1
|
Wu Y, Xu L, He F, Song X, Ding J, Ma J. Effects of micro-magnetite on anaerobic co-digestion of waste activated sludge and slaughterhouse waste: Microbial community and metabolism analyses. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124896. [PMID: 40056581 DOI: 10.1016/j.jenvman.2025.124896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/10/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025]
Abstract
Micro-magnetite has been widely applied to improve anaerobic digestion (AD) performance, while comprehensive investigation of microbial community succession, metabolic pathway and magnetite fate remains unclear. In the current study, the effects of micro-magnetite (Fe3O4) on anaerobic co-digestion (AcD) of waste activated sludge and slaughterhouse waste were investigated. Experimental results indicated that the cumulative methane production was significantly increased from 484.6 mL/g VS to 524.4 mL/g VS with 0.8 g/L Fe3O4 addition. Recycled magnetite remained the initial physicochemical properties, including morphology, particle size and crystal structure, as evidenced by various characterization methods. Microbial community analysis indicated that magnetite addition enriched syntrophic bacteria (Armatimonadota, Syntrophomonas and Petrimonas) and methanogens (Methanosarcina). Metagenomic sequencing analysis demonstrated that hydrolysis and acidogenesis metabolic pathways were reinforced by magnetite addition. Meanwhile, the magnetite stimulated the direct interspecies electron transfer via enriching syntrophic microbes (Syntrophomonas and Methanosarcina) and conductive pili functional genes (pilA, mshA and mshC), finally achieving higher cumulative methane yield. This study provided in-depth investigation of the methane production facilitated by micro-magnetite addition and the magnetite fate during the AcD process.
Collapse
Affiliation(s)
- Yuqi Wu
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Longmei Xu
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Fei He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210024, PR China
| | - Xiulan Song
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Jianzhi Ding
- Taiyuan Design Research Institute for Coal Industry, Taiyuan, 030001, PR China
| | - Jie Ma
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210024, PR China.
| |
Collapse
|
2
|
Wang Y, Fu Q, Yang F, Li X, Ma X, Xu Y, Liu X, Wang D. Mechanistic insights into Fe 3O 4-mediated inhibition of H 2S gas production in sludge anaerobic digestion. WATER RESEARCH 2024; 267:122464. [PMID: 39303578 DOI: 10.1016/j.watres.2024.122464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The addition of iron-based conductive materials has been extensively validated as a highly effective approach to augment methane generation from anaerobic digestion (AD) process. In this work, it was additionally discovered that Fe3O4 notably suppressed the production of hazardous H2S gas during sludge AD. As the addition of Fe3O4 increased from 0 to 20 g/L, the accumulative H2S yields decreased by 89.2 % while the content of element sulfur and acid volatile sulfide (AVS) respectively increased by 55.0 % and 30.4 %. Mechanism analyses showed that the added Fe3O4 facilitated sludge conductive capacity, and boosted the efficiency of extracellular electron transfer, which accelerated the bioprocess of sulfide oxidation. Although Fe3O4 can chemically oxidize sulfide to elemental sulfur, microbial oxidation plays a major role in reducing H2S accumulation. Moreover, the released iron ions reacted with soluble sulfide, which promoted the chemical equilibrium of sulfide species from H2S to metal sulfide. Microbial analysis showed that some SRBs (i.e., Desulfomicrobium and Defluviicoccus) and SOB (i.e., Sulfuritalea) changed into keystone taxa (i.e., connectors and module hubs) in the reactor with Fe3O4 addition, showing that the functions of sulfate reduction and sulfur oxidation may play important roles in Fe3O4-present system. Fe3O4 presence also increased the content of functional genes encoding sulfide quinone reductase and flavocytochrome c sulfidedehydrogenase (e.g., Sqr and Fcc) that could oxidize sulfide to sulfur. The impact of other iron-based conductive material (i.e., zero-valent iron) was also verified, and the results showed that it could also significantly reduce H2S production. These findings provide new insights into the effect of iron-based conductive materials on anaerobic process, especially sulfur conversion.
Collapse
Affiliation(s)
- Yan Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qizi Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Fan Yang
- RIOH High Science and Technology Group, Beijing 100088, PR China
| | - Xuemei Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xingyu Ma
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yunhao Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
3
|
Tang Z, Chen L, Zhang Y, Xia M, Zhou Z, Wang Q, Taoli H, Zheng T, Meng X. Improved Short-Chain Fatty Acids Production and Protein Degradation During the Anaerobic Fermentation of Waste-Activated Sludge via Alumina Slag-Modified Biochar. Appl Biochem Biotechnol 2024; 196:6115-6133. [PMID: 38183605 DOI: 10.1007/s12010-023-04816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
As the by-product in the biological sewage treatment, waste-activated sludge (WAS) always suffers from the difficulty of disposal. Anaerobic fermentation to achieve valuable carbon sources is a feasible way for resource utilization of WAS, whereas the process is always restricted by its biochemical efficiency. Hence, the WAS was used as the feedstock in this study. Alumina slag-modified biochar (Al@BioC) respectively from pine wood (PW) or fresh vinegar residue (FVR) was employed to stimulate the process of short-chain fatty acids (SCFAs) production during the anaerobic treatment of WAS. The results indicate that the addition of Al@BioC could facilitate the distinct increase in SCFAs yield (42.66 g/L) by 14.09% and acetate yield (33.30 g/L) by 18.77%, respectively, when compared with that in regular fermentation without Al@BioC addition. Furthermore, protein degradation was also improved. With the Al@BioCPW added, the maximum concentration of soluble protein reached 867.68 mg/L and was 24.39% higher than the initial level, while the enhancement in the group with Al@BioCFVR and without biochar addition was 12.49% and 7.44%, respectively. According to the results of 16S rDNA sequencing, the relative abundance of acid-producing bacteria (Bacteroidota and Firmicutes) was enriched, enhancing the pathways of protein metabolisms and the ability to resist the harsh environment, respectively. Moreover, Proteiniphilum under Bacteroidota and Fastidiosipila under Firmicutes were the main microorganisms to metabolize protein. The above results might provide a novel material for harvesting the SCFAs production, which is conducive to harmless disposal and carbon resource recovery.
Collapse
Affiliation(s)
- Zijian Tang
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou University, Changzhou, 213164, China
| | - Lin Chen
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou University, Changzhou, 213164, China
| | - Yu Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Ming Xia
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Zhengzhong Zhou
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou University, Changzhou, 213164, China
| | - Qian Wang
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou University, Changzhou, 213164, China
| | - Huhe Taoli
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou University, Changzhou, 213164, China
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Tao Zheng
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xiaoshan Meng
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China.
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou University, Changzhou, 213164, China.
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
4
|
Li X, Zhu L, Ma R, Zhang X, Lin C, Tang Y, Huang Z, Wang C. Effects of iron additives on the removal of antibiotics and antibiotic resistance genes in anaerobic fermentation of food waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119038. [PMID: 37769470 DOI: 10.1016/j.jenvman.2023.119038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/04/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023]
Abstract
The presence of antibiotics and antibiotic resistance genes (ARGs) in food waste (FW) during anaerobic fermentation poses significant environmental and health risks. This study elucidated the potential of iron additives, specifically 500-nm and 50-nm zero-valent iron (ZVI) and magnetite, in mitigating these contaminants. These findings revealed that 500-nm magnetite significantly reduced tetracyclines by 81.04%, while 500-nm ZVI effectively reduced cefotaxime by 89.90%. Furthermore, both 500-nm and 50-nm ZVI were observed to decrease different types and abundance of heavy metal resistance and virulence genes. Interestingly, while 500-nm ZVI reduced the overall abundance of ARGs by 50%, 500-nm magnetite primarily reduced the diversity of ARGs without significantly impacting their abundance. These results elucidate the efficacy of iron additives in addressing antibiotic contamination and resistance during the anaerobic fermentation process of FW. The findings acquired from this study mitigate the development of innovative and environmentally sustainable technologies for FW treatment, emphasizing the reduction of environmental risks and enhancement of treatment efficiency.
Collapse
Affiliation(s)
- Xiaotian Li
- College of Natural Resources and Environment, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou, 510642, PR China.
| | - Langping Zhu
- College of Natural Resources and Environment, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou, 510642, PR China
| | - Rong Ma
- College of Natural Resources and Environment, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou, 510642, PR China
| | - Xiaozhi Zhang
- College of Natural Resources and Environment, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou, 510642, PR China
| | - Changquan Lin
- College of Natural Resources and Environment, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou, 510642, PR China
| | - Youqian Tang
- College of Natural Resources and Environment, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou, 510642, PR China
| | - Zhuoshen Huang
- College of Natural Resources and Environment, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou, 510642, PR China
| | - Chunming Wang
- College of Natural Resources and Environment, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou, 510642, PR China.
| |
Collapse
|
5
|
Wu Z, Ji S, Li YY, Liu J. A review of iron use and recycling in municipal wastewater treatment plants and a novel applicable integrated process. BIORESOURCE TECHNOLOGY 2023; 379:129037. [PMID: 37037337 DOI: 10.1016/j.biortech.2023.129037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Chemical methods are expected to play an increasingly important role in carbon-neutral municipal wastewater treatment plants. This paper briefly summarises the enhancement effects of using iron salts in wastewater and sludge treatment processes. The costs and environmental concerns associated with the widespread use of iron salts have also been highlighted. Fortunately, the iron recovery from iron-rich sludge provides an opportunity to solve these problems. Existing iron recovery methods, including direct acidification and thermal treatment, are summarised and show that acidification treatment of FeS digestate from the anaerobic digestion-sulfate reduction process can increase the iron and sulphur recycling efficiency. Therefore, a novel applicable integrated process based on iron use and recycling is proposed, and it reduces the iron salts dosage to 4.2 mg/L and sludge amount by 80%. Current experimental research and economic analysis of iron recycling show that this process has broad application prospects in resource recovery and sludge reduction.
Collapse
Affiliation(s)
- Zhangsong Wu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Shenghao Ji
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|