1
|
Yu J, Li C, Cheng Y, Guo S, Lu H, Xie X, Ji H, Qiao Y. Mechanism and improvement of yeast tolerance to biomass-derived inhibitors: A review. Biotechnol Adv 2025; 81:108562. [PMID: 40107432 DOI: 10.1016/j.biotechadv.2025.108562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Lignocellulosic biomass is regarded as a potentially valuable second-generation biorefinery feedstock. Yeast has the ability to metabolize this substrate and convert it into fuel ethanol and an array of other chemical products. Nevertheless, during the pretreatment of lignocellulosic biomass, inhibitors (furanaldehydes, carboxylic acids, phenolic compounds, etc.) are generated, which impede the growth and metabolic activities of yeast cells. Consequently, developing yeast strains with enhanced tolerance to these inhibitors is a crucial technological objective, as it can significantly enhance the efficiency of lignocellulosic biorefineries. This review provides a concise overview of the process of inhibitor generation and the detrimental effects of these inhibitors on yeast. It also summarizes the current state of research on the mechanisms of yeast tolerance to these inhibitors, focusing specifically on recent advances in enhancing yeast tolerance to these inhibitors by rational and non-rational strategies. Finally, it discusses the current challenges and future research directions.
Collapse
Affiliation(s)
- Jinling Yu
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Cuili Li
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Yajie Cheng
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Shaobo Guo
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Hongzhao Lu
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, China
| | - Xiuchao Xie
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China.
| | - Hao Ji
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Yanming Qiao
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, China.
| |
Collapse
|
2
|
Wu Y, Cai D, Su C, Liao Z, Zhang G, Jiang Y, Wang Y, Gao Y, Liu Y, Tan T. Robust Saccharomyces cerevisiae by rational metabolic engineering for effective ethanol production from undetoxified steam-exploded corn stover hydrolysate. BIORESOURCE TECHNOLOGY 2025; 431:132605. [PMID: 40306336 DOI: 10.1016/j.biortech.2025.132605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 04/26/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Lignocellulosic bioethanol production by S.cerevisiae is severely hampered by xylose assimilation and inhibitors. Aiming to solve these barriers, the xylose isomerase pathway was heterologously introduced into parental strain, followed by conducting the adaptive laboratory evolution. Meanwhile, the reduced glutathione and NADPH synthesis systems to reduce excess intracellular reactive oxygen species (ROS) were further enhanced. Results indicated the bioethanol production from undetoxified steam-exploded corn stover hydrolysate (SECSH) without any nutrients supplementation was improved using the customized strain. Up to 70.52 ± 0.38 g/L of bioethanol with yield of 0.450 g/g total sugars were obtained. This study provided an effective strategy combining genetic modification and adaptive laboratory evolution to simultaneously improve xylose assimilation and inhibitors' tolerance of S. cerevisiae, providing a basis for large-scale lignocellulosic bioethanol production.
Collapse
Affiliation(s)
- Yilu Wu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China; National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Changsheng Su
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zicheng Liao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Gege Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yongjie Jiang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yankun Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yunxing Gao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yicheng Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Tianwei Tan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China; National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
3
|
Li M, Li Z, Wei L, Bai G, Wei S, Zhou L, Li H. The physiological role of gamma-aminobutyric acid in relieving the effect of furfural inhibitor for improvement the production of lipid in D. intermedius Z 8. J Biotechnol 2025; 398:117-126. [PMID: 39689744 DOI: 10.1016/j.jbiotec.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
In order to improve the production and quality of lipid of D. intermedius Z8 under the furfural stress environment, different exogenous γ-aminobutyric acid (GABA) addition strategies and their reasons for improving the fermentation performance were investigated. For this purpose, the effect of different concentrations of furfural on the production of biomass and lipid in D. intermedius Z8 was researched. The result shows that the growth of D. intermedius Z8 nearly stopped when 1.0 g/L furfural was adopted. However, when 1.5 mmol/L GABA was used, the highest biomass and lipid production of 4.56 g/L and 1.83 g/L were obtained, respectively, which were 36.53 % and 61.95 % higher compared to the control group (the normal development BG11 medium). Additionally, the changes in microalgal cell morphology were analyzed using the scanning electron microscope (SEM) technology, and the results suggest that GABA addition could significantly mitigate the toxic effects of excessive furfural by maintaining the integrity of the cell. Simultaneously, the activities of key enzymes involved in fatty acid synthesis, such as nitrate reductase (NR), phosphatidic acid phosphatase (PAP), acetyl CoA carboxylase (ACC), and fatty acid synthase (FAS), were enhanced under the optimal condition, and thus improving lipid production. According to the results in this study, the exogenous GABA addition strategy is a simple and effective approach to improve microbial tolerance and enhance its fermentation performance.
Collapse
Affiliation(s)
- Min Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Zhi Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lei Wei
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Ge Bai
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Saijin Wei
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Linbin Zhou
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Hanguang Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
4
|
Lee SY, Weingarten M, Ottenheim C. Current upstream and downstream process strategies for sustainable yeast lipid production. BIORESOURCE TECHNOLOGY 2024; 414:131601. [PMID: 39389381 DOI: 10.1016/j.biortech.2024.131601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
An increasing global population demands more lipids for food and chemicals, but the unsustainable growth of plant-derived lipid production and an unreliable supply of certain lipids due to environmental changes, require new solutions. One promising solution is the use of lipids derived from microbial biomass, particularly oleaginous yeasts. This critical review begins with a description of the most promising yeast lipid replacement targets: palm oil substitute, cocoa butter equivalent, polyunsaturated fatty acid source, and animal fat analogue, emphasizing sustainability aspects. Subsequently, the review focuses on the most recent advances in upstream methodologies, particularly fermentation strategies that promote circularity, such as waste valorisation, co-cultivation and co-product biosynthesis. Downstream processing methods for minimising energy consumption and waste generation, including bioflocculation, energy-efficient and environmentally friendly cell lysis and extraction, and integrated co-product recovery methods, are discussed. Finally, the current challenges are outlined. Integrating these strategies advances sustainable yeast lipid production for high-value applications.
Collapse
Affiliation(s)
- Sze Ying Lee
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Melanie Weingarten
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Christoph Ottenheim
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore.
| |
Collapse
|
5
|
Zhang Y, Liu Z, Sun Y, Du Y, Zhao Z, Liu Q, Song Y. Lipid production from corn straw by cellobiohydrolase and delta-6 desaturase engineered Mucor circinelloides strains under solid state fermentation. Sci Rep 2024; 14:18784. [PMID: 39138250 PMCID: PMC11322153 DOI: 10.1038/s41598-024-68499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
Previously, we constructed engineered M. circinelloides strains that can not only utilize cellulose, but also increase the yield of γ-linolenic acid (GLA). In the present study, an in-depth analysis of lipid accumulation by engineered M. circinelloides strains using corn straw was to be explored. When a two-stage temperature control strategy was adopted with adding 1.5% cellulase and 15% inoculum, the engineered strains led to increases in the lipid yield (up to 1.56 g per 100 g dry medium) and GLA yield (up to 274 mg per 100 g dry medium) of 1.8- and 2.3-fold, respectively, compared with the control strain. This study proved the engineered M. circinelloides strains, especially for Mc-C2PD6, possess advantages in using corn straw to produce GLA. This work provided a reference for transformation from agricultural cellulosic waste to functional lipid in one step, which might play a positive role in promoting the sustainable development of biological industry.
Collapse
Affiliation(s)
- Yao Zhang
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China.
- School of Agricultural Engineering and Food Science, Colin Ratledge Center for Microbial Lipids, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China.
| | - Zhuo Liu
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China
| | - Yan Sun
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China
| | - Yuanxin Du
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China
| | - Zixuan Zhao
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China
| | - Qing Liu
- School of Agricultural Engineering and Food Science, Colin Ratledge Center for Microbial Lipids, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Yuanda Song
- School of Agricultural Engineering and Food Science, Colin Ratledge Center for Microbial Lipids, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| |
Collapse
|
6
|
Lee JP, Lee JS, Lee JW, Lee HW, Jeong S, Min K. Waste to Energy: Steam explosion-based torrefaction process to produce solid biofuel for power generation utilizing various waste biomasses. BIORESOURCE TECHNOLOGY 2024; 394:130185. [PMID: 38072073 DOI: 10.1016/j.biortech.2023.130185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 02/04/2024]
Abstract
Currently, humankind is facing a serious environmental and climate crisis, which has accelerated the research on producing bioenergy from waste biomass as a carbon-neutral feedstock. In this study, the aim was to develop an upcycling strategy for waste biomass to solid-type biofuel conversion for power generation. Various types of waste biomass (i.e., waste wood after lumbering, sawdust-type mushroom waste wood, kudzu vine, and empty fruit bunches from palm) were used as sustainable feedstocks for steam explosion-based torrefaction. The reaction conditions were optimized for each waste biomass by controlling the severity index (Ro); the higher heating value increased proportional to the Ro increase. Additionally, component analysis revealed that steam explosion torrefaction mainly degraded hemicellulose, and most of the torrefied waste biomass met the Bio-Solid Refuse Fuel quality standard. The results provide not only a viable waste-to-energy strategy but also insights to address global climate change.
Collapse
Affiliation(s)
- Joon-Pyo Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Jin-Suk Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Jae-Won Lee
- Department of Wood Science and Engineering, College of Agricultural and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Conversion System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyoung-Woo Lee
- Department of Wood Science and Engineering, College of Agricultural and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Soyeon Jeong
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Kyoungseon Min
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea.
| |
Collapse
|
7
|
Zhu YX, He M, Li KJ, Wang YK, Qian N, Wang ZF, Sheng H, Sui Y, Zhang DD, Zhang K, Qi L, Zheng DQ. Novel insights into the effects of 5-hydroxymethfurural on genomic instability and phenotypic evolution using a yeast model. Appl Environ Microbiol 2024; 90:e0164923. [PMID: 38108644 PMCID: PMC10807415 DOI: 10.1128/aem.01649-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
5-Hydroxymethfurural (5-HMF) is naturally found in a variety of foods and beverages and represents a main inhibitor in the lignocellulosic hydrolysates used for fermentation. This study investigated the impact of 5-HMF on the genomic stability and phenotypic plasticity of the yeast Saccharomyces cerevisiae. Using next-generation sequencing technology, we examined the genomic alterations of diploid S. cerevisiae isolates that were subcultured on a medium containing 1.2 g/L 5-HMF. We found that in 5-HMF-treated cells, the rates of chromosome aneuploidy, large deletions/duplications, and loss of heterozygosity were elevated compared with that in untreated cells. 5-HMF exposure had a mild impact on the rate of point mutations but altered the mutation spectrum. Contrary to what was observed in untreated cells, more monosomy than trisomy occurred in 5-HMF-treated cells. The aneuploidy mutant with monosomic chromosome IX was more resistant to 5-HMF than the diploid parent strain because of the enhanced activity of alcohol dehydrogenase. Finally, we found that overexpression of ADH6 and ZWF1 effectively stabilized the yeast genome under 5-HMF stress. Our findings not only elucidated the global effect of 5-HMF on the genomic integrity of yeast but also provided novel insights into how chromosomal instability drives the environmental adaptability of eukaryotic cells.IMPORTANCESingle-cell microorganisms are exposed to a range of stressors in both natural and industrial settings. This study investigated the effects of 5-hydroxymethfurural (5-HMF), a major inhibitor found in baked foods and lignocellulosic hydrolysates, on the chromosomal instability of yeast. We examined the mechanisms leading to the distinct patterns of 5-HMF-induced genomic alterations and discovered that chromosomal loss, typically viewed as detrimental to cell growth under most conditions, can contribute to yeast tolerance to 5-HMF. Our results increased the understanding of how specific stressors stimulate genomic plasticity and environmental adaptation in yeast.
Collapse
Affiliation(s)
- Ying-Xuan Zhu
- Hainan Institute of Zhejiang University, Zhejiang University, Sanya, China
- Ocean College, Zhejiang University, Zhoushan, China
| | - Min He
- Hainan Institute of Zhejiang University, Zhejiang University, Sanya, China
| | - Ke-Jing Li
- Ocean College, Zhejiang University, Zhoushan, China
| | - Ye-Ke Wang
- College of Life Science, Zhejiang University, Hangzhou, China
| | - Ning Qian
- Ocean College, Zhejiang University, Zhoushan, China
| | - Ze-Fei Wang
- Hainan Institute of Zhejiang University, Zhejiang University, Sanya, China
| | - Huan Sheng
- Ocean College, Zhejiang University, Zhoushan, China
| | - Yang Sui
- Ocean College, Zhejiang University, Zhoushan, China
| | | | - Ke Zhang
- College of Life Science, Zhejiang University, Hangzhou, China
| | - Lei Qi
- Ocean College, Zhejiang University, Zhoushan, China
| | - Dao-Qiong Zheng
- Hainan Institute of Zhejiang University, Zhejiang University, Sanya, China
- Ocean College, Zhejiang University, Zhoushan, China
| |
Collapse
|
8
|
Wei S, Wang H, Fan M, Cai X, Hu J, Zhang R, Song B, Li J. Application of adaptive laboratory evolution to improve the tolerance of Rhodotorula strain to methanol in crude glycerol and development of an effective method for cell lysis. Biotechnol J 2024; 19:e2300483. [PMID: 38041508 DOI: 10.1002/biot.202300483] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023]
Abstract
Rhodotorula toruloides can utilize crude glycerol as the low-cost carbon source for lipid production, but its growth is subjected to inhibition by methanol in crude glycerol. Here, transcriptome profiling demonstrated that 1004 genes were significantly regulated in the strain R. toruloides TO2 under methanol stress. Methanol impaired the function of membrane transport and subsequently weakened the utilization of glycerol, activities of the primary metabolism and functions of nucleus and ribosome. Afterwards the tolerance of TO2 to methanol was improved by using two-round adaptive laboratory evolution (ALE). The final strain M2-ale had tolerance up to 3.5% of methanol. 1 H NMR-based metabolome analysis indicated that ALE not only improved the tolerance of M2-ale to methanol but also tuned the carbon flux towards the biosynthesis of glycerolipid-related metabolites. The biomass and lipid titer of M2-ale reached 14.63 ± 0.45 g L-1 and 7.06 ± 0.44 g L-1 at 96 h in the crude glycerol medium, which increased up to 17.69% and 31.39%, respectively, comparing with TO2. Afterwards, an effective method for cell lysis was developed by combining sonication and enzymatic hydrolysis (So-EnH). The lytic effect of So-EnH was validated by using confocal imaging and flow cytometry. At last, lipid recovery rate reached 95.4 ± 2.7% at the optimized condition.
Collapse
Affiliation(s)
- Shiyu Wei
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Hongyang Wang
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Meixi Fan
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Xinrui Cai
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Junpeng Hu
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Ruixin Zhang
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Baocai Song
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Jing Li
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
9
|
Scown CD, Baral NR, Tanjore D, Rapp V. Matching diverse feedstocks to conversion processes for the future bioeconomy. Curr Opin Biotechnol 2023; 84:103017. [PMID: 37935087 DOI: 10.1016/j.copbio.2023.103017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/10/2023] [Accepted: 10/07/2023] [Indexed: 11/09/2023]
Abstract
A wide variety of wasted or underutilized organic feedstocks can be leveraged to build a sustainable bioeconomy, ranging from crop residues to food processor residues and municipal wastes. Leveraging these feedstocks is both high-risk and high-reward. Converting mixed, variable, and/or highly contaminated feedstocks can pose engineering and economic challenges. However, converting these materials to fuels and chemicals can divert waste from landfills, reduce fugitive methane emissions, and enable more responsible forest management to reduce the frequency and severity of wildfires. Historically, low-value components, including ash and lignin, are poised to become valuable coproducts capable of supplementing cement and valuable chemicals. Here, we evaluate the challenges and opportunities associated with converting a range of feedstocks to renewable fuels and chemicals.
Collapse
Affiliation(s)
- Corinne D Scown
- Life-cycle, Economics, and Agronomy Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Energy & Biosciences Institute, University of California, Berkeley, CA 94720, United States.
| | - Nawa R Baral
- Life-cycle, Economics, and Agronomy Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Deepti Tanjore
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, United States
| | - Vi Rapp
- Building Technologies and Urban Systems Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| |
Collapse
|
10
|
Fernandes MA, Mota MN, Faria NT, Sá-Correia I. An Evolved Strain of the Oleaginous Yeast Rhodotorula toruloides, Multi-Tolerant to the Major Inhibitors Present in Lignocellulosic Hydrolysates, Exhibits an Altered Cell Envelope. J Fungi (Basel) 2023; 9:1073. [PMID: 37998878 PMCID: PMC10672028 DOI: 10.3390/jof9111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
The presence of toxic compounds in lignocellulosic hydrolysates (LCH) is among the main barriers affecting the efficiency of lignocellulose-based fermentation processes, in particular, to produce biofuels, hindering the production of intracellular lipids by oleaginous yeasts. These microbial oils are promising sustainable alternatives to vegetable oils for biodiesel production. In this study, we explored adaptive laboratory evolution (ALE), under methanol- and high glycerol concentration-induced selective pressures, to improve the robustness of a Rhodotorula toruloides strain, previously selected to produce lipids from sugar beet hydrolysates by completely using the major C (carbon) sources present. An evolved strain, multi-tolerant not only to methanol but to four major inhibitors present in LCH (acetic acid, formic acid, hydroxymethylfurfural, and furfural) was isolated and the mechanisms underlying such multi-tolerance were examined, at the cellular envelope level. Results indicate that the evolved multi-tolerant strain has a cell wall that is less susceptible to zymolyase and a decreased permeability, based on the propidium iodide fluorescent probe, in the absence or presence of those inhibitors. The improved performance of this multi-tolerant strain for lipid production from a synthetic lignocellulosic hydrolysate medium, supplemented with those inhibitors, was confirmed.
Collapse
Affiliation(s)
- Mónica A. Fernandes
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Marta N. Mota
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Nuno T. Faria
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| |
Collapse
|
11
|
Contributions of Adaptive Laboratory Evolution towards the Enhancement of the Biotechnological Potential of Non-Conventional Yeast Species. J Fungi (Basel) 2023; 9:jof9020186. [PMID: 36836301 PMCID: PMC9964053 DOI: 10.3390/jof9020186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Changes in biological properties over several generations, induced by controlling short-term evolutionary processes in the laboratory through selective pressure, and whole-genome re-sequencing, help determine the genetic basis of microorganism's adaptive laboratory evolution (ALE). Due to the versatility of this technique and the imminent urgency for alternatives to petroleum-based strategies, ALE has been actively conducted for several yeasts, primarily using the conventional species Saccharomyces cerevisiae, but also non-conventional yeasts. As a hot topic at the moment since genetically modified organisms are a debatable subject and a global consensus on their employment has not yet been attained, a panoply of new studies employing ALE approaches have emerged and many different applications have been exploited in this context. In the present review, we gathered, for the first time, relevant studies showing the ALE of non-conventional yeast species towards their biotechnological improvement, cataloging them according to the aim of the study, and comparing them considering the species used, the outcome of the experiment, and the employed methodology. This review sheds light on the applicability of ALE as a powerful tool to enhance species features and improve their performance in biotechnology, with emphasis on the non-conventional yeast species, as an alternative or in combination with genome editing approaches.
Collapse
|