ltd., Nanjing, Jiangsu, China,Jiangsu Province Engineering Research Center of Synergistic Control of Pollution and Carbon Emissions in Key Industries, Nanjing, China,Jiangsu Province Engineering Research Center of Standardized Construction and Intelligent Management of Industrial Parks, Nanjing, China
| | - Kajia Wei
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China,*Correspondence: Yonghao Zhang, ; Kajia Wei,
| |
Collapse
|