1
|
Li J, Niu Z, Li L, Zhou S. Optimizing nitrogen removal in advanced wastewater treatment using biological aerated filters. Front Bioeng Biotechnol 2024; 12:1463544. [PMID: 39669419 PMCID: PMC11635964 DOI: 10.3389/fbioe.2024.1463544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024] Open
Abstract
Reducing total nitrogen (TN) presents a significant challenge for numerous wastewater treatment facilities. In order to address this issue, the current study employed a biological aerated filter for the treatment of wastewater containing low nitrogen concentrations. Both lab-scale and pilot-scale biofilters were constructed to investigate the denitrification performance and maximum denitrification load. The findings indicated that the anaerobic denitrification process of established biofilm adhered to pseudo-first-order kinetics. The results of batch testing and continuous-flow experiments confirmed that the minimum hydraulic retention time (HRT) required for mature biofilm was determined to be 0.5 h. The optimal operating parameters were found to be as follows: influent NO3 --N concentration of 25 mg/L, HRT of 0.5 h, resulting in effluent TN levels below 1 mg/L. Under these conditions, the denitrifying load for the lab-scale I-BAF system was calculated to be 1.26 kg (TN)/(m3·d). Furthermore, it was observed that the maximum denitrifying load could reach 2.2 kg (TN)/(m3·d) when the influent NO3 --N concentration was increased to 50 mg/L while maintaining an HRT of 0.5 h. For the mature biofilter, the appropriate HRT ranged from 2 h to 0.5 h. Microbial diversity analysis revealed that the genus Enterobacter was dominant in all denitrification systems, followed by Comamonas and Rhodococcus. The operational parameters described in the paper could be recommended for a full-scale wastewater treatment facility.
Collapse
Affiliation(s)
- Juan Li
- Shaanxi Provincial Land Engineering Construction Group, Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi’an, China
- Shaanxi Engineering Research Center of Land Consolidation, Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi’an, China
| | - Ziru Niu
- Shaanxi Provincial Land Engineering Construction Group, Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi’an, China
- Shaanxi Engineering Research Center of Land Consolidation, Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi’an, China
| | - Lei Li
- Kweichow Moutai Winery (Group) Health Wine Co., LTD., Renhuai, China
| | - Shuting Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
2
|
Shen H, Zhang Q, Li M, Tan X, Dong X, Wang H. Research on intensive nitrogen removal of municipal sewage by mainstream anaerobic ammonia oxidation process. CHEMOSPHERE 2024; 367:143622. [PMID: 39461438 DOI: 10.1016/j.chemosphere.2024.143622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
The anaerobic ammonia oxidation (anammox) process is a pivotal nitrogen removal technique, playing a significant role in the field of wastewater treatment. The paper commences by delineating the merits of the anammox process in comparison to conventional nitrification-denitrification techniques. Subsequently, it delves into the characteristics of different sludge morphologies process of the behavior of anammox bacteria and their reactions to environmental factors. Revising the issues associated with managing urban sewage in mainstream areas., it discusses the issues faced by the anammox process under reduced nitrogen loads, such as restricted activity due to decreased the levels of ammonia nitrogen and nitrite concentrations, as well as the impact of environmental factors like low temperature, organic matter, and sulfur ions. Following this, a comprehensive review of various types of coupled anammox processes is provided, highlighting the advantages and characteristics of partial nitrification (PN), partial denitrification (PD), methane-dependent nitrite/nitrate reduction (DAMO), sulfur-driven autotrophic denitrification (SAD), iron ammonia oxidation (feammox) and algae photoautotrophy coupling techniques, emphasizing their significance in system stability and resource utilization efficiency. Future research directions include exploring the applicability of the anammox process under various temperature conditions and addressing NO3--N issues in effluent. The findings from these studies will offer valuable insights for further enhancing the optimization of the anammox process in mainstream urban wastewater treatment.
Collapse
Affiliation(s)
- Haonan Shen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China.
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Xibei Tan
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaoqian Dong
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
3
|
Zhou M, Han Y, Zhuo Y, Yu F, Hu G, Peng D. Effect of initial ammonium concentration on a one-stage partial nitrification/anammox biofilm system: Nitrogen removal performance and the microbial community. J Environ Sci (China) 2024; 143:176-188. [PMID: 38644015 DOI: 10.1016/j.jes.2023.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 04/23/2024]
Abstract
One-stage partial nitrification coupled with anammox (PN/A) technology effectively reduces the energy consumption of a biological nitrogen removal system. Inhibiting nitrite-oxidizing bacteria (NOB) is essential for this technology to maintain efficient nitrogen removal performance. Initial ammonium concentration (IAC) affects the degree of inhibited NOB. In this study, the effect of the IAC on a PN/A biofilm was investigated in a moving bed biofilm reactor. The results showed that nitrogen removal efficiency decreased from 82.49% ± 1.90% to 64.57% ± 3.96% after the IAC was reduced from 60 to 20 mg N/L, while the nitrate production ratio increased from 13.87% ± 0.90% to 26.50% ± 3.76%. NOB activity increased to 1,133.86 mg N/m2/day after the IAC decreased, approximately 4-fold, indicating that the IAC plays an important inhibitory role in NOB. The rate-limiting step in the mature biofilm of the PN/A system is the nitritation process and is not shifted by the IAC. The analysis of the microbial community structure in the biofilm indicates that the IAC was the dominant factor in changes in community structure. Ca. Brocadia and Ca. Jettenia were the main anammox bacteria, and Nitrosomonas and Nitrospira were the main AOB and NOB, respectively. IAC did not affect the difference in growth between Ca. Brocadia and Ca. Jettenia. Thus, modulating the IAC promoted the PN/A process with efficient nitrogen removal performance at medium to low ammonium concentrations.
Collapse
Affiliation(s)
- Mengyu Zhou
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yun Han
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yang Zhuo
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fen Yu
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gaoyuan Hu
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dangcong Peng
- School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
4
|
Zhuang X, Wang D, Jiang C, Wang X, Yang D, Zhang W, Wang D, Xu S. Achieving partial nitrification by sludge treatment using sulfide: Optimal conditions determination, long-term stability evaluation and microbial mechanism exploration. BIORESOURCE TECHNOLOGY 2024; 408:131207. [PMID: 39098354 DOI: 10.1016/j.biortech.2024.131207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
This study proposes an innovative strategy for achieving PN in synthetic domestic wastewater by side-stream sludge treatment using sulfide as the sole control factor. By conducting controllable batch experiments and response surface analysis, optimal sulfide treatment conditions were firstly determined as 90 mg/L of sulfide, 7.5 of pH, 100 rpm of rotation and 12 h of treatment time. After treatment, half of ammonia oxidizing bacteria (AOB) activity remained, but nitrite oxidizing bacteria (NOB) activity was barely detected. Nitrite accumulation rate of long-term running PN steadily reached 83.9 % with 99.1 % of ammonia removal efficiency. Sulfide treatment increased community diversity and facilitated stability of microbiota functioning with PN phenotype, which might be sustained by the positive correlation between ammonia oxidation gene (amoA) and sulfur oxidation gene (soxB). Correspondingly, the network analysis identified the keystone microbial taxa of persistent PN microbiota as Nitrosomonas, Thauera, Truepera, Defluviimonas and Sulitalea in the later stage of long-term reactor.
Collapse
Affiliation(s)
- Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danhua Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmin Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weijun Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongsheng Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hang Zhou 310058, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu 322000, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Zhou Y, Wang C, Xu X, Liu L, Zhang G, Yang F. Advance nitrogen removal from anaerobic sludge digestion liquor using partial nitrification and denitrification coupled with simultaneous partial nitrification, anammox, and denitrification process. BIORESOURCE TECHNOLOGY 2024; 393:130117. [PMID: 38016586 DOI: 10.1016/j.biortech.2023.130117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 11/30/2023]
Abstract
A novel two-stage continuous-flow partial nitrification and denitrification coupled with simultaneous partial nitrification, anammox, and denitrification (PND-SNAD) process was developed to treat anaerobic sludge digestion liquor. During the stable phase, the total nitrogen and chemical oxygen demand (COD) removal efficiencies were 93 ± 3 % and 59 ± 7 %, respectively. Free ammonia suppression (26.2 ± 12.7 mg/L) and low dissolved oxygen (DO, 0.12 ± 0.07 mg/L) were key factors in the operation of the PND process, while the SNAD process was restricted successfully by limited oxygen (DO < 0.1 mg/L) and short solids retention time (9.7 d). The PND process was an important pretreatment process that could remove biodegradable dissolved COD by denitrification and supply ammonium-oxidizing bacteria (AOB) to the SNAD process. Nitrosomonas and Ca. Brocadia were the dominant AOB and anammox bacteria, respectively. Overall, this research presents a distinctive SNAD combined process for anaerobic sludge digestion liquor treatment.
Collapse
Affiliation(s)
- Yue Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Ling Gong Road 2, Dalian 116024, PR China
| | - Chao Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Xiaochen Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Ling Gong Road 2, Dalian 116024, PR China.
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Ling Gong Road 2, Dalian 116024, PR China
| | - Guoquan Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Ling Gong Road 2, Dalian 116024, PR China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Ling Gong Road 2, Dalian 116024, PR China
| |
Collapse
|
6
|
Zhang Y, Gong H, Zhu D, Lu D, Zhou S, Wang Y, Dai X. A two-stage partial nitritation-denitritation/anammox (PN-DN/A) process to treat high-solid anaerobic digestion (HSAD) reject water: Verification based on pilot-scale and full-scale projects. WATER RESEARCH X 2024; 22:100213. [PMID: 38414757 PMCID: PMC10897884 DOI: 10.1016/j.wroa.2024.100213] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
High-solid anaerobic digestion (HSAD) reject water, distinguished by elevated levels of chemical oxygen demand (COD), NH4+-N and an imbalanced COD/TIN, presents a significant challenge for treatment through conventional partial nitritation/ anammox (PN/A) process. This study introduced a revised two-stage PN/A process, namely partial nitritation/denitritation-anammox (PN-DN/A) process. Its effectiveness was investigated through both pilot-scale (12 t/d) and full-scale (400 t/d) operations, showcasing stable operation with an impressive total removal rate of over 90 % for total inorganic nitrogen (TIN) and exceeding 60 % for COD. Notably, 30 % of TIN was eliminated through heterotrophic denitritation in partial nitritation-denitritation (PN-DN) stage, while approximately 55 % of TIN removal occurred in the anammox stage with anaerobic ammonium oxidizing bacteria (AnAOB) enrichment (Candidatus Kuenenia, 25.9 % and 26.6 % relative abundance for pilot and full scale). In the PN-DN stage, aerobic-anaerobic alternation promoted organics elimination (around 50 % COD) and balanced nitrogen species. Microbial and metagenomic analysis verified the coupling between autotrophic and heterotrophic denitritation and demonstrated that PN-DN stage acted as a protective buffer for anammox stage. This comprehensive study highlights the PN-DN/A process's efficacy in stably treating HSAD reject water.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Hui Gong
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Danyang Zhu
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Dandan Lu
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Shuyan Zhou
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Yayi Wang
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
7
|
Han X, Zhang L, Yuan Y, Zhang Q, Peng Y. Anaerobic starvation realizes partial nitrification and starts anammox bacteria self-enrichment in mainstream municipal sewage treatment in a low filling ratio sequencing batch reactor. BIORESOURCE TECHNOLOGY 2023; 387:129505. [PMID: 37468012 DOI: 10.1016/j.biortech.2023.129505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
The initiating and stable preservation of partial nitrification (PN) and achievement of anammox bacteria self-enrichment in domestic sewage is a purposeful subject. In this article, an originality tactics of anaerobic starvation for 100 days was adopted for rapidly achieving PN in actual wastewater, the nitrite accumulation rate (NAR) improved from 4.95% to 81.73% in 18 days. After anaerobic starvation was stopped, the stable PN effect furnished enough stroma for the growth of anammox bacteria. The abundance of Candidatus Brocadia grew from 0% to 0.42% in floc sludge and 0.43% in blank biofilm, which promoted nitrogen removal effect. Anaerobic starvation continuing 74 days generated further decrease in the abundance of Nitrobacter and Nitrospira of nitrite-oxidizing bacteria (NOB), indicating that anaerobic starvation can restore the destroyed partial nitrification. In conclusion, this article furnished a low-cost method for achieving anammox bacteria self-enrichment in mainstream municipal wastewater in 10% filling ratio without chemicals addition.
Collapse
Affiliation(s)
- Xueke Han
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Liyuan Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yue Yuan
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
8
|
Zhu W, Van Tendeloo M, De Paepe J, Vlaeminck SE. Comparison of typical nitrite oxidizing bacteria suppression strategies and the effect on nitrous oxide emissions in a biofilm reactor. BIORESOURCE TECHNOLOGY 2023; 387:129607. [PMID: 37544532 DOI: 10.1016/j.biortech.2023.129607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
In mainstream partial nitritation/anammox (PN/A), suppression of nitrite oxidizing bacteria (NOB) and mitigation of N2O emissions are two essential operational goals. The N2O emissions linked to three typical NOB suppression strategies were tested in a covered rotating biological contactor (RBC) biofilm system at 21 °C: (i) low dissolved oxygen (DO) concentrations, and treatments with (ii) free ammonia (FA), and (iii) free nitrous acids (FNA). Low emerged DO levels effectively minimized NOB activity and decreased N2O emissions, but NOB adaptation appeared after 200 days of operation. Further NOB suppression was successfully achieved by periodic (3 h per week) treatments with FA (29.3 ± 2.6 mg NH3-N L-1) or FNA (3.1 ± 0.3 mg HNO2-N L-1). FA treatment, however, promoted N2O emissions, while FNA did not affect these. Hence, biofilm PN/A should be operated at relatively low DO levels with periodic FNA treatment to maximize nitrogen removal efficiency while avoiding high greenhouse gas emissions.
Collapse
Affiliation(s)
- Weiqiang Zhu
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium; School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Michiel Van Tendeloo
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Jolien De Paepe
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| |
Collapse
|
9
|
Wang T, Chen M, Zhu J, Li N, Wang X. Anodic ammonium oxidation in microbial electrolysis cell: Towards nitrogen removal in low C/N environment. WATER RESEARCH 2023; 242:120276. [PMID: 37392506 DOI: 10.1016/j.watres.2023.120276] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Biological nitrogen removal in low C/N environment is challenging in wastewater treatment for a long time. Autotrophic ammonium oxidation is promising due to the no need of carbon source addition, but alternative electron acceptors other than oxygen has to be widely investigated. Recently, microbial electrolysis cell (MEC), which applies a polarized inert electrode as the electron harvester, has been proved effective to oxidize ammonium with electroactive biofilm. That is, anodic microbes stimulated by exogenous low power can extract electron from ammonium and transfer electron to electrodes. This review aims to consolidate the recent advances in anodic ammonium oxidation in MEC. Various technologies based on different functional microbes and mechanisms of these processes are reviewed. Thereafter, the crucial factors influencing the ammonium oxidation technology are discussed. Challenges and prospects of anodic ammonium oxidation in ammonium-containing wastewater treatment are also proposed to provide valuable insights on the technologic reference and potential value of MEC in ammonium-containing wastewater treatment.
Collapse
Affiliation(s)
- Tuo Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Mei Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Jiaxuan Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
10
|
Zuo F, Yue W, Gui S, Sui Q, Wei Y. Resilience of anammox application from sidestream to mainstream: A combined system coupling denitrification, partial nitritation and partial denitrification with anammox. BIORESOURCE TECHNOLOGY 2023; 374:128783. [PMID: 36828226 DOI: 10.1016/j.biortech.2023.128783] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is a potential process to achieve the neutralization of energy and carbon. Due to the low temperature and variation of municipal sewage, the application of mainstream anammox is hard to be implemented. For spreading mainstream anammox in practice, several key issues and bottlenecks including the start-up, stable NO2--N supply, maintenance and dominance of AnAOB with high activity, prevention of NO3--N buildup, reduction of sludge loss, adaption to the seasonal temperature and alleviation of COD impacts on AnAOB are discussed and summarized in this review in order to improve its startup, stable operation and resilience of mainstream anammox. Hence a combined biological nitrogen removal (CBNR) system based on conventional denitrification, shortcut nitrification-denitrification, Partial Nitritation and partial Denitrification combined Anammox (PANDA) process through the management of organic matter and nitrate is proposed correspondingly aiming at adaptation to the variations of seasonal temperature and pollutants in influent.
Collapse
Affiliation(s)
- Fumin Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Yue
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuanglin Gui
- Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Qianwen Sui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330096, China.
| |
Collapse
|
11
|
Liu J, Zhang Q, Wang S, Li X, Wang R, Peng Y. Superior nitrogen removal and efficient sludge reduction via partial nitrification-anammox driven by addition of sludge fermentation products for real sewage treatment. BIORESOURCE TECHNOLOGY 2023; 372:128689. [PMID: 36717060 DOI: 10.1016/j.biortech.2023.128689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Efficient retention and enrichment of anammox bacteria (AnAOB) are essential for the application of municipal wastewater anammox. Herein, an innovative process for highly enriching AnAOB within suspended carrier was developed in a single-stage anaerobic/oxic/anoxic reactor with 5.5 % carrier filling ratio for real sewage. Addition of sludge fermentation products promoted stable maintenance of partial nitrification (nitrite accumulation rate > 90.0 %) and achieved efficient external sludge reduction (27.6-37.9 %). Continuous nitrite supply and carrier addition promoted AnAOB enrichment (2.4 × 1011 gene copies/g dry sludge). Candidatus Brocadia was the predominant bacteria in carriers (18.6 %). The average effluents of total inorganic nitrogen (TIN) and NH4+-N were 1.9 and 0.8 mg/L with removal rates of 97.0 % and 98.7 %. In the anoxic stage, TIN removal rate reached 71.5 %, and the proportion of anammox to nitrogen removal accounted for 82.7 %. This study broadens the application of mainstream sewage anammox and the resource utilization of waste activated sludge.
Collapse
Affiliation(s)
- Jinjin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Rui Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|