1
|
Hu J, Xu B, Yan J, Fan G. Characteristics and Mechanisms of Simultaneous Quinoline and Ammonium Nitrogen Removal by a Robust Bacterium Pseudomonas stutzeri H3. Microorganisms 2025; 13:687. [PMID: 40142578 PMCID: PMC11945285 DOI: 10.3390/microorganisms13030687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
The discharge of organic and inorganic nitrogenous pollutants in wastewater leads to eutrophication and disrupts the ecological balance. Therefore, the pressing need for an effective treatment method has become increasingly evident. A robust bacterium Pseudomonas stutzeri H3 capable of simultaneous organic and inorganic nitrogen removal was isolated from the activated sludge in the coking wastewater treatment system. The optimal conditions for the simultaneous removal of ammonium nitrogen and quinoline were as follows: C/N ratio of 15-20, initial pH of 7-8, culture temperature of 30 °C, and shaking speed of 150-300 rpm. At 200 mg/L ammonium nitrogen and 100 mg/L quinoline, strain H3 achieved above 90% of removal efficiency, exhibiting excellent simultaneous nitrogen removal capabilities. The outstanding nitrogen removal efficiencies in the presence of quinoline and different inorganic nitrogen sources further confirmed the simultaneous organic and inorganic nitrogen removal capability of strain H3. The whole genome sequencing and nitrogen metabolic intermediates determination of strain H3 were performed to elucidate the gene function annotations, nitrogen removal function genes, and nitrogen metabolic pathways. The findings provide a promising pathway to treat the organic and inorganic nitrogenous pollutants in wastewater.
Collapse
Affiliation(s)
- Jie Hu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Bing Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Jiabao Yan
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China;
| | - Guozhi Fan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| |
Collapse
|
2
|
Xia Q, Cheng J, Yang F, Yi X, Huang W, Lei Z, Wang D, Huang W. Activated carbon and anthraquinone-2,6-disulfonate as electron shuttles for enhancing carbon and nitrogen removal from simultaneous methanogenesis, Feammox and denitrification system. BIORESOURCE TECHNOLOGY 2025; 418:131975. [PMID: 39674352 DOI: 10.1016/j.biortech.2024.131975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Anthraquinone-2,6-disulfonate (AQDS) and activated carbon (AC) were employed as exogenous electron shuttles (ESs) for enhancing the performance of an integrated simultaneous methanogenesis, Feammox, and denitrification (SMFD) system treating fish sludge. The addition of AQDS and AC led to an increased total nitrogen removal efficiency by 30.2 % and 66.5 %, an increased total chemical oxygen demand removal efficiency by 9.5 % and 24.5 %, and an improved methane yield by 5.2 % and 12.6 %, respectively. Regarding nitrogen removal, AQDS mainly facilitated NH4+-N oxidation into NO3--N via Feammox, while AC facilitated both Feammox and denitrification. Regarding carbon removal, both ESs promoted the hydrolysis-acidification process via stimulating dissimilatory iron reduction and established direct interspecies electron transfer (DIET) between methanogens and syntrophic bacteria. Microbial analysis confirmed the enrichment of iron-reducing bacteria, denitrifiers, DIET-related methanogens and syntrophic partners in the presence of ESs. The study provides an ESs-assisted strategy for enhancing simultaneous nitrogen and carbon removal from high-strength wastewater.
Collapse
Affiliation(s)
- Qing Xia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Jun Cheng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Fei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Xuesong Yi
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Wenli Huang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300350, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Dexin Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China.
| |
Collapse
|
3
|
Vandecasteele B, Viaene J, Castejón-Del Pino R, Lataf A, Cuypers A, Vandamme D. S-enhanced microbial activation of biochars and processed grass fibers for circular horticulture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177760. [PMID: 39616914 DOI: 10.1016/j.scitotenv.2024.177760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/26/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024]
Abstract
Sulfur-enhanced microbiologically activated biochar and processed grass fibers were tested for suitability as bulk material for horticultural substrates. The potential for use as bulk material was improved when grass fibers with lower biological stability were acidified with elemental sulfur (S). Acidification of the fibers with S was obtained within 2 weeks and resulted in a higher biological stability due to improved decomposition during incubation with S, a change in the microbiome, or inhibition due to high sulfate concentrations, which reduced the decomposition activity. The application of wood-based biochars as bulk or stand-alone material for horticultural substrates is restricted by their high pH and high acid-buffering capacity. Acidification of biochar through microbial activation occurred slowly. The dynamics of lowering pH after S treatment were determined by the acid-buffering capacity of the biochar. In the long term a strong drop in pH was observed in biochars with a low acid-buffering capacity. For the biochars with a high acid-buffering capacity, pH drop was moderate despite a clear decrease in acid-buffering capacity. The microbial activation of biochar was accelerated by adding mineral fertilizer or chitin. Microbial activation of the biochars was confirmed by S mineralization after application of elemental S and by N mineralization from chitin. The acidification of biochars produced from bark or straw-like fiber with elemental S resulted in only small changes in surface properties.
Collapse
Affiliation(s)
- Bart Vandecasteele
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burg. Van Gansberghelaan 92, 9820 Merelbeke, Belgium.
| | - Jarinda Viaene
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burg. Van Gansberghelaan 92, 9820 Merelbeke, Belgium
| | - Raúl Castejón-Del Pino
- Department of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Amine Lataf
- Hasselt University, Centre for Environmental Sciences (CMK), Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Ann Cuypers
- Hasselt University, Centre for Environmental Sciences (CMK), Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Dries Vandamme
- Hasselt University, Centre for Environmental Sciences (CMK), Agoralaan Building D, 3590 Diepenbeek, Belgium
| |
Collapse
|
4
|
Yang Y, Kang Z, Xu G, Wang J, Yu Y. MgO anchored N-doping biochar enhances the bensulfuron-methyl biodegradation by Acinetobacter YH0317: Higher reactive oxygen species level and bacterial viability. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135797. [PMID: 39265391 DOI: 10.1016/j.jhazmat.2024.135797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/28/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Bensulfuron-methyl (BSM) is a typical broad-spectrum sulfonylurea herbicide and the runoff of BSM residues from agricultural regions poses a significant threat to the ecosystem. Here we develop a bacteria-material hybrid system constructed by Acinetobacter YH0317 and Mg(NO3)2 modified biochar (MBC) for efficiently degrading BSM under various conditions including pH and temperature. Results showed that BSM biodegradation efficiency by YH0317&MBC (96.7 %) was significantly higher than YH0317&BC (79.5 %) and YH0317 (43.9 %) at 15 °C after 7 d of incubation. The addition of MBC significantly increased the reactive oxygen species (ROS) level, which was significantly higher than group YH0317. Moreover, the bacterial viability, extracellular polymeric substances (EPS) production, and membrane permeability of YH0317 were also enhanced with the addition of MBC. The electron paramagnetic resonance (EPR) and quenching experiments revealed that singlet oxygen (1O2) was the dominant active substance produced by MBC. The YH0317&MBC could effectively remove the BSM, and reduce the oxidative stress to soybean, which was beneficial to the growth of soybean through hydroponic experiment. This study establishes a microorganism-material system that efficiently removes BSM in aquatic environments and emphasizes the importance of ROS in pollution removal by the hybrid system.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Zhichao Kang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jian Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
5
|
Wang Y, Tian L, Zheng J, Tan Y, Li Y, Wei L, Zhang F, Zhu L. Enhancing nitrogen removal in low C/N wastewater with recycled sludge-derived biochar: A sustainable solution. WATER RESEARCH 2024; 267:122551. [PMID: 39369509 DOI: 10.1016/j.watres.2024.122551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Denitrification is an important biological process in wastewater treatment plants (WWTPs). However, a low carbon-to-nitrogen (C/N) ratio limits the availability of organic carbon, potentially reducing denitrification efficiency. This study investigates the impact of sludge-derived biochar on the nitrogen removal of activated sludge for low C/N ratio municipal wastewater. Sludge-based biochar was characterized by its physicochemical properties, revealing that biochar prepared at 400 °C exhibited the highest specific surface area and the most favorable surface functional groups for electron transfer. The results from batch tests showed that adding 4 g/L of biochar dosage enhanced denitrification rates and total nitrogen (TN) removal efficiency the most. Sequencing batch reactors (SBRs) experiments further confirmed that biochar dosgae improved the removal efficiencies of COD, NH4+-N, and TN, achieving stable values of 97.2 ± 1.2 %, 99.2 ± 0.6 %, and 83.8 ± 2.4 %, respectively. Metabolic and electrochemical analyses revealed that biochar addition enhanced the activity of denitrification enzymes, increasing the ammonia oxidation rate by 12.9 ± 0.7 %, nitrite oxidation rate by 14.7 ± 1.2 %, nitrate reduction rate by 36.9 ± 1.5 %, and nitrite reduction rate by 16.4 ± 0.8 %. The relative abundance of denitrification functional genes (amoA, nirS, nirK, narG, nosZ) increased, and the activities of the corresponding enzymes (AMO, NXR, NAP, NIR) rose by 23±6 %, 53±5 %, 260±15 %, and 55±7 %, respectively. This increase in enzyme activity suggested enhanced denitrification processes, which was further supported by the 60.1 ± 3.7 % increase in electron transfer system activity (ETSA), indicating that biochar acted as an electron shuttle. This study proposes a potential sustainable approach for sludge recycling and enhanced wastewater nitrogen removal under low C/N conditions.
Collapse
Affiliation(s)
- Yinglin Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Luling Tian
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingjing Zheng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yixiao Tan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lecheng Wei
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fan Zhang
- School of Chemistry and Physics, Queensland University of Technology, George Street, Brisbane, QLD 4000, Australia
| | - Liang Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| |
Collapse
|
6
|
Cao T, Yang Y, Li X, Liu L, Fei X, Zhao Y, Zhang L, Lu Y, Zhou D. In-situ rapid cultivation of aerobic granular sludge in A/O bioreactor by using Ca(ClO) 2 pretreating sludge. BIORESOURCE TECHNOLOGY 2024; 410:131278. [PMID: 39151572 DOI: 10.1016/j.biortech.2024.131278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The efficient utilization of residual sludge and the rapid cultivation of aerobic granular sludge in continuous-flow engineering applications present significant challenges. In this study, aerobic granular cultivation was fostered in a continuous-flow system using Ca(ClO)2-sludge carbon (Ca-SC). Ca-SC retained the original sludge properties, contributing to granular growth in an A/O bioreactor. By day 40, the granule diameters increased to 0.8 mm with the SVI30 decreased by 2.7 times. Moreover, Ca-SC facilitated protein secretion, reaching 98.06 mg/g VSS and enhanced the hydrophobicity to 68.4 %. The continuous-flow aerobic granular sludge exhibited a nutrient removal rate above 90 %. Furthermore, Tessaracoccus and Nitrospira were enriched to promote granular formation and nitrogen removal. The residual sludge was carbonized and reused in the traditional wastewater treatment process to culture granular sludge in situ, aiming to achieve "self-production and self-consumption" of sludge and promote the innovative model of "treating waste with waste" in urban sewage environmental restoration.
Collapse
Affiliation(s)
- Tingting Cao
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China.
| | - Yue Yang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Xiaomeng Li
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Liang Liu
- Jilin Huatian Environmental Protection Group Co., Ltd., 130000, China
| | - Xiyang Fei
- Jilin Huatian Environmental Protection Group Co., Ltd., 130000, China
| | - Yuanhang Zhao
- Jilin Huatian Environmental Protection Group Co., Ltd., 130000, China
| | - Leilei Zhang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Ying Lu
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
7
|
Lu J, Tan Y, Tian S, Qin Y, Zhou M, Hu H, Zhao X, Wang Z, Hu B. Effect of carbon source on carbon and nitrogen metabolism of common heterotrophic nitrification-aerobic denitrification pathway. CHEMOSPHERE 2024; 361:142525. [PMID: 38838867 DOI: 10.1016/j.chemosphere.2024.142525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/10/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Pseudomonas sp. ZHL02, removing nitrogen via ammonia nitrogen (NH4+) → hydroxylamine (HN2OH) → nitrite (NO2-) → nitrate (NO3-) → NO2- → nitric oxide (NO) → nitrous oxide (N2O) pathway was employed for getting in-depth information on the heterotrophic nitrification-aerobic denitrification (HNAD) pathway from carbon oxidation, nitrogen conversion, electron transport process, enzyme activity, as well as gene expression while sodium succinate, sodium citrate, and sodium acetate were utilized as the carbon sources. The nitrogen balance analysis results demonstrated that ZHL02 mainly removed NH4+-N through assimilation. The carbon source metabolism resulted in the discrepancies in electron transport chain and nitrogen removal between different HNAD bacteria. Moreover, the prokaryotic strand-specific transcriptome method showed that, amo and hao were absent in ZHL02, and unknown genes may be involved in ZHL02 during the HNAD process. As a fascinating process for removing nitrogen, the HNAD process is still puzzling, and the relationship between carbon metabolism and nitrogen metabolism among different HNAD pathways should be studied further.
Collapse
Affiliation(s)
- Jiyan Lu
- School of Civil Engineering, Changan University, Xian, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China
| | - Yue Tan
- School of Civil Engineering, Changan University, Xian, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China
| | - Shanghong Tian
- School of Civil Engineering, Changan University, Xian, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China
| | - Yuxiao Qin
- School of Civil Engineering, Changan University, Xian, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China
| | - Meng Zhou
- School of Civil Engineering, Changan University, Xian, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China
| | - Hao Hu
- School of Civil Engineering, Changan University, Xian, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China
| | - Xiaohong Zhao
- School of Civil Engineering, Changan University, Xian, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China
| | - Zhoufeng Wang
- School of Water and Environment, Changan University, Xian, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China.
| | - Bo Hu
- School of Civil Engineering, Changan University, Xian, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xian, Shaanxi Province, China.
| |
Collapse
|
8
|
Xie Y, Zhang Q, Wu Q, Zhang J, Dzakpasu M, Wang XC. Novel adaptive activated sludge process leverages flow fluctuations for simultaneous nitrification and denitrification in rural sewage treatment. WATER RESEARCH 2024; 255:121535. [PMID: 38564890 DOI: 10.1016/j.watres.2024.121535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
The fluctuating characteristics of rural sewage flow pose a significant challenge for wastewater treatment plants, leading to poor effluent quality. This study establishes a novel adaptive activated sludge (AAS) process specifically designed to address this challenge. By dynamically adjusting to fluctuating water flow in situ, the AAS maintains system stability and promotes efficient pollutant removal. The core strategy of AAS leverages the inherent dissolved oxygen (DO) variations caused by flow fluctuations to establish an alternating anoxic-aerobic environment within the system. This alternating operation mode fosters the growth of aerobic denitrifiers, enabling the simultaneous nitrification and denitrification (SND) process. Over a 284-day operational period, the AAS achieved consistently high removal efficiencies, reaching 94 % for COD and 62.8 % for TN. Metagenomics sequencing revealed HN-AD bacteria as the dominant population, with the characteristic nap gene exhibiting a high relative abundance of 0.008 %, 0.010 %, 0.014 %, and 0.015 % in the anaerobic, anoxic, dynamic, and oxic zones, respectively. Overall, the AAS process demonstrates efficient pollutant removal and low-carbon treatment of rural sewage by transforming the disadvantage of flow fluctuation into an advantage for robust DO regulation. Thus, AAS offers a promising model for SND in rural sewage treatment.
Collapse
Affiliation(s)
- Yadong Xie
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055 China
| | - Qionghua Zhang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055 China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055 China.
| | - Qi Wu
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055 China
| | - Jiyu Zhang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055 China
| | - Mawuli Dzakpasu
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055 China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055 China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055 China
| |
Collapse
|
9
|
Yang Y, Kang Z, Wang J, Xu G, Yu Y. Simultaneous achievement of removing bensulfuron-methyl and reducing CO 2 emission in paddy soil by Acinetobacter YH0317 immobilized boron-doping biochar. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133758. [PMID: 38350318 DOI: 10.1016/j.jhazmat.2024.133758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Abstract
Herbicide residue and greenhouse gas (GHG) emission are two main problems in the paddy rice field, which have barely been considered simultaneously. Herein, a bensulfuron-methyl (BSM)-degrading bacterium named Acinetobacter YH0317 was successfully immobilized on two kinds of biochars and subsequently applied in the paddy soil. The BSM removal rate of Acinetobacter YH0317 immobilized boron-doping biochar (BBC) was 80.42% after 30 d, which was significantly higher than that of BBC (39.05%) and Acinetobacter YH0317 (49.10%) applied alone. BBC acting as an immobilized carrier could enable Acinetobacter YH0317 to work in harsh and complex environment and thus improve the BSM removal efficiency. The addition of Acinetobacter YH0317 immobilized BBC (TP5) significantly improved the soil physicochemical properties (pH, SOC, and NH4+-N) and increased the diversity of soil microbial community compared to control group (CG). Meanwhile, Acinetobacter YH0317 immobilized BBC reduced the CO2-equivalent emission by 41.0%. Metagenomic sequencing results revealed that the decreasing CO2 emission in TP5 was correlated with carbon fixation gene (fhs), indicating that fhs gene may play an important role in reducing CO2 emission. The work presents a practical and supportive technique for the simultaneous achievement on the soil purification and GHG emission reduction in paddy soil.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhichao Kang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
10
|
Meng J, Di Y, Geng Y, Li W, Huo R, Zhou S. Enhanced nitrate removal efficiency and microbial response of immobilized mixed aerobic denitrifying bacteria through biochar coupled with inorganic electron donors in oligotrophic water. BIORESOURCE TECHNOLOGY 2024; 396:130457. [PMID: 38369080 DOI: 10.1016/j.biortech.2024.130457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The nitrogen removal characteristics and microbial response of biochar-immobilized mixed aerobic denitrifying bacteria (BIADB) were investigated at 25 °C and 10 °C. BIADB removed 53.51 ± 1.72 % (25 °C) and 39.90 ± 4.28 % (10 °C) nitrate in synthetic oligotrophic water. Even with practical oligotrophic water, BIADB still effectively removed 47.66-53.21 % (25 °C), and 39.26-45.63 % (10 °C) nitrate. The addition of inorganic electron donors increased nitrate removal by approximately 20 % for synthetic and practical water. Bacterial and functional communities exhibited significant temperature and stage differences (P < 0.05), with temperature and total dissolved nitrogen being the main environmental factors. The dominant genera and keystone taxa exhibited significant differences at the two temperatures. Structural equation model analysis showed that dissolved organic matter had the highest direct and indirect effects on diversity and function, respectively. This study provides an innovative pathway for utilizing biochar and inorganic electron donors for nitrate removal from oligotrophic waters.
Collapse
Affiliation(s)
- Jiajing Meng
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yiling Di
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yuting Geng
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Wanying Li
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Rui Huo
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shilei Zhou
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
11
|
Yuan CY, Yan WJ, Sun FY, Tu HH, Lu JJ, Feng L, Dong WY. Management of biofilm by an innovative layer-structured membrane for membrane biofilm reactor (MBfR) to efficient methane oxidation coupled to denitrification (AME-D). WATER RESEARCH 2024; 251:121107. [PMID: 38218075 DOI: 10.1016/j.watres.2024.121107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Aerobic methane oxidation coupled with denitrification (AME-D) has garnered significant attention as a promising technology for nitrogen removal from water. Effective biofilm management on the membrane surface is essential to enhance the efficiency of nitrate removal in AME-D systems. In this study, we introduce a novel and scalable layer-structured membrane (LSM) developed using a meticulously designed polyurethane sponge. The application of the LSM in advanced biofilm management for AME-D resulted in a substantial enhancement of denitrification performance. Our experimental results demonstrated remarkable improvements in nitrate-removal flux (92.8 mmol-N m-2 d-1) and methane-oxidation rate (325.6 mmol m-2 d-1) when using an LSM in a membrane biofilm reactor (L-MBfR) compared with a conventional membrane reactor (C-MBfR). The l-MBfR exhibited 12.4-, 6.8- and 3.4-fold increases in nitrate-removal rate, biomass-retention capacity, and methane-oxidation rate, respectively, relative to the control C-MBfR. Notably, the l-MBfR demonstrated a 3.5-fold higher abundance of denitrifying bacteria, including Xanthomonadaceae, Rhodocyclaceae, and Methylophilaceae. In addition, the denitrification-related enzyme activity was twice as high in the l-MBfR than in the C-MBfR. These findings underscore the LSM's ability to create anoxic/anaerobic microenvironments conducive to biofilm formation and denitrification. Furthermore, the LSM exhibited a unique advantage in shaping microbial community structures and facilitating cross-feeding interactions between denitrifying bacteria and aerobic methanotrophs. The results of this study hold great promise for advancing the application of MBfRs in achieving efficient and reliable nitrate removal through the AME-D pathway, facilitated by effective biofilm management.
Collapse
Affiliation(s)
- Chun-Yan Yuan
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Wei-Jia Yan
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Fei-Yun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, PR China.
| | - Hong-Hua Tu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Jian-Jiang Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, PR China.
| | - Liang Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Wen-Yi Dong
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, PR China
| |
Collapse
|
12
|
Fan H, Huang Z, Feng C, Wu Z, Tian Y, Ma F, Li H, Huang J, Qin X, Zhou Z, Zhang X. Functional keystone taxa promote N and P removal of the constructed wetland to mitigate agricultural nonpoint source pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169155. [PMID: 38065493 DOI: 10.1016/j.scitotenv.2023.169155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Characterized by irregular spatial and temporal variations of pollutant loading and complex occurrence mechanisms, agricultural nonpoint source pollution (ANPSP) has always been a great challenge in field restoration worldwide. Returning farmlands to wetlands (RFWs) as an ecological restoration mode among various constructed wetlands was selected to manage ANPSP in this study. Triarrhena lutarioriparia, Nelumbo nucifera and Zizania latifolia monocultures were designed and the water pollutants was monitored. N. nucifera and Z. latifolia could reach the highest TN (53.28 %) and TP (53.22 %) removal efficiency, respectively. By 16s high-throughput sequencing of rhizosphere bacteria, 45 functional species were the main contributors for efficient N and P removal, and 38 functional keystone taxa (FKT) were found with significant ecological niche roles and metabolic functions. To our knowledge, this is the first study to explore the microbial driving N and P removal mechanism in response to ANPSP treated by field scale RFWs.
Collapse
Affiliation(s)
- Huixin Fan
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Zhongliang Huang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Chongling Feng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha, Hunan 410004, PR China
| | - Zijian Wu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Yuxin Tian
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Fengfeng Ma
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Jing Huang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Xiaoli Qin
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Zhou Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha, Hunan 410004, PR China
| | - Xuan Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China.
| |
Collapse
|
13
|
Zhao Y, Hu Z, Lu Y, Shan S, Zhuang H, Gong C, Cui X, Zhang F, Li P. Facilitating mitigation of agricultural non-point source pollution and improving soil nutrient conditions: The role of low temperature co-pyrolysis biochar in nitrogen and phosphorus distribution. BIORESOURCE TECHNOLOGY 2024; 394:130179. [PMID: 38092075 DOI: 10.1016/j.biortech.2023.130179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
The current study generated co-pyrolysis biochar by pyrolyzing rice straw and pig manure at 300 °C and subsequently applying it in a field. Co-pyrolysis biochar demonstrated superior efficiency in mitigating agricultural non-point source pollution compared to biochar derived from individual sources. Furthermore, it displayed notable capabilities in retaining and releasing nutrients, resulting in increased soil levels of total nitrogen, total phosphorus, and organic matter during the maturation stage of rice. Moreover, co-pyrolysis biochar influences soil microbial communities, potentially impacting nutrient cycling. During the rice maturation stage, the soil treated with co-pyrolysis biochar exhibited significant increases in available nutrients and rice yield compared to the control (p < 0.05). These findings emphasize the potential of co-pyrolysis biochar for in-situ nutrient retention and enhanced soil nutrient utilization. To summarize, the co-pyrolysis of agricultural waste materials presents a promising approach to waste management, contributing to controlling non-point source pollution, improving soil fertility, and promoting crop production.
Collapse
Affiliation(s)
- Yufei Zhao
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Zhijun Hu
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yunpeng Lu
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Haifeng Zhuang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Chenpan Gong
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xin Cui
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Fuhao Zhang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Peng Li
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
14
|
Yang Y, Kang Z, Wang J, Xu G, Yu Y. Enhanced removal efficiency of bensulfuron-methyl by a novel boron doping biochar-based Acinetobacter YH0317 at a lower temperature. BIORESOURCE TECHNOLOGY 2023; 386:129570. [PMID: 37506925 DOI: 10.1016/j.biortech.2023.129570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Biochar-based bacteria are regarded as an efficient strategy for remediating organic pollutants in aquatic environments. Herein, a strain named Acinetobacter YH0317 that could degrade bensulfuron-methyl (BSM) at a lower temperature (15 °C) was isolated from a paddy rice field with long-term BSM application. Then Acinetobacter YH0317 was loaded on unmodified biochar (BC) and boron doping biochar (BBC). Results showed that BBC-based YH0317 significantly enhanced the removal efficiency of BSM (71.8-99.1%) compared with BC-based YH0317 (41.9-44.0%) and YH0317 alone (18.1-20.7%) in 24 h. BBC promoted the growth of YH0317 and secretion of extracellular secretions by providing a carrier and shelter for YH0317. The electrochemical analysis suggested BBC improved the electron transfer rate, which ultimately facilitated the removal of BSM. Hydroponic experiments indicated that BBC-based YH0317 effectively improved the growth of soybean. This work reports a novel BBC-based Acinetobacter YH0317 that could effectively remediate BSM contamination in the water environment.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhichao Kang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|